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Abstract. The hypothesis of multiple memory systems involved in dif-
ferent learning of navigation strategies has gained strong arguments
through biological experiments. However, it remains difficult for experi-
mentalists to understand how these systems interact. We propose a new
computational model of selection between parallel systems involving cue-
guided and place-based navigation strategies allows analyses of selec-
tion switches between both control systems, while providing information
that is not directly accessible in experiments with animals. Contrary to
existing models of navigation, its module of selection is adaptive and
uses a criterion which allows the comparison of strategies having differ-
ent learning processes. Moreover, the spatial representation used by the
place-based strategy is based on a recent hippocampus model. We illus-
trate the ability of this navigation model to analyze animal behavior in
experiments in which the availability of sensory cues, together with the
amount of training, influence the competitive or cooperative nature of
their interactions.

1 Introduction

Animal experiments demonstrate that parallel memory systems, assumed to sup-
port the learning of cue-guided and place-based navigation strategies, favour sep-
arate sets of sensory cues [1]. According to several studies, the first system, medi-
ated by dorsolateral striatum (DLS), mostly uses proximal cues and the second
system, mediated by hippocampus (Hc) and prefrontal cortex (PFC), encodes
configurations of distal cues [2]. The spatial representation built from these distal
cues is often termed “cognitive map” [3]. Both systems are supposed to interact
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competitively or cooperatively, depending on the circumstances. Competition
between the systems happens if the inactivation of one enhances the learning
of the other, and cooperation if the learning of one compensates the lack of the
other (e.g., [4]). Such interactions are influenced by both external and internal
factors [5]. Although behavioral and neurophysiological studies provide valuable
information about interactions between strategies and their potential biological
substrates, the mechanisms underlying these interactions are not clear [6]. This
is mainly due to the difficulty of knowing exactly which strategy is chosen at
specific moments of the experiments.

We present here a computational model of navigation that provides direct
information on rats’ behavior in a Morris maze paradigm in which interactions
between cue-guided and place-based strategies were shown to be influenced by
the type of landmarks and the amount of training [7]. It supplies possible ex-
planations of strategy selection mechanisms that can produce competition or
cooperation and makes it possible to estimate the influence of sensory cues on
strategy selection. The model is based on the assumptions (i) that both strate-
gies are mediated by separate navigation “experts” that learn in parallel (as pro-
posed by previous computational models [8,9,10]); (ii) that the selection mech-
anism continuously updates its estimation of the efficiency of both strategies
(as in [8,9,10]); (iii) that the learning of both systems are of different nature:
cue-guided strategies rely on a procedural “stimulus-response” learning imple-
mented as a TD algorithm while place-based strategies rely on a graph-search
algorithm – not dependent on the reinforcement learning framework [10] – that
is more flexible and faster to relocate a goal. Point (iii) constitutes the novelty of
the model, which led to a major issue: finding the relevant “common currency”
allowing to compare the efficiency of strategies having different learning pro-
cesses. Another novelty is the integration of a recent hippocampus model [11]
that computes the spatial representation used by the place-based strategy.

Section 2 describes the model of strategy selection; Section 3 the experi-
mental protocol and the simulation procedure; Section 4 reports the results of
computer simulations reproducing the animal data; Section 5 discusses the re-
sults in relation to other experimental and computational works and outlooks
future work.

2 The Model of Strategy Selection

In our model “Taxon” and “Planning” experts represent DLS and Hc-PFC depen-
dent memory systems, respectively. During navigation, they propose a direction
for the next movement according to either visual input (Sensory Cells for the
Taxon expert) or the estimated location (Planning graph, built from Place Cells,
for the Planning expert). Sensory Cells are learned from the vision of the intra-
maze landmark, Place Cells from the vision of the extra-maze landmarks. In
addition, a third expert, Exploration, proposes a direction of movement ran-
domly chosen between 0 and 2π (Fig. 1a). The movement actually performed by
the animat is determined by a gating network which selects one of the experts
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Fig. 1. (a) Model overview (see text for details). SC: Sensory Cells, PC: Place Cells,
PG: Planning Graph, T: Taxon expert, P: Planning expert, E: Exploration Expert.
Φ∗ is the final direction of movement. The Gating network learns to choose the right
expert, according to their performance. (b) Example place fields of Place Cells (top)
and Graph nodes (bottom), the brighter the more the cell or node are active.

to take control over behavior on the basis of previous performance (Fig. 1a). At
each timestep, all the experts learn from the previously executed action, irre-
spective of which expert was responsible for it (Taxon, Planning or Exploration).

Taxon expert. For the purpose of the protocol reproduced below, we design
here the Taxon expert as a “guidance” strategy – approaching a hidden target
marked by a landmark located on a certain distance from it [7] – but other forms
of Taxon (e.g., beacon approach) can be encoded. The visual input is encoded
in a population of NSC=100 Sensory Cells (SC) in which the activity of cell i
signals presence or absence of the landmark in the direction φi from the animat.
The motor response to the visual stimulus is encoded by NAC = 36 Action
Cells (AC), so that one action codes for a direction every 2π/36. The learning
is done by a Q-learning algorithm adaptation [12], so that the action space is
continuous: in the update rule, instead of reinforcing the only action that is
chosen, a Gaussian activity profile tuned around the selected action allows the
closer actions to update their weights in the same direction. This activity profile
is possible since all actions are direction movements, and therefore comparable.
The activity in the whole AC population is interpreted as a population code for



the direction φT of the next movement of the animat, proposed by the Taxon
expert. Details of the computations are given in [9].

Planning expert. The Planning expert, inspired by the model of [13], first
learns a topological representation of the environment in a reward-independent
manner (map building phase) and then uses this representation to remember the
goal location and to plan an optimal path towards it (goal planning phase). The
map building phase is run during pretraining sessions. The map takes as input
the activity of a population of Place Cells. This population is provided by the
hippocampus model of [11] consisting of two different neural networks, simulat-
ing the enthorinal cortex (EC) and the dentate gyrus (DG). EC modelling is
based on the recently discovered grid cells, which are receptive to specific spatial
frequency and orientation, and therefore are good candidates for implementing
path integration and other navigation strategies like, e.g., praxis. The grid cells
are appended to a vector of 100 gray units representing the sight of the extra-
maze landmarks. EC cells are then fed to the DG, which produces Place Cells
by means of a Hebbian learning. Then a sparse representation is computed with
a filter function that only keeps a few cells active (Fig. 1b, top) and sets the oth-
ers to zero. Detailed computations can be found in [11]. The final activation is
then normalized and processed by the Planning expert to build the nodes of the
planning graph (PG) (Fig. 1b, bottom). For that, a pool of 100 nodes is con-
nected to the DG at random synaptic weights, and the sparse learning used in
the DG is replicated during the map building phase.

First the firing rate of a PG node j is computed as follows:

rP
j = fj(

∑
i

W
(DG,PG)
ij DGi , s

PG), (1)

where Wij is the synaptic weight linking the DG place cell i to the PG node j
and fj(x, sPG) is the same non-linear function as in the DG, returning a sparse
encoding of x, with a sparseness level of sPG.

The synaptic weights are learned following a Hebbian rule, similar to the one
used for learning the DG output:

∆W
(DG,PG)
i,j = α(DG,PG)rP

j (DGi −W (DG,PG)
i,j ) (2)

A link between nodes Ni and Nj stores the allocentric direction of movement
required to move from one node to the other. The goal planning phase begins
when the goal position is found, the closest node being set to the delivered re-
ward value. Then, given the PG, the optimal path to the goal is determined
by the bio-inspired activation-diffusion mechanism [14] based on Dijkstra’s algo-
rithm for finding the shortest path between two nodes in a graph [15]. At each
timestep, the Planning expert proposes the corresponding direction. If the goal
position is not known, a random direction is proposed.

Strategy selection. Each expert computes at the same time its own propo-
sition of movement. The time spent by the Planning expert to compute the path
is not taken into account as a potential cost in our selection mechanism. The
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Fig. 2. (a) Simulated environment with one intra- and eight extra-maze landmarks.
Simulated results of (b) Control vs Taxon groups. (c) Control vs Trial groups. (d)
Planning group only, in the same protocol as the Control group.

gating network selects at each timestep which of the Taxon, Planning or Explo-
ration experts (T, P and E) will control the future movement, on the basis of
candidate directions Φk of movement. It consists of three units k ∈ {T ;P ;E},
each corresponding to an expert. The activity gk of expert k is its “gating value”.
They are computed as the weighted sum of both SC and PG inputs by synaptic
weights zk:

gk(t) =
NSC∑
j=1

zk
j (t)rSC

j (t) +
NSC+NP∑
j=NSC+1

zk
j (t)rP

j (t), (3)

where zk
j is the connection weight between the unit k of the gating network

and input unit j of the experts. A winner-take-all scheme then chooses the next
movement direction φk′

:

φk′
(t); k′ = argmaxi(g

i(t)) (4)

The gating values connection weights are adjusted using the same Q-learning
algorithm as the Taxon expert, except that the update is modulated by the
angular difference between the proposed orientation and the one actually chosen,
so that the closer an orientation is from the chosen one, the stronger is its update.

We then evaluate different versions of the model – some corresponding to the
simulation of lesioned animals – in the experimental paradigm described below.

3 Experimental Paradigm and Simulation Procedure

In the experiment of [7], two groups of rats – intact (Control) and Hc-lesioned
– learned to find the location of a hidden platform in a Morris water maze
surrounded by several room landmarks. The platform was cued by a visible



landmark located in the pool at a certain distance northward to the platform. In
a first experiment, for both Control and Hc groups, the platform and landmark
were moved to one of eight predefined locations at the start of eleven sessions,
where they stayed for four trials. In a second experiment, intact rats were tested
in the same apparatus, but the platform and landmark were moved from trial
to trial rather than from session to session (Trial group). The same sensory cues
were available for both tasks. Then the only difference was the possibility or the
incapacity of training one or the other strategy system within each session.

Considering their results (Fig. 3 and 5 in their paper), the authors hypothe-
sized (i) that, contrary to Hc group which could only learn and use a cue-guided
strategy, Control and Trial groups would be able to acquire both strategies,
thanks to the presence of cues inside and outside the pool; (ii) that all groups
would be able to achieve the tasks (i.e., with one or both strategies available);
(iii) that moving the platform from trial to trial would have the same effect on
intact rats as a hippocampal lesion: rats of Trial group would indeed exclusively
rely on a cue-guided strategy, as they would not be able to sufficiently train to
refresh their cognitive map between two successive platform displacements. Our
model will test each of these hypotheses by analyzing the interactions between
these control systems.

The simulated water maze, rat, reward location and landmark are repre-
sented by circles of 200 cm, 15 cm, 10 cm, and 20 cm in diameter, respectively.
The reward location is always 20 cm south from the landmark. 8 extra-maze
landmarks are placed at different distance of the walls (30 cm to 50 cm), sim-
ulated by Gaussian visual stimuli of different widths (Fig. 2a). Three groups
are simulated, corresponding to those tested in the actual experiment: the Con-
trol and Trial groups of intact rats are simulated with Taxon, Planning and
Exploration experts; the Hc-lesioned group, henceforth called Taxon group, is
simulated with Taxon and Exploration experts only. The same training protocol
as in [7] is applied. We add a fourth group (Planning group, which could corre-
spond to DLS-lesioned animals), not present in the original experiment, which
is simulated with Planning and Exploration experts only, tested with the same
protocol as the Control group. For each group, 100 sets of experiments were
performed.

The performance of the Control, Trial and Taxon groups is statistically as-
sessed by comparison of their mean escape latencies (number of timesteps to
reach the goal), within and across sessions, in the 1st and 4th trials of a ses-
sion, using signed-rank Wilcoxon test for matched-paired samples. Between-
group comparison is performed using a Mann-Whitney test for non matched-
paired samples. Two measures quantize the animat’s behavior: goal occupancy
rate (number of times the animat visits a rewarded zone divided by the total tra-
jectory length); trial selection rate of an expert (averaged number of times the
expert is selected over the total length of the trajectory). The influence of sen-
sory inputs on the selection of the strategies is assessed by comparing synaptic
weights from the SC and from the PG nodes to the units of the gating network,
which correspond to the relevance the strategies.
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Fig. 3. Trial selection rates of experts averaged over four trials (one session) for (a)
Trial and (b) Control groups. Evolutions of synaptic weights in the gating network
across sessions for (c) Trial and (d) Control groups show the relative influence of all
sensory cues on the selection.

4 Results

Test of performance of separate experts Separately trained on a simple
task in which the animat had to escape to a visible and fixed platform, both
experts differ in their learning processes. The Taxon expert learns slower than
the Planning expert (mean of escape latencies from the 1st to 4th trials for
Taxon= 235.04; for Planning = 160.82) but has a better performance when
the training becomes intensive (mean of escape latencies from the 40th to 44th

trials for Taxon= 21.08; for Planning = 83.18). These differences are due to the
sparsity of the Planning Graph nodes, which allows this expert to quickly locate
the new goal location (as encoded by existing nodes), but no further learning is
done.

All groups are able to learn the tasks. As Fig. 2b and c attest, the
model reproduces the main characteristics of the original experimental results.
Indeed all groups achieve the tasks, as all escape latencies decrease across sessions
(p<0.001). In accordance with [7], the cue-guided strategy is mainly responsi-
ble of this improvement: in Control and Trial groups, the Taxon selection rate
dominates the others and increases throughout the sessions (Fig. 3a,b). In all
gating networks, the evolution of weights between sensory cues and experts also
reflects the growing influence of SC on Taxon expert (Fig. 3c,d).

No interaction between experts in Trial group. The similar perfor-
mance of Taxon and Trial groups (p = 0.08; learning across, but not within
sessions) suggests that the Taxon expert mainly controls the behavior of Trial
animats (Fig. 2b, c). This is confirmed by Fig. 3a, showing the rapid and huge
increase of the selection rate of this expert during the experiment, while the oth-
ers remain very low. This is also illustrated by typical trajectories, showing that
the Taxon expert mainly leads the animat near the platform (Fig. 4a, b). The re-
sults of the Taxon group indicate that its learning process is not flexible enough
to quickly improve within session. Thus this explains why Trial group behaves
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Fig. 4. (a-b) Typical trajectories of Trial animats, corresponding to beginning (a) and
end (b) of session; (c) Navigational map of Planning expert in the Trial group (i.e.,
learned directions of movement for each spatial node) at the end of the same session.
The zoom depicts that, during a new trial, the planning experts keeps the memory of
the previous platform location.

similarly: the possibility of training or not during four trials does not change the
performance.

The occupancy rates near the current platform (fig 5a, 1st and 4th trials)
are significantly lower in the Trial than in the Taxon groups. This may suggest
a negative influence of the Planning expert on Trial animats. Yet the evolution
of weights in the gating network, with increasing links from SC to the Taxon
expert only (Fig. 3c), minimizes the importance of this result: it clearly indicates
that the Planning expert does not play any role in this task. Nevertheless, this
expert continuously builds a navigational map in which it stores the successive
platform locations (Fig. 4c), then the animat could use it if required by a new
situation.

Training within session produces both competition and coopera-
tion. As Fig. 2b shows, the possibility to train within session modifies signifi-
cantly the behavior of Control animats, both at the beginning and at the end
of sessions. Similarly to Control animals in the original experiment, they per-
form worse at the beginning and better at the end of one session than Trial and
Taxon groups. The role of Taxon in Trial group proves that these differences
should come from the Planning expert. Fig. 3b confirms that Control animats
select it more often than Trial ones (especially at the beginning of the experi-
ment). The fast learning of this expert – also favored by the parallel learning of
the efficient Taxon expert (see the performance of Planning alone, Fig. 2d) – in-
deed allows the Control group to quickly memorize the position of the platform
in the cognitive map. During each session, both experts cooperate and enhance
the overall performance: the escape latencies are lower (Fig. 2b) and the occu-
pancy rates near the current location higher (Fig. 5a, 4th trials) than Trial group.
The gating network reflects this synergistic interaction by increasing the weight-
ing of SC to both Taxon and Planning experts (Fig. 3d). The nature of their
cooperation could be deduced from the navigational maps of both experts at the
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end of a session showing that the Taxon expert drives the animat southward the
landmark (Fig. 6a) whereas the Planning expert leads it to the platform location
(Fig. 6b). A typical trajectory illustrates this hypothesis (Fig. 6c).

At the beginning of a new session, as the gating network grants more confi-
dence to the Planning, this expert has a stronger tendency to be selected. As a
consequence, both Planning and Taxon experts compete, driving the animat re-
spectively towards the previously memorized (thus wrong) platform location or
the current one (Fig. 6d). Fig. 5b shows the significant differences of occupancy
rates near the previous platform location between Control, Trial and Taxon
groups during the 1st trials, explaining the worse performance of the Control
group. The selection rates of Planning and Taxon experts in Fig. 3b however
show that this competition progressively decreases across sessions. Indeed the
Taxon expert takes more and more control over Planning (negative correlation
between Taxon and Planning selection rates: r = −0.91). Exploration is used
until both experts have switched (i.e., until Taxon becomes sufficiently relevant,
Fig 3b).

5 Discussion and Conclusion

The model of selection between Taxon and Planning navigation strategies pre-
sented here is based on the theory of parallel control systems in the rat brain.
The place-based strategy uses a graph-search algorithm using the propagation
of the reward signal to find the shortest path to the goal. The graph is learned
on-line in pretraining sessions using the activities of learned place cells, and posi-
tions the location of the hidden goal. The cue-guided strategy uses a TD learning
rule to approach the hidden goal marked by a landmark. The strategy selection
is performed by a gating network that learns to predict, also using a TD-learning
rule, the most successful strategy given current sensory input. Previous compu-
tational models of navigation rely on similar learning modes (e.g., dependent on
the RL framework) for different navigation strategies [8,9,10], and the strategy
selection mechanism is usually non-adaptive [16,17]. In contrast, our model al-



*

4th Trial

(a)

4th Trial

**

(b)

Taxon
4th trial

Planning

(c)

Taxon
Planning

Exploration

1st trial

(d)
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lows for adaptive selection among different learning modes (including topological
representations), exploiting a general and simple “common currency”.

The model was evaluated in two simulated water maze tasks, in which the
same sensory cues (intra-maze and extra-maze landmarks) were available. In
one task, the cued hidden platform moves at each trial; in the other, the goal
stays at the same place during a four trials session before moving to another
location (Trial and Session tasks in [7]). Then what differs is the possibility,
or not, to learn each position of the platform. Due to a separation between
cooperative interactions (during action learning) and competitive interactions
(during action selection), the model was able to assess the relative contribution
of different strategies to the observed behavior. In accordance with the results
of the original experiment, the selection mechanisms of the model – which did
not change over the experiment – could explain why both place-based and cue-
guided strategies did not interact in the trial condition, and why they cooperated
or competed when they (particularly the place-based strategy) could learn the
same platform position during several trials. A substantial contribution of the
model concerned the analysis of the influence of different types of sensory cues on
strategy selection. From the evolution of synaptic weights between sensory inputs
and gating units in our simulations, it made it possible to assess that intra-maze
landmark information was predominant for strategy selection in both tasks and
moreover that it contributed to the selection of the Planning when this expert
was allowed to be trained (see evolution of SC→Planning, Fig. 3d). Indeed, we
remind that the gating network updates its selection on the basis of both sensory
inputs .

We showed the ability of our model to efficiently select navigation strate-
gies in two experiments in which the effects of environmental cues and training



on navigation system interactions were rather simple. In particular conditions,
these interaction may be more complex. For example, under the hypothesis that
all spatial cues compete for predicting reward, numerous experiments supporting
associative theory emphasize blocking (i.e., when a well learned cue predicting
reward prevents learning of a novel cue predicting the same reward) or overshad-
owing effects (i.e., when one cue predicting the reward detracts the learning of
another present cue able to predict the same reward) in navigation [18]. Some
of these effects are challenged by experiments supporting the cognitive mapping
theory (e.g., [3]). Our model is a potential tool for investigating such contradic-
tions.

Besides, the effect of practice on the selection of navigation strategies is far
less investigated than the influence of sensory cues. This was particularly done in
the experiments of [19], which stressed the complexity of this factor in studying
the influence of intensity of training experience during one session on the later
use of a specific strategy. In contrast to previous conclusions (e.g., [20]), short
or long training, but also various periods of pre-exposure to the task, critically
determine when and how a particular strategy emerges from interactions between
both memory systems. In the future, our model could be applied to analyze such
influences.

However we have to notice that the validation of the model was made in ex-
periments using Morris water mazes, in which every orientation is left opened
and not constrained by corridors. A recent paper raises the hypothesis that, in
this kind of device, expression of strategy switching may be different from T-
or Star-mazes [21]. Then we need to verify if the selection mechanism of our
model supports such eventuality. More importantly, the same paper questions
the role of DLS, with the assumption that it is not especially involved in ego-
centric/response strategy, but in the selection itself, in case of several available
strategies. This requires analyzing, in similar protocols as theirs, which bias the
specific role attributed to our expert Taxon is susceptible to entail, and in which
extent it should be questioned.

Interaction among several spatial memory systems may improve the perfor-
mance of animals either by speeding learning through cooperation of different
strategies, or competitive processes that prevents sub-optimal strategies to be
applied. Better understanding of these interactions by computational modelling
may also provide a good basis for the design of robots able to cope with a wider
range of behavioral tasks.
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