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Abstract
This research studies the reduction and the estimation of the noise level within a redundant
configuration of low-cost (MEMS-type) inertial measurement units (IMUs). Firstly,
independent observations between units and sensors are assumed and the theoretical decrease
in the system noise level is analyzed in an experiment with four MEMS-IMU triads. Then,
more complex scenarios are presented in which the noise level can vary in time and for each
sensor. A statistical method employed for studying the volatility of financial markets
(GARCH) is adapted and tested for the usage with inertial data. This paper demonstrates
experimentally and through simulations the benefit of direct noise estimation in redundant
IMU setups.

Keywords: IMU, MEMS, redundancy, noise estimation, GARCH, ARMA

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of redundant micro-electro-mechanical system
(MEMS)-type sensors is an economically and ergonomically
viable solution to improve navigation performance while
enhancing sensor performance monitoring [1]. Past
investigations [2] have shown that redundant inertial sensors
can improve the quality of GPS (global positioning
system)/INS (inertial navigation system) integration on several
levels. Firstly, the noise levels of the gyros and accelerometers
can be estimated directly from the data and are hence a more
precise reflection of the reality. Indeed, the realistic estimation
of the noise parameters in the inertial sensors is important for
correct tuning of the Kalman filter (KF) used in the GPS/INS
integration. Secondly, the noise level of the overall system
can be reduced and defective sensors, spurious signals or
sensor malfunctioning can be detected and isolated [2]. This
improves the accuracy of autonomous navigation and therefore
a system utilizing redundant inertial measurement unit (IMU)
bridges the gaps in the GPS signals more effectively. Finally,

more accurate orientation determination can be achieved with
redundant IMU configurations. This represents an interesting
alternative for reaching good orientation estimation with low-
quality sensors yet in abundant manner.

In [3] the optimal configuration of the multiple IMU triads
was studied, while in [2] their optimal insertion in the inertial
navigator and GPS/INS data integrator was investigated.
Here, we focus on the possibility of instantly estimating the
eventually varying noise level of the inertial sensors during
the processing. Indeed, it has been shown in [3] that MEMS-
IMUs are strongly influenced by variation of the environmental
conditions (e.g. increased vibrations or temperature variations)
which can introduce heteroskedasticity (i.e. if the considered
sequence of random variables do not have the same finite
variance) and correlation among the least-squares residuals.
Due to the fact that the MEMS are manufactured in assembly
lines and with micro-mechanical technology, once they are
produced they are not fine-adjusted. That is, once the MEMS
are produced there is no mechanical tuning of their properties;
thus, the MEMS’ performance is expected to be within a range

0957-0233/10/065201+11$30.00 1 © 2010 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0957-0233/21/6/065201
mailto:adrian.waegli@a3.epfl.ch
mailto:jan.skaloud@epfl.ch
mailto:Stephane.Guerrier@unige.ch
mailto:eulalia.pares@ideg.es
mailto:ismael.colomina@ideg.es
http://stacks.iop.org/MST/21/065201


Meas. Sci. Technol. 21 (2010) 065201 A Waegli et al

but cannot be assured to be in a small range. Furthermore,
the mechanical elements of MEMS are so small that their
behavior is really dependent on environment conditions like
temperature, magnetic fields or electrical power. Thus, from
one acquisition to the next one, if the environmental conditions
are not the same, the MEMS behavior will not be the same.

In our investigations we will first consider the somewhat
trivial (and less likely) case where the sensors of the same
type (i.e. the gyroscopes or the accelerometers) have equal
and time-invariant noise level within a system. Then,
we allow variations to occur between sensors and in
time. For such scenario our estimation will be based
on a tool called generalized autoregressive conditional
heteroskedasticity (GARCH) which is a widespread approach
dealing with heteroskedastic time series. We will show that
this method offers an interesting tool to model the magnitude
of the noise in the residuals of multi-IMU systems.

In this paper, we first recall the possible integration
approaches for redundant IMUs with GPS data. Then, the
noise reduction of redundant IMU systems is investigated.
The theoretical expectations are compared to those obtained
by an experiment with four MEMS-IMU triads. Finally, two
methods that allow estimating the variation of the noise level
through time are introduced. The first approach assumes that
the variance is identical for all sensors and constant during
a certain interval of time. Based on these assumptions, the
classical definition of the variance is applied to the considered
period of time. The second method is based on GARCH
models and estimates the variance for the individual sensors,
whose noise level can be different. Throughout the paper, the
proposed approaches are supported by experimental findings
with MEMS-IMUs in dynamic situations and the support of
signals of higher quality for reference.

2. Redundant IMUs in a loosely coupled GPS/INS
system

Redundancy in inertial navigation has been investigated in
the past with higher order IMUs [4]. It can be generated at
different levels [5].

Redundancy at system level: several GPS/INS
components are formed and processed separately and the
results are merged at the end. Although robust in terms of
avoiding interdependences, this approach is not economical
and remains sub-optimal with respect to the available
information content.

Redundancy at sensor level: multiple IMUs are processed
together or individually before applying the strapdown
navigation and integration with GPS (figure 1).

• In a first method a synthetic IMU is formed from the
available sensor data. In this situation, the modeling and
estimation of the inertial errors cannot be separated for
the individual sensors. Therefore, this simple approach is
as well sub-optimal.

• In a second configuration, the processing can imply one or
multiple navigation processors. In this so-called extended
mechanization, the strapdown navigation equations are
modified to accommodate error terms for all sensors [4].

NAV proc

IMU 1

GPS

IMU 2

IMU 3

Synth IMU NAV sol

Figure 1. Principle of mechanization based on a synthetic IMU.

IMU 1

IMU 2

IMU 3

GPS

NAV solNAV proc

Figure 2. Principle of extended IMU mechanization.
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NAV procIMU 1
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NAV proc

NAV sol 2

NAV sol 3

Figure 3. Principle of geometrically constrained IMU
mechanization.

Hence, the separation of the systematic errors per sensor
becomes possible in the GPS/INS filter (figure 2) [2].

• Finally, the so-called constrained IMU mechanization
utilizes as many strapdown navigation processors as
IMUs, while imposing the geometric condition between
the obtained solutions (figure 3). Similarly to the previous
technique, this method can be considered as optimal in
terms of error modeling and estimation but requires more
computational resources than the extended approach.

The three mentioned integration methods require
knowledge of the noise level of the inertial sensors. In the
case of ‘synthetic IMU’ approach, only compound information
is required, while for the others the noise level should be
distinguished for each sensor in the KF.

3. Noise reduction

From a theoretical point of view, the best estimate of the
expected value x̂ of n independent measurements x1, . . . , xn

(with their respective variances σ 2
1 , . . . , σ 2

n ) can be computed
as a weighted average of the measurements. Assuming
homogeneous measurements (i.e. constant σi), its variance
σ 2

x̂ can be derived as [6]

σ 2
x̂ =

n∑
i=1

w2
i σ

2
i = σ 2

x

n
, (1)

where wi are the weighting factors and σx = σi ∀i.
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Figure 4. Skew-redundant MEMS-IMUs placed in a tetrahedron
mounted together with a tactical grade IMU (Litton LN200).

To investigate the validity of the model proposed in
equation (1), we conducted the following experiment. A
regular tetrahedron consisting of four Xsens MT-i MEMS-
IMUs was mounted on a rigid structure together with
a reference IMU (Litton LN200) embedded in a vehicle
(figure 4).

Assuming independent measurements and according to
equation (1), the noise affecting the best estimate x̂ derived
from measurements of four MEMS-IMUs is supposed to be
two times lower than the noise of the individual MEMS-IMU.
Hence, the expected noise reduction for such configuration
is 50%.

The theoretical reduction of the noise level was verified
by comparing the differences between the MEMS-IMU
measurements and their best estimate to the reference values.
Thereafter, a parametric compensation was performed to
remove systematic errors in the MEMS-IMU measurements.
Thus, the remaining differences are assumed to be composed
of white noise only. The averaged noise of the MEMS-IMU
gyros was estimated to 0.0201 rad s−1, whereas the noise level
of their best estimate amounts to 0.0103 rad s−1. Hence, the

Figure 5. Norm of the angular rate measurements of four MEMS-IMUs (Xsens MTi) in comparison to the reference measurements from a
tactical-grade IMU.

experimental noise reduction is approximately 48.6% which
confirms the validity of the theoretical model. Figure 5
illustrates these results graphically.

Figure 6 shows the boxplot of residuals of the norm of four
MEMS-IMUs and of synthetic IMU (i.e. the averaged norms
of MEMS-IMU measurements). It can be observed that the
variance of sensor MTi-14 is significantly different from the
variance of the other sensors. Moreover, this sensor is biased
and introduces in consequence a bias in the synthetic IMU.
This example shows the limitation of the synthetic approach
which gives equal weights to each sensor since their precisions
are assumed to be equivalent. To reduce this limitation,
section 5 proposes a method that weights measurements based
on their estimated variance.

4. Direct noise estimation—averaged volatilities

In the first approach, we assumed that the variance remains
constant around the point of interest in the interval containing
2T + 1 measurements. Thus, the variance at t can be written
as

σ 2
t (T ) = 1

6T n

n∑
i=1

t+T∑
k=t−T

3∑
j=1

(xji
(k) − x̄j (t))

2, (2)

where xji
(t) correspond to the ordinary least-squares residuals

of the ith sensor on the axis j at the time t, n is the number of
redundant IMUs in the system and

x̄j (t) = 1

(2T + 1)n

n∑
i=1

t+T∑
k=t−T

xji
(k). (3)

The results of this approach are presented in figure 7
for various averaging windows of size 2T + 1. Clearly, as
the size of the averaging windows increases the estimated

3
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Figure 6. Boxplots of the residuals of the norm of four MEMS-IMUs and of the synthetic IMU.
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Figure 7. Noise levels estimated with various averaging windows.

variances are smoothed out. The performance of this approach
is illustrated in figure 8. It appears that the variance based
on the least-squares residuals is underestimated compared to
the one obtained using the residuals (i.e. errors) with respect
to the reference signal. This result is expected and can be
easily explained. Indeed, the estimated residuals are computed
from xji

(t) = ωji
(t) − 1

n

∑n
i=1 ωji

(t) while the errors are
computed as x̌ji

(t) = ωji
(t) − ω̌ji

(t), where ωji
(t) represents

the measurement of the ith sensor on the axis j at the time
t (after being projected into a suitable reference frame) and
ω̌ji

(t) the reference measurement. It can be shown that
n∑

i=1

x̌2
ji
(t) >

n∑
i=1

x2
ji
(t), ∀ ω̌ji

(t) �= 1

n

n∑
i=1

ωji
(t). (4)

Indeed, the quadratic form
∑n

i=1(ωji
(t)−a)2 is minimized

when a = 1
n

∑n
i=1 ωji

(t) (see the appendix for details).
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Figure 8. Comparison between the noise levels based on the least-squares residuals and with the errors (i.e. obtained with the reference
signal).

It should be noted that this method is based on assumptions
that may not correspond to reality. Firstly, it does not offer the
possibility of estimating the variance of each sensor. Secondly,
the assumption of homogeneous variance in the averaging
window does not correspond to reality. In addition, this
approach offers no guidance to choose an appropriate value
of T. Finally, the estimate in this experience got relatively
close to the reference signal (figure 8) only by a coincidence
of the averaging process. This case cannot be generalized
as the noise level can vary between sensors. The following
approach will allow treating a more realistic scenario of the
noise levels.

5. Direct noise estimation—GARCH

The second method for direct noise estimation is based on the
aforementioned GARCH model. This model was originally
developed in the 1980s and applied in economics and in
finance. Indeed, the same problem of estimating the variance
in a series through time often arises in financial applications.
This is typically the case when the returns on an asset
or portfolio are considered. The variance of these returns
represents the risk level. Looking at financial data suggests
that sometime periods are riskier than others, i.e. the expected
variance of the error terms, at some moments, is greater than
at others. Moreover, these risky periods are not scattered
randomly across time but are rather found in clusters. In other
words, after a large (small) price change a large (small) price
change tends to occur. It is assumed that positive and negative
error terms have a symmetric effect on the volatility. Such an
assumption appears reasonable when dealing with IMU but is
often violated when applied to financial time series [7]. Thus,

the returns are not independent since their variability depends
on recent changes of price [7]. In the context of MEMS-
IMU this may represent cases when the uncompensated effects
start to influence sensor performance (exceeded temperature
range or dynamics, vibrations, etc). The GARCH model was
introduced in [8] as a generalization of ARCH models [9] that
provide a measurement of the volatility across time.

A GARCH(p, q) model is typically specified by two
numbers p and q. The first one refers to the number of
autoregressive lags in the model, while the second refers to
the number of lags included in the moving average component
of a variable. Such models rely on the assumption that the
volatility can be written as a linear combination of previous
terms and previously estimated volatilities. Therefore, it is
employed to estimate the volatility through the time of a series.
It also offers the possibility of forecasting variances based on
historical values.

GARCH models are based on an assumption that the
time series of interest is unpredictable. Let �t denote the
information set at time t. Then, the best prediction at t
for t + 1 is the conditional expectation E[xt+1|�t ] based on
the information set at time t. The time series xt is called
unpredictable if the best prediction of xt+1 at t is simply its
unconditional mean [7], i.e.

E[xt+1|�t ] = E[xt+1]. (5)

By definition, an unpredictable time series is only
composed of white noise since introducing any colored noise
would create some form of autocorrelation in time that could
be predicted.

The GARCH model also relies on the idea that in an
unpredictable time series volatility tends to form clusters. This
implies that squared values of the series (i.e. x2

t ) are positively

5



Meas. Sci. Technol. 21 (2010) 065201 A Waegli et al

0 10 20 30 40 50

−
0
.0

5
0
.0

0
0

.0
5

Time [s]

A
n
g
u
la

r 
R

o
ta

tio
n
 R

a
te

 [
ra

d
/s

]

0 10 20 30 40 50

−
0
.0

5
0
.0

0
0
.0

5

Time [s]

A
n
g
u
la

r 
R

o
ta

tio
n
 R

a
te

 [
ra

d
/s

]

Figure 9. Least-squares residuals of the Xsens MTi-G on the x-axis (left). ARMA residuals of the same sensor (right).
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Figure 10. Results of the Allan variance performed on the residuals of the Xsens MTi-G on the x-axis (left). The autocorrelation function of
the same residuals (right).

correlated [7]. Thus, the time series xt is conditionally
heteroskedastic, i.e.

Var[xt+1|�t ] �= Var[xt+1]. (6)

Formally a (strong) GARCH(p, q) model is defined
as follows: the process xt , t ∈ Z, is GARCH(p, q) if
E[xt |�t−1] = E[xt ] = 0,

σ 2
t = α0 +

p∑
i=1

αix
2
t−i +

q∑
i=1

βiσ
2
t−i (7)

and Var[xt |�t−1] = σ 2
t . Assuming xt to be normally

distributed it implies that Zt = xt

σt
∼ N(0, 1). Moreover, it

follows that the maximum likelihood estimator φ̂ is consistent
and asymptotically normally distributed:

√
n(φ̂ − φ)

D→ Np+q+1(0,J−1), (8)

where φ = (α0, α1, . . . , αp, β1, . . . , βq, )
T is the parameter

vector. J represents the Fisher information matrix defined by

J = E

[
−∂2�(φ,x)

∂φ∂φT

]
, (9)

where �(φ,x) is the log-likelihood function. Thus,
equation (8) allows us to compute confidence regions for φ
and σt . Moreover, the parameter significativity can then be
tested by a significance Student test.

In practice, the assumption of unpredictability has to be
verified before applying GARCH models. Although it is
verified in most financial applications, it is clearly not the
case with MEMS-IMUs. Indeed, it has been demonstrated
in [3, 10, 11] that the errors of MEMS-IMUs are not only
composed of white noise but also of various types of colored
noise. Figure 9 (left) shows the residuals of an Xsens MTi-G on
the x-axis; these clearly appear autocorrelated. Additionally,
figure 10 presents the results of the Allan variance performed

6
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Figure 11. Results of the Allan variance performed on the ARMA residuals of the Xsens MTi-G on the x-axis (left). Autocorrelation
function of the same residuals (right).

on these residuals as well as the results of the autocorrelation
function. It can be observed that the Allan variance as well as
the autocorrelation function confirms that these residuals are
autocorrelated.

For this reason, we employed autoregressive moving
average (ARMA) models to remove the part of the noise that
is autocorrelated [12–14]. The ARMA(p, q) model is defined
as

xt = ν +
p∑

i=1

αixt−i +
q∑

j=1

βjεt−j + εt . (10)

Under the distribution assumption that εt ∼ N(0, σ 2) and
some additional technical assumptions (see for example [7])
the maximum likelihood estimator θ̂ is consistent,
asymptotically efficient and has an asymptotic normal
distribution given by

√
n(θ̂ − θ)

D→ Np+q+1(0,J−1), (11)

where θ = (ν, α1, . . . , αp, β1, . . . , βq, σ
2)T is the parameter

vector and J is the Fisher information matrix. As for the
GARCH models, it follows that equation (11) can be used to
derive confidence regions for θ and εt .

The selection of the appropriate p and q was realized
based on the Akaike information criterion (AIC) [15]. The
AIC does not test models against each other in the classical
sense of hypothesis testing. But given a data set, several
competing models may be ranked according to their AIC,
with the one having the lowest AIC being the best. Such
an approach revealed, for example, that the residuals of the
Xsens MTi-G IMU on the x-axis are best modeled by an
ARMA(2,2). In this case, it implies that E[x11(t)|�t−1] =
1.67x11(t−1)−0.67x11(t−2)−1.09ε11(t−1) + 0.16ε11(t−2).

Table 1. Estimation results for the estimation of the ARMA
parameters of the Xsens MTi-G IMU’s residuals on the x-axis. The
‘t-value’ and the ‘p-value’ are obtained by a Student test aiming to
assess the significance of the parameters. The ‘p-value’ is the
probability of obtaining a test statistic at least as extreme as the one
that was actually observed, assuming that the null hypothesis H0

(i.e. the considered parameter is not significant) is true. The
‘t-value’ is the statistic of the test.

Estimate Standard deviation t-value p-value

α1 1.666 2.12 × 10−2 78.57 ≈0
α2 −0.671 2.06 × 10−2 −32.61 ≈0
β1 −1.086 2.32 × 10−2 −46.72 ≈0
β2 0.160 1.76 × 10−2 9.11 ≈0
ν −3.5 × 10−7 1.23 × 10−5 −0.029 0.977

The estimated precision of these parameters is summarized in
table 1. It shows that all the parameters except ν are highly
significant.

Figure 9 (right) shows the residuals of the ARMA model
of the MTi-G IMU on the x-axis. In addition, figure 11 depicts
the results of the Allan variance performed on these residuals
as well as the results of the autocorrelation function. These
figures confirm that the residuals of the ARMA are distributed
randomly, i.e are unpredictable; thus, E[εt |�t−1] = E[εt ] =
0. However, the residuals of the ARMA models are not
homoskedastic (i.e. if the considered sequence of random
variables have the same finite variance). This is illustrated
in figure 12. The estimation of the variances is then realized
with the help of GARCH models.

The selection procedure of GARCH models relies on
the idea that Zt (as defined in equation (7)) should be such
that E[Zt ] = 0 and Var[Zt ] = 1 if the GARCH model
is correct. Thus, various models of growing complexity

7
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Figure 12. Variances computed with the ARMA errors and the ARMA residuals of the Xsens MTi-G on the z-axis (above). Norm of the
angular rate measurements of the reference IMU (below).

(i.e. with p and q increasing) were estimated until a test
revealed that no trace of heteroskedasticity is remaining in
Zt . Indeed, [9] derived such a test based on the Lagrange
multiplier principle. The statistics of this test converges to a
χ2 distribution under the null hypothesis that the considered
time series consists of independent and identically distributed
Gaussian disturbances [16]. The model selection process
revealed that a GARCH(1,1) was appropriate to describe the
volatility in the considered MEMS-IMUs.

For example, the variance of the Xsens MTi-G IMU’s
residuals on the z-axis is estimated by σ 2

t = 0.0175x2
t−1 +

0.982σ 2
t−1. The estimated precision of these parameters is

summarized in table 2. It shows that all the parameters except
α0 are highly significant.

Figure 12 compares the estimations of the volatility based
on the estimated ARMA residuals and the ARMA errors
(i.e. the difference between the MEMS measurements after
the ARMA correction and the LN200 measurements) on the
z-axis of the Xsens MTi-G.

The good correspondence between both plots indicates
that the volatility estimation by the GARCH method is
relatively accurate. Moreover, the volatility estimation using

Table 2. Estimation results for the estimation of the GARCH
parameters of the Xsens MTi-G IMU’s residuals on the z-axis.

Estimate Standard deviation t-value p-value

α0 1.3 × 10−7 1.1 × 10−7 1.15 0.25
α1 1.75 × 10−2 2.7 × 10−3 6.45 ≈0
β1 0.98 3.0 × 10−3 326.85 ≈0

this approach enables weighting the measurements according
to their estimated variances. Thus, we defined the corrected
version of the synthetic IMU as

ω̂j t =
∑n

i=1 σ−2
ji

(t)(ωji
(t) − E[xji

(t)])∑n
i=1 σ−2

ji
(t)

, (12)

where σ 2
ji
(t) is the variance estimated with a GARCH model

of the measurement error of the ith sensor on the j th axis at
time t, i.e. σ−2

ji
(t) = Var[ωji

(t) − E[xji
(t)]|�t−1].

The resulting noise reduction of this weighting process
improves the results presented in section 3 (figure 13). Indeed,
the MSE of the synthetic IMU is equal to 11.26 × 10−5 while
the MSE of the corrected synthetic equals 7.90 × 10−5. Thus,
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Figure 13. Boxplots of the residuals of the norm of the synthetic
and of the weighted synthetic IMU.

the efficiency of the corrected synthetic compared to the
classical approach is approximately 70.2%. Moreover, the
noise level of the corrected IMU amounts to 0.0088 rad s−1.
This implies a reduction of 14.6% compared to the synthetic
IMU and an overall noise reduction of 56.2%. Note that this is
more than 50% provided by the theory. This difference can be
explained by the inhomogeneity of the variances of the sensors.
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Figure 14. Comparison between the noise level estimated with the ‘averaged volatilities’ and with the GARCH methodology of the Xsens
MTi-G on the z-axis.

6. Discussion

A clear comparison between the GARCH method and the
‘averaged volatilities’ method is difficult to perform since the
exact volatility of the system is unknown and can only be
estimated using one of the proposed approaches. However,
we believe that the GARCH approach is more appropriate
to describe the noise variations of MEMS-IMUs. On the
other hand, the first approach is simple; hence, it could be
easily automated and included within the GPS/INS integration.
Nevertheless, the underlying assumption that the noise level
is constant during a certain interval of time and equal for
all sensors may not be correct and is, moreover, difficult to
verify experimentally. As this approach does not offer the
possibility of estimating the variance at the sensor level, the
weighted version of the synthetic IMU cannot be computed
(or the diagonal of the covariance matrix used in the extended
mechanization). In other words, this method estimates only
the mean variation of the noise level across sensors. The
GARCH approach is, on the other hand, more sophisticated.
Although this method requires more computational effort,
it seems to have a finer resolution and is more precise in
reflecting the reality. This can be seen in figure 14 which
compares graphically the evolution of noise level in time
estimated by both methods. It can be observed that the
volatility estimated with the GARCH method seems to be
appropriate to model the heteroskedasticity of the residuals.
On the other hand, the results obtained with the averaged
volatilities are not satisfactory as they only describe the
average heteroskedasticity among all sensors. In addition,
the variance estimation with this method might be slightly

9
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Table 3. Summary of the main differences between the averaged volatilities approach and the GARCH method. ‘+’ represents an advantage
while ‘−’ an inconvenience.

Moving average estimator GARCH (+ARMA)

+ Simple and easily automated −/+ Require large effort to automate parameter
estimation and model selection

+ Low computational effort − Higher computational effort
− The volatility of each sensor cannot be modeled + The volatility of each sensor is modeled
−/+ Non-robust estimation in principle. − Non-robust estimation in principle.

Extension to robust estimator easy to implement Extension to robust estimation complex and
computationally intensive [17]

− ‘Predictable’ part of the errors is ignored + ‘Predictable’ part of the errors is modeled (ARMA)

Table 4. Standard deviations (rad s−1) of the errors of the norm of
the synthetic or of the weighted synthetic IMU.

a = 0 a = 5 a = 10

Synthetic IMU 0.0103 0.0156 0.0262
Weighted synthetic IMU 0.0088 0.0104 0.0112

overestimated since the ‘predictable’ part of the noise is not
properly modeled. Table 3 summarizes the main differences
between the two approaches.

The benefits of the GARCH approach might be larger
when

• the noise level varies to a greater extent in time,
• the stochastic input to the KF substantially differs from

the reality,
• the precision levels are very different among the sensors.

To illustrate the latter case, additional noise was added
to the measurements of the Xsens MTi-G on the x-axis. The
introduced perturbation of measurement can be expressed as

ω̃11(t) = ω11(t) + sin

(
6πt

tmax

)
W, (13)

where tmax is the last value of the time vector, W is
random variable independent and identically distributed
as a N(0, var[ω11(t)]) with a representing an arbitrary
perturbation constant. The standard deviations of the errors of
the norm for the synthetic and the weighted synthetic IMU are
given in table 4 for three values of a. Clearly, as a increases the
standard deviation of the weighted synthetic IMU is affected
only slightly while the standard deviation of the synthetic IMU
with equal weighting substantially increases.

This shows that the employment of direct noise estimation
increases the noise reduction of multi-IMU systems as well as
its robustness. In addition, other objectives were targeted with
direct noise estimation.

Firstly, direct noise estimation reduces user interaction
and user knowledge (of the algorithms and sensors)
requirements which facilitates the automation of the
processing. Secondly, noise variations (especially from
MEMS accelerometers) can be determined online which may
improve filter stability and maintain navigation performance.
Lastly, direct noise estimation can improve the fault detection
and isolation (FDI) performance [1, 2] which also depends on
the correctness of the noise model.

Our future investigations will concentrate on assessing the
performance improvement of the navigation states with the
GARCH approach with the different mechanization methods
as well as on better understanding of the influence of vehicle
dynamics on sensor noise. In addition, the multivariate
GARCH model will also be investigated to model the full
covariance matrix of the measurements. We believe that this
could further improve the navigation performances.

7. Conclusion

In this paper, we investigated the noise reduction resulting from
redundant measurements and the estimation of the noise level
during the processing. We have shown that the assumption
of independent measurement is reasonable when employing
redundant MEMS-IMUs of the same type. Moreover, we
presented two methods that assess the volatility of redundant
IMU systems. Despite their differences, both methods appear
appropriate to model noise variations. The first approach is
adapted from the classical definition of the variance and relies
on assumptions that may not be statistically correct. However,
this method is simple and could easily be integrated as a part
of the GPS/INS integration process. In contrast, the GARCH
approach is far more sophisticated as it is able to describe
variations of the noise level in a more accurate manner. Hence,
this approach enables us to compute a corrected version of the
classical synthetic IMU by introducing measurement weights.
Experimental results have shown that the noise level of the
weighted synthetic is reduced by 56% while it is only 48%
by the classical approach. Further simulations revealed that
the relatively small differences between both methods (14.6%)
can be considerably larger (up to 100%) when the noise level
of one of the IMUs differs substantially from the others.
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Appendix

The quadratic form
∑n

i=1(ωji
(t) − a)2 is minimized when

a = 1
n

∑n
i=1 ωji

(t), since
n∑

i=1

(ωji
(t) − a)2 =

n∑
i=1

(ωji
(t)2 + a2 − 2aωji

(t))

∂

∂a

n∑
i=1

(ωji
(t) − a)2 =

n∑
i=1

(2a − 2ωji
(t))

∂

∂a

n∑
i=1

(ωji
(t) − â)2 = 0 ⇒ â = 1

n

n∑
i=1

ωji
(t).

References

[1] Waegli A 2009 Trajectory determination and analysis in
sports by satellite and inertial navigation PhD Thesis 4288,
EPFL

[2] Waegli A, Guerrier S and Skaloud J 2008 Redundant
MEMS IMU integrated with GPS for performance
assessment in sports Proc. IEEE/ION PLANS 2008
(Monterey, CA)

[3] Guerrier S 2009 Improving accuracy with multiple sensors:
study of redundant MEMS IMU/GPS configurations Proc.
ION GNSS 2009 (Savannah, GA, USA)
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