
Well-structured Petri Nets extensions with data

Remi Bonnet

LSV – ENS Cachan

Master Thesis – 12 March 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3

2 Overview 4

3 Preliminaries 5

3.1 Well-orders . 5

3.2 Labeled Transition Systems . 6

3.2.1 Decidability properties . 6

3.2.2 Bisimilarity and Weak bisimilarity 7

3.2.3 Weak bisimilarity in WSTS 7

3.3 Petri Nets and Extensions . 8

3.3.1 Vector Addition System . 8

3.3.2 Extensions . 9

3.3.3 Affine nets . 10

3.4 Hierarchy of Petri Nets extensions 10

3.5 Closures and completions . 11

4 Communicating Affine Nets 13

4.1 Basic Communicating Affine Nets 13

4.2 Dynamic Creation . 14

4.3 Well-structure . 15

4.4 Adding communication primitives 15

4.4.1 Deletion . 15

4.4.2 Reverse Broadcast . 16

4.5 Adding order . 16

5 Data nets 18

5.1 Definition . 18

5.2 Arity in data nets . 19

5.3 Deletion in data nets . 20

5.4 Data nets and communicating affine nets 20

6 Decidability of loop acceleration 22

1

7 Order structures and Coverability languages 24

7.1 Definitions . 24

7.2 Order structures of Nk . 25

7.3 Comparing N⊕ to Nk . 26

7.4 Comparing (Nk)⊕ to (Np)∗ . 29

8 Conclusion and Future work 31

A Additionnal proofs 34

A.1 Proof of proposition 3.2.8 . 34

A.2 Proof of propositions 4.3.2 and 4.4.5 34

A.3 Proof of proposition 5.2.1 . 35

A.3.1 Global states . 35

A.3.2 Splitting a transition . 36

A.3.3 Conclusion . 37

A.4 Complements to section 5.2 . 37

A.4.1 Intuition . 38

A.4.2 Definition of the simulating net 39

A.4.3 Validity of configurations . 40

A.4.4 Simulation . 42

A.4.5 Conclusion . 43

2

Chapter 1

Introduction

Well-structured transitions systems (WSTS) are a general class of infinite state systems

for which decidability results rely on the existence of a well-quasi-ordering that is

compatible with the transitions. Many models can be seen as WSTS : lossy counter

machines [1], lossy channel systems, [12], string rewrite systems [8] are for example

WSTS.

Petri Nets are another famous model that can be seen as a WSTS. Since the intro-

duction of Petri nets [19], many extensions have been proposed, most of them being

well-structured. One of the recent ones are data nets [17], that subsumes almost all

already proposed extensions. The focus of our work was to try to find the limits of data

nets, and to try to distinguish them from other extensions. As a secondary goal, we

wanted to provide an alternate representation of data nets to ease the comprehension of

this model.

3

Chapter 2

Overview

Section 3 recapitulates many results about well-orders and Petri Nets. We introduce

there a few classical extensions of Petri Nets that are well-studied in the litterature and

we define the notions of similarity that we will use to relate our different extensions in

the following sections.

Section 4 introduces a new model, communicating affine nets. We define it in a way

that it is easy to add or remove power from it, the aim being to have a flexible, modular

model, that can be made equivalent to data net for some precise set of variations.

Section 5 looks at the data net model itself. We investigate how the number of

transitions and the arity are related, then we show how data nets are equivalent to some

flavor of communicating affine nets.

Section 6 and section 7 try to find new results on how the different extensions

are separated. We will look here at both reasoning about the coverability sets and

differences between the recognized languages of the different extensions.

4

Chapter 3

Preliminaries

3.1 Well-orders

Orders A quasi-ordering (a qo) is a reflexive and transitive relation ≤ on a set X .

We use x < y to denote that x ≤ y � x. A partial ordering (a po) is an antisymmetric

qo. Any qo induces an equivalence relation (x ≡ y) and a partial ordering between the

equivalent classes.

Here is a few results from the theory of well-ordering (see also [16], [13]) :

Definition 3.1.1. A well-quasi-ordering (a wqo) is any quasi-ordering ≤ (on a set X)

such that, for any infinite sequence x0, x1, x2..., there exists i < j with xi < xj .

Given ≤ a quasi-ordering, an upward-closed set is any set A ⊂ X such that y ≥
x ∈ A entails y ∈ A. To any A ⊂ X , we associate ↑A = {y | ∃x ∈ A. y ≥ x}, the

upward closure of A. A basis of an upward closed set A is a set B such that A = ↑B.

Downward-closed sets and the downward closure ↓A are the dual notions.

Lemma 3.1.2. [13] If ≤ is a wqo, then any upward closed set I has a finite basis.

Pointwise comparison ≤ in Nm is a well-order.

Multisets, Words Given A a set, we denote by A⊕ the multisets of A, and A∗ the

words of A. Multisets will be written in the same way as words, as a sequence of

elements x1...xn, with xni

i , ni ∈ N being a shortcut for xi.xi..n times..xi

The subword embedding comparison �w on A∗ with an underlying order ≤A on

the letters is defined by :

u1...um � v1...vn ⇔ ∃ϕ : 1..m→ 1..n

{

ϕ strictly increasing

∀1 ≤ i ≤ m. ui ≤A vϕ(i)

The multiset embedding comparison �s on A⊕ is similarly defined by :

u1...um � v1...vn ⇔ ∃ϕ : 1..m→ 1..n

{

ϕ injective

∀1 ≤ i ≤ m. ui ≤A vϕ(i)

5

Assuming (A,≤A) is a well-ordered set, A∗ and A⊕ are respectively well-ordered

by �w and �s

3.2 Labeled Transition Systems

A labeled transition system (LTS) S = 〈S, s0,Σ,→〉 comprises a set S of states, an

initial state s0 ∈ S, a finite set Σ of labels, a transition relation → on S defined as the

union of the relations
a
−→ ⊆ S × S for each a in Σ ∪ {ǫ}.

The relation is the counterpart for sequences in Σ∗ :

• s
ε
 s

• s
aw
 s′′ for a in Σ ∪ {ǫ} and w in Σ∗ if there exists s′ in S such that s

a
−→ s′ and

s′
w
 s′′.

We write S(s) for the same LTS with s in S as initial state (instead of s0).

A well-structured transition system (WSTS) S = 〈S, s0,Σ,→,≤, F 〉 is a labeled

transition system 〈S, s0,Σ,→〉 endowed with a wqo ≤ on S and an ≤-upward closed

set of final states F , such that→ is compatible with ≤.

There is different definitions of the compatibility between → and ≤, that are not

equivalent and yield different decidability results. We distinguish two restrictions of

compatibility :

• → is compatible with ≤ if :

{

s1 ≤ s2

s1
a
 s3

=⇒ ∃s4 ≥ s3. s2
a
 s4

• → is strictly compatible with ≤ if it is compatible and moreover :

{

s1 < s2

s1
a
 s3

=⇒ ∃s4 > s3. s2
a
 s4

When we don’t precise which compatibility while speaking of a WSTS, it is to be

assumed that we use the first version of compatibility

3.2.1 Decidability properties

Definition 3.2.1. A WSTS is effective if :

• → and ≤ are decidable.

• For any s ∈ States(S) and a ∈ Σ ∪ {ε}, a finite basis of ↑PredS(↑s, a) =

↑{s′ ∈ S | ∃s′′ ∈ S, s′
a
−→ s′′ and s ≤ s′′} can effectively be computed.

6

The cover set of a WSTS is CoverS(s0) = ↓Post∗(↓s0), and Coverability (whether

a given state s belongs to CoverS(s0)) is decidable for finite branching effective WSTS,

thanks to a backward algorithm that checks whether s0 belongs to ↑Pred
∗
S(↑s) =

↑{s′ ∈ S | ∃s′′ ∈ S, s′ →∗ s′′ and s′′ ≥ s} :

Proposition 3.2.2. ([5], Proposition 3.5) If S is an effective WSTS and B a finite set,

computing a finite basis of ↑Pred∗(↑B) is effective.

Corollary 3.2.3. ([5], Proposition 3.6) Coverability is decidable for effective WSTS.

The following decidability results also hold :

Proposition 3.2.4. ([5], Theorem 4.6 and Theorem 4.11)

• Termination is decidable for effective WSTS.

• Boundedness is decidable for effective WSTS with strict compatibility.

3.2.2 Bisimilarity and Weak bisimilarity

A bisimulation relation ([22]) ≃ is an equivalence relation between LTS that has the

following property :

{

S(s) ≃ S ′(s′)

s
a
−→S t

⇒ ∃t′.

{

S(t) ≃ S ′(t′)

s′
a
−→ t′

This notion can be weakened by using the relation instead of→ : A weak bisim-

ulation relation ([23]) ∼ is an equivalence relation between LTS with the property :

{

S(s) ∼ S ′(s′)

s
a
 S t

⇒ ∃t′.

{

S(t) ∼ S ′(t′)

s′
a
 t′

Two LTS S and S ′ are (resp. weakly) bisimilar if S ≃ S ′ for some (resp. weak)

bisimulation relation.

3.2.3 Weak bisimilarity in WSTS

To relate the different WSTS, we will need a notion of equivalence, that should at least

preserve coverability. Indeed, the classic notion of weak bisimilarity isn’t quite good

to describe equivalence between WSTS. Indeed, consider two incomparable states s

and s′ with s
ε
−→ s′. Then, if we ask ourselves whether s can be covered by S(s),

the answer is obviously yes. But (under some conditions) S(s′) is weakly bisimilar to

S(s), and S(s′) will in general be unable to cover s. Thus, we define some additional

notions to capture how ǫ-transitions are used :

Definition 3.2.5. • A LTS is ε-free if there is no transitions labelled by ε.

• A LTS is ε-finite if there is no infinite computation using only ε-transitions.

• A LTS is ε-bounded if there exists a N ∈ N such that every computation using

only ε-transitions is of length lower than N .

7

We will usually want to make ǫ-transitions truly ”invisible”, and this means that the

order should not be able to discriminate between two states linked by ǫ-transitions :

Definition 3.2.6. A WSTS S is ε-coherent if :

s
ε
 s′ ⇐⇒ s � s′ ∧ s′ � s

But this isn’t enough to make bisimilarity preserve coverability. Indeed, even with

ε-free systems, bisimilarity will generally not preserve this property. Assume that you

have one well-structured transition systems, with one initial state si and two states sa

and sb. There is only one transition from si to sa. All states are incomparable. If

you make sa and sb comparable, this wouldn’t change the fact that the system is still

well-structured, because no transitions are issued from these states. Thus, you get two

bisimilar WSTS that have a different answer to ”is sb coverable from si?”

Thus, we will define a new version of equivalence, which is a stronger version of

weak bisimilarity : order-preserving weak bisimilarity (shortly : op-weak bisimilarity)

Definition 3.2.7. Let S and S ′ be two ε-coherent WSTS. Let∼ be a weak bisimulation.

∼ is an op-weak bisimulation if :

S(s1) ∼ S
′(s′1)

S(s2) ∼ S
′(s′2)

s1 ≤ s2

=⇒ s′1 ≤ s′2

Note that op-weak bisimulation can only be defined for ε-coherent WSTS. Indeed,

as we have s ≤ s, if S(s) ∼ S(s′) (which is the case if s
ε
−→ s′), then we have

s ≤ s′ ∧ s′ ≤ s.

The interest of this notion is that we preserve coverability (the fundamental prop-

erty in WSTS) through op-weak bisimilarity :

Proposition 3.2.8. Let S and S ′ be two ε-coherent WSTS. If S is op-weakly bisimilar

to S ′ and S(s′) is op-weakly bisimilar to S ′(t′), then s′ ∈ Cover(S) ⇐⇒ t′ ∈
Cover(S ′).

The proof of this simple result is postponed to the appendix.

3.3 Petri Nets and Extensions

3.3.1 Vector Addition System

Petri Nets have a few equivalent definitions. The original one was introduced in [19].

Here, we define them as Vector Addition Systems. [15].

Definition 3.3.1. A Vector Addition System (VAS) of dimension p is defined by a set

(V, v0) where V is a finite subset of Zp and v0 ∈ Np.

It induces a transition system where states are elements of Np, the initial state is v0,

and :

s → s′ ⇐⇒ ∃v ∈ V. s′ = s + v

8

Petri Nets (or VAS) are effective well-structured systems with respect to pointwise

vector comparison. Because the transition relation has strict compatibility with ≤,

coverability and boundedness are decidable in Petri Nets. Actually, reachability is

even decidable, but this is a separate result [15] that is not due to well-structure.

Petri Nets are usually represented as a graph with p places able to store tokens, and

some number of transitions with incoming (linking places to transitions) and outcom-

ing arcs (linking transitions to places) that correspond to each vector of V , showing

how firing a transition consumes or produces tokens from places.

To fire a transition t, for each incoming arc of t, there must be a token in the

associated place. Then, the effect of a transition is to remove one token for each input

arc in the associated place and to add one token in each place pointed by an output arc.

As an example, figure 3.1 show a representation of the VAS :

V = {(−1,−1, 1, 0), (1, 0,−1, 1), (0, 1, 1,−1)}
v0 = (2, 1, 1, 0)

Figure 3.1: A Petri Net

3.3.2 Extensions

Simple extensions of Petri Nets are usually obtained by adding new kind of ”arcs” on

the previous formalism with different semantics. Classic extensions are :

• Reset Petri Nets [10] have arcs that empty a place when the associated transition

is fired.

• Transfer Petri Nets [10] have arcs that move all tokens from a place to another

when the associated transition is fired. Copy arcs are a variant where the tokens

from a place are duplicated into another place.

• Zero-test Petri Nets have inhibitory arcs that prevent a transition to be fired when

the associated place is non-empty.

In all these models, reachability is no longer decidable. We have the following

properties relating to well-structure :

9

• Reset Petri Nets are effective WSTS. Coverability and termination are decidable.

[9]

• Transfer Petri Nets are effective WSTS with strict compatibility. Coverability,

termination and boundedness are decidable.

• Zero-test Petri Nets are not effective WSTS and are actually Turing-complete.

3.3.3 Affine nets

As a Petri nets (or VAS) can be seen as a set of functions of the form x → x + c that

can be applied to a state to perform a transition, Affine nets can be seen as a set of

affine functions. As a non-decreasing affine function f with an upward-closed domain

(and we only want to consider these functions to have compatibility with the order)

can always be represented by two vectors and one matrix of non-negative integers, we

define affine nets in the following way :

Definition 3.3.2. [2] An affine net S of dimension p is defined by (T, F,G, H), where

T is a set of transitions labels, F and H are sets of vectors of Np indexed by elements

of T , and G is a set of matrices of Np×p also indexed by elements of T .

The associated LTS of initial state s0 is (Np, s0, T,→) where :

s
t
−→ s′ ⇔

{

s ≥ Ft

s′ = Gt(s− Ft) + Ht

Affine nets are a generalization of many extensions of Petri nets, including reset

petri nets, transfert petri nets... These extensions can be defined by adding constraints

to the Gt matrices defining the functions.

For example, standard Petri nets require Gt = Id, reset Petri nets that this matrix

is diagonal with only zero and one eigen-values, transfert Petri nets that the matrix

contains only zero and one and so on ...

A result from [2] shows that affine nets are effective well-structured transition sys-

tems, yielding that coverability and termination are decidable. Although, because they

contain reset nets, we know that boundedness is undecidable [9].

3.4 Hierarchy of Petri Nets extensions

It is interesting to see that there is mainly two different ways of extending Petri Nets :

• Adding more powerful transitions, that can manipulate many tokens at once in

different ways. The main difference is whether you allow whole-place opera-

tions : reset, transfert or even any affine functions.

• Using a more powerful state space, turning black tokens into named/marked to-

kens that can be compared in different ways. We can distinguish here three main

complexities : black tokens (indistinguishable), colored tokens (only comparable

for equality/inequality), data tokens (comparable by a linear order)

10

Systems using colored tokens are unordered Data nets ([17]) and ν-Petri Nets

([21]). The main system using comparable data token is Data Nets ([17]).

The strict inclusions of these different models has been an open problem for long.

Recent works by Abdulla ([18]) and Rosa Vellardo ([11]) have shown a few reductions

and strict inclusions.

Figure 3.2 shows a hierarchy of these models. Black arrows denote syntaxic inclu-

sion, green arrows reductions based on covering languages (see section 7.1 for defi-

nitions of covering languages) and red dashed areas represent the classes of transition

systems that are known to not be equivalent.

Figure 3.2: A hierarchy of Petri Net extensions

In sections 6 and 7, we will investigate a few new results regarding the separations

of these extensions.

3.5 Closures and completions

If it has been known for years how to compute the upward-closure of the prede-

cessor set ↑Pred∗(↑s) (see proposition 3.2.2), being able to compute the cover set

↓Post∗(↓s) is a more difficult problem. Indeed, we can’t rely on the existence of a

finite basis as the set of minimal elements. Recent works by Finkel and Goubbault

([3], [4]) have tried to give a general framework in order to compute covers of WSTS.

We recall there some of their results.

The idea is that we first need to represent finitely a downward closed set and thus

to complete the state space in a way that any downward closed set can be represented

by a finite set of elements.

A directed family of X is any non-empty family (xi)i∈I such that, for all i, j ∈ I ,

there is a k ∈ I with xi, xj < xk. A directed-complete partially ordered set, or dcpo

is a partially ordered set such that every directed family has a least upper bound.

An ideal is a downward-closed directed family. If X is a partially ordered set, we

denote by Idl(X) the set of its ideals.

11

Proposition 3.5.1. ([7], [3]) Idl(X) is a dcpo 1 and any downward closed subset of

X can be represented as a finite union of ideals.

Idl(X) should be seen as the completion of X . η : X → Idl(X) that associates

↓x to x is a canonic (order-)embedding of X in Idl(X).
If Nk

ω is a well-known representation of the completion of Nk, the representation

of ideals more complicated structures is not immediate.

Definition 3.5.2. ([3]) Let X be a topological space.

An atomic expressions is either of the form A with A ∈ Idl(X), or A∗, with A a

non-empty finite subset of Idl(X).
A product is any regular expression of the form e1e2...en where each ei is an atomic

expression.

Proposition 3.5.3. The ideals of X∗ and X⊕ are defined by the products on X (note

that elements of multisets are defined up to permutations).

We refer to [3] for more precision on the representation of ideals in X∗ and X⊕.

1
Idl(X) is, in general, not a well-order, but it will always be the case for the structures we use (products,

multisets, words). [6] describes a counterexample.

12

Chapter 4

Communicating Affine Nets

We introduce here a new model, that aims to have the same power as data nets, but with

a more natural presentation.

4.1 Basic Communicating Affine Nets

The idea is to have a model of a set of linear-ordered communicating infinite-state pro-

cesses. Moreover, we want to keep the possibility that new processes can get inserted

or deleted. As a state of a process can be represented by a vector of integers, it is natural

to encode a state of the whole system as a word of integer vectors of a fixed dimension

p.

The expressiveness of this system depends on how each process can evolve, and

how the processes can communicate between themselves. We will restrict ourselves to

the study of the system when individual processes are affine nets, and consider different

kind of possible transitions. For example, here are some classic transition relations :

Definition 4.1.1. A relation
Rdv
−−→∈ (Np)∗ × (Np)∗ is a transition relation of kind

rendez-vous (shortly: Rdv) if there exists (F1, G1, H1) ∈ Np × Np×p × Np and

(F2, G2, H2) ∈ Np × Np×p × Np such that :

u1...un → v1...vn ⇔ ∃i 6= j.

ui ≥ F1

vi = G1(u1 − F1) + H1

uj ≥ F2

vj = G2(u2 − F2) + H2

vk = uk for k 6= i, j

Thus, a rendez-vous is parameterized by two affine functions. Two states are re-

lated by this transition relation iff the second can be obtained from the first when two

processes perform the rendez-vous described by the two affine functions.

Definition 4.1.2. A relation
Brd
−−→∈ (Np)∗ × (Np)∗ is a transition relation of kind

broadcast (shortly: Brd) if there exists (Fe, Ge, He) ∈ Np × Np×p × Np (the emitter

transition) and (Gr, Hr) ∈ N2p×p × Np (the receivers transition) such that :

13

s
t
−→ s′ ⇔ ∃i.

s(i) ≥ Fe

s′(i) = Ge(s(i)− Fe) + He

s′(j) = Gr(s(i), s(j)) + Hr

It should be noted that there is only constraints on the emitter state : other processes

are always able to receive a broadcast. Moreover, the receiver state is updated taking

into account both the emitter state and its own state : this reflects the fact that the

emitter can add information about its own state in the broadcasted message. Also, like

in [14], a combination of two broadcasts can simulate a rendez-vous.

To allow us to later study many kind of transition relations, we define the transition

system associated to communicating affine nets as the general form of a transitions sys-

tem on (Np)∗, and we will systematically precice the kind of transitions that we allow

in our systems. For example, Rdv,Brd-communicating affine nets are the subclass of

communicating affine nets that only communicate through rendez-vous and broadcast

as described above.

There is no need to add the definitions of local transitions, as these are clearly a

special case of the global transitions.

Definition 4.1.3. A communicating affine net of dimension p is defined by a set 〈T, s0, {
t
−→

}t∈T 〉 where T is a set of transition labels and i ∀t ∈ T.
t
−→∈ (Np)

∗ × (Np)
∗
. This is

a transition system on (Np)∗

It is a Op1, ...Opn-communicating affine net if ∀t ∈ T. ∃1 ≤ j ≤ n.
t
−→ is of kind Opj .

4.2 Dynamic Creation

It is clear that if the initial state s0 contains r processes, broadcasts will not change this

number, and thus that Brd-communicating automatas is nothing more than a special

case of an affine net with r× p places. This prompts the addition of transitions of kind

Cre (creation), parameterized by a state s0, that allow a new process of state t0 to be

created at any place in the array of processes.

Definition 4.2.1. A transition
t
−→ is of kind creation (shortly: Cre) if there exists t0

such that :

s
t
−→ s′ ⇔ ∃u, v

{

s = u.v

s′ = u.t0.v

We have already said that Brd-communicating affine nets were equivalent to affine

nets. This is not the case as soon as new processes can be created. For example, it

can be mentionned that the branching degree of an affine net is bounded, while the

branching degree of Cre, Brd-communicating automatas is unbounded. We show in

section 6 that this gain of expressiveness implies a loss in decidability results.

14

4.3 Well-structure

Proposition 4.3.1. Brd, Cre-communicating affine nets are well-structured transition

systems.

Proposition 4.3.2. Brd, Cre-communicating affine nets have effective pred-basis.

The proof of this simple result is available in the appendix.

This gives us the results from [5], (theorems 3.6 and 4.6) :

Proposition 4.3.3. Coverability and Termination are decidable for Brd, Cre-communicating

affine nets.

4.4 Adding communication primitives

4.4.1 Deletion

Definition 4.4.1. A transition
t
−→ is of kind deletion (shortly: Del) if there exists C ⊂

Np such that :

s
t
−→ s′ ⇔ ∃i.

s(i) ∈ C
s = u.s(i).v
s′ = u.v

Unfortunately, having deletion operations in communicating automatas is of little

value : If a sequence of transitions with deletions is fireable, then so is the same se-

quence of transitions without the deletions. Moreover, a state after a deletion is strictly

lesser than the original state, meaning that if we take a system S and we consider S\Del,

the same transition system with the deletion transitions suppressed, we have :

Proposition 4.4.2.

↓Post∗S(↓s) = ↓Post∗S\Del
(↓s)

To make the deletion of processes interesting, this must be a constrained operation,

meaning that we need a way to force the suppression of processes in order to perform

an operation. Thus, we introduce filtering, a stronger version of deletion :

Definition 4.4.3. For u an element of (Np)∗, and C an upward closed set, we denote

by u|C the word obtained by deleting in u all letters that are not in C.

A transition
Fil
−−→ is of kind filtering (shortly: Fil) if there exists C ⊂ Np, ↑C = C

and (Fe, Ge, He) ∈ Np × Np×p × Np such that :

usev
t
−→ u|Cs

′
ev|C ⇔ s′e = Ge(se − Fe) + He

15

4.4.2 Reverse Broadcast

In our current model, we have a way to make a process communicate to all other

process. Unfortunately, this doesn’t allow for simple actions like counting the number

of other alive processes. In order to be able to completely simulate data nets, we

introduce another operation :

Definition 4.4.4. A relation
Brd
−−→∈ (Np)∗ × (Np)∗ is a transition relation of kind

reverse broadcast (shortly: Brd) if there exists (Fe, Ge, He) ∈ Np×N2p×p×Np such

that :

s
t
−→ s′ ⇔ ∃i.

{

s(i) ≥ Fe

s′(i) = Ge(s(i)− Fe,Σi 6=js(j)) + He

Adding these two primives doesn’t change our decidable properties. Indeed, the

implied transitions are obviously monotic and we have :

Proposition 4.4.5. Brd,Brd, Cre, F il-communicating affine nets have effective pred-

basis.

4.5 Adding order

All our primitives currently have no notions of adjacency, left or right. This means

that states are actually multi-sets instead of words, given states are equivalent up to

permutations of states. It is tempting to add these notions to the primitives, but some

care must be taken :

Left and right broadcast

Definition 4.5.1. A transition
LBrd
−−−→∈ (Np)∗ × (Np)∗ is a transition relation of kind

left broadcast (shortly: LBrd) if there exists (Fe, Ge, He) ∈ Np × Np×p × Np (the

emitter transition) and (Gr, Hr) ∈ N2p×p × Np (the receivers transition) such that :

u1...un
t
−→ v1...vn ⇔ ∃i.

ui ≥ Fe

vi = Ge(ui − Fe) + He

vj = Gr(ui, uj) + Hr for j < i

vj = uj for j > i

Right-broadcast (shortly: RBrd) is defined symmetrically. A transition is an or-

dered broadcast (shortly: OBrd) if it is either a left-broadcast or a right-broadcast.

All the ordered versions of the other primitives may be obtained by combining the

normal version with a preliminary ordered broadcast. Thus, we will not describe the

other primitives.

Ordered broadcast is a monotone operation with compatibility with � and it keeps

effective pred-basis. Thus, the decidability results of section 4.3 still hold when adding

these primitives.

16

Neighbor relation

Definition 4.5.2. A relation
NRdv
−−−−→∈ (Np)∗ × (Np)∗ is a transition relation of kind

neighbor rendez-vous (shortly: NRdv) if there exists (F1, G1, H1) ∈ Np×Np×p×Np

and (F2, G2, H2) ∈ Np × Np×p × Np such that :

u1...un → v1...vn ⇔ ∃1 ≤ i < n.

ui ≥ F1

vi = G1(ui − F1) + H1

ui+1 ≥ F2

vi+1 = G2(ui+1 − F2) + H2

vk = uk for k 6= i, i + 1

Proposition 4.5.3. NRdv-communicating affine nets are Turing complete.

This is a classic result for communicating finite automatas. A Turing-machine tape

can be viewed as an array of communicating cells, that pass a token representing the

position of the machine head.

17

Chapter 5

Data nets

5.1 Definition

Data nets can be seen as affine nets in which tokens have a value in a linearly-ordered,

infinite domain D. Operations of data nets can have constraints on which tokens they

use based on the order.

Since the linear ordering ≤D is the only operation available on D, states of Petri

data nets are finite sequence (words) of vectors of NP \{0}. Each index j of this se-

quence is associated to an implicit datum dj ∈ D such that j ≤ j′ ⇐⇒ dj ≤ dj′ . For

each p ∈ P , s(j)(p) is the number of tokens which carry dj and are at place p. We say

that these tokens are of kind j. For example, the state of the data net with three places

represented in figure 5.1 would be encoded as :

(0, 1, 0).(1, 0, 1).(0, 1, 2).(1, 0, 0)

Figure 5.1: Example of a data net state

Due to the size of their definition, we will let the reader refer to [17] for the full

formalism and we will only define here Petri data nets, a subset of data nets, which can

be formalized more easily.

18

Definition 5.1.1. [17] A Petri data net is defined as 〈P, T, α, F,H〉 where P is the set

of places, T the set of transitions, α : T → N gives the arity of each transition. F

and H are a matrixes such that for t ∈ T , p ∈ P and 0 ≤ i ≤ α(t), F (t, p, i) (resp.

H(t, p, i)) is the number of tokens of kind i that are consumed (resp. produced) in the

place p when the transition t is fired.

Firing a transition t in a data net follows four steps :

• Selection of datums : α(t) datums are chosen nondeterministically. 0 vectors can

be added in this step to the state in order to represent the choice of a fresh datum.

We denote by ι(i) the i-th datum chosen. We must have i < i′ ⇐⇒ ι(i) < ι(i′)

• Consumption : For every place p and for every 0 ≤ i < α(t), F (t, p, ι(i)) tokens

of kind ι(i) are removed in place p.

• Production : For every place p and for every 0 ≤ i < α(t), H(t, p, ι(i)) tokens

of kind ι(i) are added in place p.

• Garbage Collection : All vectors that are currently equal to 0 (meaning that their

associated datum is no longer present in the net) are suppressed.

Complete data nets also support whole place operations (transfert and reset), broad-

casts (very similar to the operation defined for communicating affine nets, but with the

extra power of arity) and have a mechanism of collecting that can consider all tokens

whose value is between two bounds. Fortunately, recent results by Abdulla et al. [18]

have shown that Petri data nets have the full power of data nets if we allow unbounded

number of ε-transitions in the weak bisimulation.

5.2 Arity in data nets

We would like to relate data nets and communicating affine nets by saying that each da-

tum is actually a process, while interaction between datums would be communication

between processes.

However, transitions of data nets are parameterized by an ”arity” that, in the for-

malism of communicating affine nets, could be seen as the number of process initiating

and controlling a transition. In real systems or protocols, it should be clear that one

transition is started by only one process, and that protocols using more than one pro-

cess as controllers can be simulated by the communication of the processes through

broadcasts.

Without surprise, this means that data nets can be simplified to use only transitions

of arity one.

Proposition 5.2.1. Every ǫ-free data net is weakly bisimilar to an ǫ-bounded ǫ-coherent

data net with only transitions of arity one.

The idea of the proof is to make twice as many copies of the states as the maximum

transition arity and to add some number of control states and boolean variables. Then,

a first round of broadcasts (simulating rendez-vous), marks all the processes that will

19

be ”controlling” the transition. A second round marks the regions, then a third com-

municates to each process. the sum of each region states and the controlling processes

states. A fourth round makes each process compute ”locally” its resulting state. The

formal proof with the technicalities is available in the appendix.

Interestingly enough, the dual property is also true : as it is possible to increase the

number of transitions to have only arity one, it is possible to increase the arity in order

to have only one transition. The interest of this result being limited, and the formalism

being quite complicated, we refer to appendix A.4 for the formal statement.

5.3 Deletion in data nets

The major difference between communicating affine nets and data nets lie in the han-

dling of null processes (processes that are only zeros). Although they are automatically

suppressed in data nets, they stay alive in communicating affine nets, implying that they

can be turned into relevant processes through broadcast. This prompts to distinguish a

class of data nets :

Definition 5.3.1. A data net is non-deleting if, for all computations starting from the

initial state, there is no 0-contraction1

Proposition 5.3.2. The question whether a data net is non-deleting is undecidable.

Proof. A reset net is a special case of data net. Deciding whether the state 0 can be

reached is undecidable in reset nets, as it is equivalent to reachability.

5.4 Data nets and communicating affine nets

Once we have shown that data nets can be quasi-simulated by data nets with only

transitions of arity one, we can remember that an ”ordered reverse-broadcast” can be

simulated by an ordered broadcast and a reverse-broadcast, and that a transition of

arity one is, up to process creation / suppression, exactly the combination of an ordered

broadcast and an ordered collection.

Proposition 5.4.1. Every data net is weakly bisimilar to a ǫ-bounded, ǫ-coherent

OBrd,Brd, Cre, F il-communicating affine net. Computing this communicating affine

net is effective.

• If the data net is unordered, the communicating affine net can be chosen to use

broadcasts instead of ordered broadcasts.

• If the data net is non-deleting, the communicating affine net can be chosen with-

out filtering operations.

1A 0-contraction happens when there is a null vector in the vector word obtained after a transition. This

vector is deleted.

20

It can debated, at the light of the recent results by Abdulla ([18]), whether it is

better to view Data nets as Petri data nets or as Communicating affine nets. One point

for Communicating affine nets is that the reduction of data nets to this model is ǫ-

bounded, while the reduction to Petri data net is only ǫ-finite. Although, it comes

without discussions that Petri data nets are a lot simpler to use than Communicating

affine nets.

21

Chapter 6

Decidability of loop acceleration

Computing the cover of Petri Nets is effective, by the Karp-Miller tree procedure [20].

It is known that as soon as we move to reset nets, computing this cover is no longer

possible [9]. Works by Finkel and Goubbault ([3], [4]) have shown that with some

additionnal hypothesis (that the reset net is flattable), computing the cover of some

reset nets is possible. This result relies on infinite-effectiveness : the ability to compute

accelerations of simple loops.

Definition 6.0.2. Let S be an ε-free labeled transition system and u a word of transition

labels. We define AccS(s0, u) the set ↓{s | ∃n. s0
un

 s}.

Note that by speaking of transition labels, we mean that two different transition

should be labelled by different letters : of course, if we allow all transitions to be

labelled by the same letter a, computing AccS(s0, a) would yield the cover.

Theorem 6.0.3. Acceleration of simple loops is effective for affine nets.

Proof. Because affine nets transitions are deterministic, a transition (or a sequence of

transitions) is basically a partial function. With a given state, trying to iterate this

transition will either stop if one of the resulting state is outside the domain of the

functions, or the run will be infinite.

Deciding whether the run is infinite or finite is easy : because of well-order, by

actually iterating the functions, we either end on a state that is outside the domain, or

on a state that is strictly bigger than a previous one, ensuring an infinite run.

The case of a finite run being immediate, we will care only about the infinite run

case :

We have g(x) = Ax + B, A ∈ Np∗p , B ∈ Zp. We define f = gp for some p ∈ N
such that f(s0) ≥ s0. We are looking for l = sup{fk(s0) | k ∈ N}.

We define sk = fk(s0) and dk = sk+1 − sk.

We show that dk = fk+1(s0)− fk(s0) = (Ask + B)− (Ask−1 + B) = Adk−1.

This gives us the simple result dk = Akd0.

22

Proof. We consider the following language :

L = {bam1bam2b . . . bamkb♯ban1ban2b . . . bankb | k ∈ N ∧ ∀1 ≤ i ≤ k. ni ≤ mi}

This language can be recognized easily by a data net.

However, let’s consider a WSTS S whose state space is (Nk)⊕ and assume that it

recognizeL. Let σ be a sequence accepting bam1bam2b . . . bamkb♯bam1bam2b . . . bamkb

and let us consider a state s reached by a subsequence of σ whose image is bam1bam2b . . . bamkb.

We define ϕ(m1, m2, . . . ,mk) = s. Then ϕ is a weak simulation from (N∗,�) to

(Np)⊕ by the same reasoning as in the proof of theorem 7.2.2.

More generally, any impossibility of a weak simulation between two ordered sets

would probably translate to a separation between the languages that two WSTS using

these state spaces can express.

30

Chapter 8

Conclusion and Future work

We have introduced a new model, Communicating affine nets, that are able to simulate

Data nets with only bounded sequences of ε-transitions. Simultaneous works ([18])

having shown that, using unbounded sequences of ε-transitions, data nets are also sim-

ulable by Petri data nets, which are a significantly simpler model, future works should

probably focus on this last model when looking at decidability results.

Thus, the hierarchy of Petri nets extensions with data seems to center around three

main models : affine nets, unordered Petri data nets (or ν-Petri nets), and Petri data

nets. It is interesting to note that these three models use the three classic well-ordered

data structures as their state space : Nk, (Nk)⊕, (Nk)∗.

We have shown that at least one decidability problem (acceleration of simple loops)

separates affine nets from data nets. Moreover, our study of languages has shown that

the languages that can be recognized by a well-structured transition system is deeply

linked to the state space of that transition system. One of our result is that there exists

languages of unordered Petri data nets that can not be recognized by any affine net.

Extending this result to be able to differentiate unordered Petri data nets from Petri

data nets seems to be an interesting open problem.

Acknowledgements I would like to thank Alain Finkel for having supervised this

word, and I’m grateful to Jean Goubbault-Larrecq, Serge Haddad and Fernando Rosa

Vellardo for many interesting exchanges.

31

Bibliography

[1] R. Mayr A. Bouajjani. Model checking lossy vector addition systems. In STACS 99, pages

323–333, 1999.
[2] C. Picaronny A. Finkel, P. McKenzie. A well-structured framework for analysing petri net

extensions. Information and computation, 195:1–29, 2004.
[3] J. Goubault-Larrecq A. Finkel. Forward analysis for wsts, part i: Completions. In STACS

2009, pages 433–444, 2009.
[4] J. Goubault-Larrecq A. Finkel. Forward analysis for wsts, part ii: Complete wsts. In ICALP

2009, pages 188–199, 2009.
[5] Ph. Schnoebelen A. Finkel. Well-structured transition systems everywhere! Theoretical

Computer Science, 256:63–92, 2001.
[6] Parosh Aziz Abdulla and Aletta Nylén. Better is better than well: On efficient verification

of infinite-state systems. In LICS ’00: Proceedings of the 15th Annual IEEE Symposium

on Logic in Computer Science, page 132, Washington, DC, USA, 2000. IEEE Computer

Society.
[7] Samson Abramsky and Achim Jung. Domain theory. pages 1–168, 1994.
[8] Ronald V. Book and Friedrich Otto. String-rewriting systems. Springer-Verlag, London,

UK, 1993.
[9] Ph. Schnoebelen C. Dufourd, A. Finkel. Reset nets between decidability and undecidabil-

ity. In Automata, Languages and Programming, pages 103–115. 1998.
[10] G. Ciardo. Petri nets with marking-dependent arc cardinality: Propeties and analysis. In

15th Int. Conf. Applications and Theory of Petri Nets, pages 179–198, 1994.
[11] G. Delzanno F. Rosa Vellardo. Language-based comparison of nets with black tokens,

pure names and ordered data. In 4th International Conference on Language and Automata

Theory and Applications (to appear), 2010.
[12] S. Purushothaman Iyer G. Cece, A. Finkel. Unreliable channels are easier to verify than

perfect channels. Information and computation, 124:20–31, 1995.
[13] G. Higman. Ordering by divisibility in abstract algebras. In London Math. Soc. (3), pages

326–336, 1952.
[14] R. Mayr J. Esparza, A. Finkel. On the verification of broadcast protocols. Logic in Com-

puter Science, pages 352–359, 1999.
[15] S. Rao Kosaraju. Decidability of reachability in vector addition systems. In STOC ’82:

Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages

267–281, New York, NY, USA, 1982. ACM.
[16] J.B. Kruskal. The theory of well quasi-ordering: A frequently discovered concept. Combi-

natorial Theory, Series A, 13:297–305, 1972.
[17] R. Lazic. Nets with tokens which carry data. In Petri Nets and Other Models of Concur-

rency, pages 301–320. 2007.
[18] L. Van Begin P.A. Abdulla, G. Delzanno. A language-based comparison of extensions of

petri nets with and without whole-place operations. In Language and Automata Theory

32

and Applications, pages 71–82. 2009.
[19] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, 1977.
[20] R.E. Miller R.M. Karp. Parallel program schemata. 1969.
[21] Fernando Rosa-Velardo and David de Frutos-Escrig. Name creation vs. replication in petri

net systems. Fundam. Inf., 88(3):329–356, 2008.
[22] R.J van Glabbeek. The linear time - branching time spectrum. In Theories of Concurrency:

Unification and Extension, pages 278–297, 1990.
[23] R.J van Glabbeek. The linear time - branching time spectrum ii. In Proceedings CON-

CUR’93, pages 66–81, 1993.

33

Appendix A

Additionnal proofs

A.1 Proof of proposition 3.2.8

Proposition A.1.1. Let S and S ′ be two ε-coherent WSTS. If S is op-weakly bisimilar

to S ′ and S(s′) is op-weakly bisimilar to S ′(t′), then s′ ∈ Cover(S) ⇐⇒ t′ ∈
Cover(S ′).

Proof. Let s0 and s′0 be the respective initial states of S and S ′ and assume that s0 →
∗

s′′, s′′ ≥S s′. Then, by a simple induction on the length of the path from s0 to s′′, there

exists t′′ such that t0 →
∗ t′′, S(s′′) ∼ S ′(t′′). Due to the order-preserving property of

∼, we have t′ ≤ t′′, which concludes the demonstration.

A.2 Proof of propositions 4.3.2 and 4.4.5

Lemma A.2.1. Let φ be a non-decreasing affine function from Np to Nq and y a vector

of Nq. Computing a finite basis of ↑ φ−1(↑ y) is effective.

Proof. We show this by induction on p. For p = 0, the preimage set is obviously

empty, so let’s move to the inductive step.

If x is a vector of Np−1, we have φ(x, xp) = φ0(x) + x ∗ φp, where φ0 is an affine

function from Np−1 to Nq, and φp is a vector of Nq.

We will distinguish components of φp that are zero to the others :

∃m. ∀1 ≤ i ≤ q. φp[i] = 0 ∨mφp[i] ≥ y[i]

This m shows a bound for xp : Increasing xp above m will not change the mem-

bership of φ(x, xp) in ↑ y, whatever the value of x is. Thus, we have :

Basis
(

↑ φ−1(↑ y)
)

=
⋃

0≤k≤m

{

(x, k) | x ∈ Basis
(

↑ φ−1
0 (↑ (y − kφp))

)}

34

Proposition A.2.2. Brd, Brd, Cre, F il-communicating affine nets have effective pred-

basis.

Proof. The predecessor set of a state is the union of the predecessor sets of this state

for every transition. Thus, it is enough to show that we can compute a finite basis of a

predecessor set for one transition.

• B{o,u}(fe, fr) (Broadcast). The state s contains only a finite number of process,

so we can iterate through all processes, consider the predecessor of s if one

process was the sender and intersect the predecessor set obtained by lemma A.2.1

with the constraint set.

• B(fe) (Reverse-broadcast). Same idea as broadcast.

• F (fe, Cr) (Filtering). Again, we consider the predecessor sets for each possible

sender. This time, for each sender, if it fulfills its constraint set, there is one

unique minimal predecessor (the other predecessors being similar states, up to

the insertion of non-matching processes)

• C(sinit) (Creation). States that are possible predecessors of s through a creation

rule are simply those that are obtained by deletion of one process in state sinit.

A.3 Proof of proposition 5.2.1

Proposition A.3.1. Every ǫ-free data net is weakly bisimilar to an ǫ-bounded ǫ-coherent

data net with only transitions of arity one.

Let’s consider a data net S = (P, T, α, F, G, H). We will build a data net S ′ =
(P ′, T ′, 1, F, G, H), simulating S with only transitions of arity one.

Note: We will indistictly use ”datums” (formalism of data nets) and ”processes”

(formalism of communicating affine nets) in this proof, referring to the same thing : a

specific vector in the state.

A.3.1 Global states

The idea is that we want that at every time, we can define the global state of the system

and that we are able, with each transition, to require that the global state was a specific

one before, and that the states change with the transition.

This is really easy to do with broadcasts, and as full data nets transitions 1 can

multiply every state by a given matrix, we will assume that there is an additionnal

number of places, that are global control places and that at every time, there is one

token for each datum in that place.

1as opposed to Petri data nets one

35

A.3.2 Splitting a transition

A transition of arity α is split in the following steps :

• α processes are marked as the emitters of the transition.

• The sum of each region states is computed.

• Each process receives a copy of each region state sum, and each emitter state.

• Each process computes his new state.

We won’t describe the complete encoding of each of these operations, but simply

give the main ideas for each step. Global states ensure that we always know precisely

at which ”step” we are.

Selection of emitters We start with a token in a random process fulfilling the con-

straints for the first emitter. We then set a specific place to one for all datum on the

right of this emitter, and to zero on the left. Then, we select a random process fulfilling

the constraints for the second emitter and that has a one in that specific place. We iter-

ate until all emitters are chosen. We have a number of places equal to the arity of the

transition with one token marking the datum associated to each emitter.

Computing sums of regions For this step, we need for every real ”data place”,

arity + 1 copy places. We iterate on each emitter, from left to right, and for emit-

ter i, we perform :

• A copy of all data places to the i-th set of copy data places for every datum

greater than the emitter one.

• A deletion of all tokens with a datum greater than the emitter one in the i− 1-th

set of copy data places.

Transferring sums of regions to all processes The first emitter can compute the

sum of all tokens from each region by looking at each set of data place copies used in

the previous step and can then broadcast this value to all other processes (storing it into

new sets of copy places)

Then, each emitter can broadcast its own state to all process, again storing it in new

sets of copy places.

Computing final state With each process containing all the required data, we iterate

a last time on each emitter. For each emitter, it computes its final state and make all

process on its right also compute its final state, assuming that it is a process in the region

immediately on its right (if it is not, the wrong values will be overwritten when the next

emitter takes hand). The first emitter also make every process on its left compute its

final state.

36

A.3.3 Conclusion

This show that it is possible to simulate a data net with only transitions of arity one :

This reduction is ǫ-bounded : if only the final step of the transition is labelled by the

transition label, and all other by epsilons, the number of intermediate steps is linear in

the arity of the transition and doesn’t depend on any other factor. Thus, given that for

each data net, we can define the maximum arity, the number of intermediate steps is

bounded.

A.4 Complements to section 5.2

We have seen that we can ”break” transitions of arity greater than one in simpler tran-

sitions. The reverse is also true : multiple transitions can also be merged into a single

transition.

Definition A.4.1. A transition system is said to live in domain D if:

• Its initial state is in D.

• If a state is in D, all its successors are in D.

Such a domain is not necessarily unique nor minimal.

Proposition A.4.2. Any data net S can be effectively associated a data net S ′ living

in a regular domain D with only one transition such that there exists a function proj,

effective on finite set of states and on upward/downward closed set of states included

in D with :

s →S s′ ⇒ ∃(t, t′) ∈ D2.

proj(t) = s

proj(t′) = s′

t →S′ t′

t →S′ t′

proj(t) exists

proj(t′) exists

⇒ proj(t) →S proj(t′)

∀s. ∃t. proj(t) = s

If S is non-deleting, S ′ can also be chosen non-deleting. If S is unordered, S ′ can

also be chosen unordered.

S ′ can be seen as simulating S when seen through the proj lens (which is effective

on interesting sets). Thus, many problems of S can be reduced to problems of S ′. For

example:

Proposition A.4.3. For any state s ∈ D of S ′, we have :

↓Post∗S(↓ proj(s)) = proj(↓Post∗S′(↓ s))

37

Figure A.1: An ”aggregated” transition

A.4.1 Intuition

The idea is to create a meta-transition, as shown in figure ??, that require the presence

of separators in the state, each transition being applied between two separators.

Then, if we define a state to be a working area and a collection of trash areas,

all separated by separators, the transition can slide on these different areas, and when

fired, it will induce the application of one specific transition to the working area. This

is presented in figure A.2.

Figure A.2: Representation of the firing of a transition

Only two things must be taken care of :

• Trash areas must always contain enough data for any transition to be fired. This is

simply done by repopulating these areas with huge values whenever a transition

is fired.

• Contiguous separators must always be used (or only half-a-transition might be

applied to the working area). Although this seems to violate the fact that we

cannot use ”neighbor” relations (see proposition 4.5.3), we can cheat by delet-

ing separators that are inside an area in which a transition is applied, and then

consider all states where a separator is missing as invalid.

38

A.4.2 Definition of the simulating net

Let S = (P, T, α, F, G, H) a data net.

We will build S′ = (P ∪ {sep, work, trash}, {tr}, {αtr}, {Ftr}, {Gtr}, {Htr})
another data net with similar semantics and only one transition.

Let n = card(T), Mv the greatest value among all Ft, and Mα the greatest αi.

We define {si} to be the indices of separation between the original transitions:

s0 = 1
si+1 = si + αti

+ 1 for 0 ≤ i ≤ n− 1
αtr = sn

Using these indices, we now define the two vectors and the matrix associated with

the transition :

Ftr(si + j, p) = Fti
(j, p)

for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ αti
, p ∈ P

Ftr(si, sep) = 1
for 0 ≤ i ≤ n− 1

Ftr(x, y) = 0
otherwise

Gtr(si + j, p, si + j′, p′) = Gti
(j, p, j′, p′)

for 0 ≤ i ≤ n− 1, 1 ≤ j, j′ ≤ αti

Gtr(si + j, p, R, p′) = Gti
(j, p, R′, p′)

for

R = Reg(si+j,si+j+1)

R′ = Reg(j,j+1)

0 ≤ i ≤ n− 1, 0 ≤ j ≤ αti
, p, p′ ∈ P

Gtr(R, p, si + j, p′) = Gti
(R′, p, j, p′)

for

R = Reg(si+j,si+j+1)

R′ = Reg(j,j+1)

0 ≤ i ≤ n− 1, 0 ≤ j ≤ αti
, p, p′ ∈ P

Gtr(R, p, R, p′) = Gti
(R′, p, R′, p′)

for

R = Reg(si+j,si+j+1)

R′ = Reg(j,j+1)

0 ≤ i ≤ n− 1, 0 ≤ j ≤ αti
, p, p′ ∈ P

39

Gtr(si, trash, si + j, p) = Mv

for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ αti

Gtr(si, trash, R, p) = Mv

for

{

R = Reg(si+j,si+j+1)

0 ≤ i ≤ n− 1, 0 ≤ j ≤ αti
, p ∈ P

Gtr(R, sep, R, sep) = 0
for R = Reg(x,x+1), 1 ≤ x ≤ sn

Gtr(si + j, sep, si + j, sep) = 0
for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ αti

Gtr(si, work, si, work) = 1
for 0 ≤ i ≤ n− 1

Gtr(si, trash, si, trash) = 1
for 0 ≤ i ≤ n− 1

Htr(si + j, p) = Hti
(j, p) for 0 ≤ i ≤ n− 1, 1 ≤ j ≤ αti

, p ∈ P

Htr(R, p) = Hti
(R′, p) for

R = Reg(si+j,si+j+1)

R′ = Reg(j,j+1)

0 ≤ i ≤ n− 1, 0 ≤ j ≤ αti
, p ∈ P

Htr(si, sep) = 1 for 0 ≤ i ≤ n− 1

A.4.3 Validity of configurations

A datum d ∈ NP∪{sep,work,trash} is said to be a separator if d(sep) = 1. It is a

trash separator if d(trash) = 1 ∧ d(work) = 0 and a work separator if d(work) =
1 ∧ d(trash) = 0. A separator is said to be valid if d(p) = 0 for all p ∈ P . We write

dtrash to represent valid trash separators, dwork to represent valid work separators.

Definition A.4.4. A configuration is said to be valid if all the following conditions are

true :

• It contains exactly 2n separators

• The n-th separators is a valid work separator

• All other separators are valid trash separator

• There is no datum before the first separator

• There is no datum after the last separator

• Between any trash separator and the next separator, there is at least Mα datum

whose place values are all higher than Mv .

• Non-separator datums validate d(work) = 0, d(trash) = 0

40

Definition A.4.5. A configuration is said to be invalid if it contains less than 2n sepa-

rators. A configuration is said to be impossible if it is neither valid nor invalid.

This means a valid configuration s′ of S′ is of the following form :

dtrash·w1·dtrash...dtrash·wn−1·dwork·s·dtrash·wn+1...·dtrash·w2n−1·dtrash

Here, the {wi}1≤i≤2n−1 are datum words (a list of datums) and s is a a specific

datum word that is assimilated to a state of S (because s doesn’t contain separators, all

its non-zero components are in P). s is called the projection of s′, noted proj(s′). This

notation is extended to sets, with invalid states having no image.

Lemma A.4.6. Only invalid configurations can be reached from invalid configurations.

The set of invalid configuration is downward-closed.

Proof. Obvious. There is no way to create new separators, so if a state has less than 2n

separators, so have all its successors.

Lemma A.4.7. If, when a transition is fired, for any i, s(i) and s(i + 1) point to

non-consecutive separtors, then the resulting state is invalid.

Proof. If two non-consecutive separators are chosen for s(i) and s(i + 1), the separa-

tors between these two index are erased during the transition. As separators can’t be

created, this makes the next step invalid.

Lemma A.4.8. Impossible configurations can’t be reached from a valid configuration.

The set of impossible configuration is upward-closed.

Proof. We need to show here that from a valid state, we can only attain valid or invalid

states. So, let’s take a valid state s and its successor s′. We will assume that s′ is not

invalid, meaning that s′ has at least 2n separators.

Lemma gives us a part of the result. Checking the other properties of definition

A.4.4 is only a matter of looking at the encoding of the simulating net.

This define the restrained domain D of the data net as the union of the valid and

invalid configurations.

We remind that the completion of the data net states is the set of simple rationnal

expressions whose letters are downward closed sets of NP∪{work,trash,sep}. A basis of

a downward closed set of states is a finite number of rationnal expressions representing

the downward closed set.

Proposition A.4.9. The basis of the projection of a downward-closed set included in

V alid ∪ Invalid is effectively computable from the basis of the original set.

Proof. Let B be a basis of a downward closed set A ⊂ V alid ∪ Invalid. A =
⋃

{↓
x | x ∈ B}

41

We remind that elements of B are of the form u∗?1 u∗?2 u∗?3 ...u?∗
n . Let’s take an ele-

ment x ∈ B. By definition of validity, at most 2n separators can be present, and none

can be under the .∗ operator.

If less than 2n separators are present, then we have ↓ x ∩ V alid = ∅ and thus

proj(↓ x) = ∅.
So if exactly 2n separators, then there is one element of ↓ x in V alid, meaning that

there is exactly one work separator in the regular expression, and that we can consider

the regular expression r between this separator and the next trash separator.

It is now easy to show then that proj(↓ x) = r.

A.4.4 Simulation

We now state that S′ restricted to its valid states is in some sense simulating S.

Lemma A.4.10. If s1 →S s2 and s′1 is a valid configuration of S′ with projection s1,

then there exists s′2 a valid configuration of S′ with projection s2 such that s′1 →S′ s′2

Proof. In S, we go from s1 to s2 by using a transition tp.

We will construct an explicit application of the transition relation in S′. s′1 is a

valid state, so it has 2n separator with the nth separator being a work one. We have to

choose αtr datums to apply the (unique) transition to :

• For the datums of indices {si} in the transition definition, we choose n + 1
successive separators so that the pth separator is the work separator.

• Between the work separator datum and the next trash separator, we have exactly

s1, so we can choose the same datum as where chosen to go from s1 to s2 in S

(using tp)

• Between each other separator datums, we have to choose αti
datum to apply ti

to. For all parts that are not the work part, we know by validity constraints that

there is enough datum of sufficient value so that we can apply any transition of

S. Thus, we can choose any of them.

We now have to show that the resulting state is valid.

Because, we have chosen consecutive separators, no separators are erased during

the transition. Thus, the resulting state has exactly 2n separators. By proposition A.4.8,

we know that we can not have reached an impossible state, so we are still in a valid

state that has projection s2

Lemma A.4.11. If s1 and s2 are two valid configurations of S′ such that s1 →S′ s2,

then if s′1 is the projection of s1 and s′2 is the projection of s2, we have s′1 →S s′2

42

Proof. Because of lemma A.4.3, we know that the transition from s1 to s2 has chosen

n+1 consecutive separators as datums of indices {si}. This means we can consider the

restriction of the transition to the datums between sp and sp+1, where sp is the work

separator datum. This is exactly the application of a transition of S from proj(s1) to

proj(s2).

Lemma A.4.12. If s is a state of S, there exists s′ valid state of S′ such that proj(s′) =
s

Proof. We define T = {Mv}
p × {O,O, O}. s′ can then be defined by :

s′ = dtrash · T
Mα · dtrash...dwork · s · dtrash · T

Mα ...dtrash

A.4.5 Conclusion

Proposition A.4.13.

s →S s′ ⇒ ∃(t, t′) ∈ D2.

proj(t) = s

proj(t′) = s′

t →S′ t′

t →S′ t′

proj(t) exists

proj(t′) exists

⇒ proj(t) →S proj(t′)

∀s. ∃t. proj(t) = s

Proof. Combination of previous results

The propositions A.4.9 and A.4.13 give us the result we were looking for.

43

