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ABSTRACT
The Steiner tree problem is one of the most fundamental
NP-hard problems: given a weighted undirected graph and
a subset of terminal nodes, find a minimum-cost tree span-
ning the terminals. In a sequence of papers, the approxi-
mation ratio for this problem was improved from 2 to the
current best 1.55 [Robins,Zelikovsky-SIDMA’05]. All these
algorithms are purely combinatorial. A long-standing open
problem is whether there is an LP-relaxation for Steiner tree
with integrality gap smaller than 2 [Vazirani,Rajagopalan-
SODA’99].

In this paper we improve the approximation factor for
Steiner tree, developing an LP-based approximation algo-
rithm. Our algorithm is based on a, seemingly novel, itera-
tive randomized rounding technique. We consider a directed-
component cut relaxation for the k-restricted Steiner tree
problem. We sample one of these components with proba-
bility proportional to the value of the associated variable in
the optimal fractional solution and contract it. We iterate
this process for a proper number of times and finally output
the sampled components together with a minimum-cost ter-
minal spanning tree in the remaining graph. Our algorithm
delivers a solution of cost at most ln(4) times the cost of
an optimal k-restricted Steiner tree. This directly implies a
ln(4) + ε < 1.39 approximation for Steiner tree.

As a byproduct of our analysis, we show that the integral-
ity gap of our LP is at most 1.55, hence answering to the
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mentioned open question. This might have consequences for
a number of related problems.
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Algorithms and Problems
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Keywords
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1. INTRODUCTION
Given an undirected n-node graph G = (V, E), with edge

costs (or weights) c : E → Q+, and a subset of nodes R ⊆ V
(terminals), the Steiner tree problem asks for a tree S span-
ning the terminals, of minimum cost c(S) :=

P

e∈S c(e).
Note that S might contain some other nodes, besides the
terminals (Steiner nodes). Steiner tree is one of the classi-
cal and, probably, most fundamental problems in Computer
Science and Operations Research, with great theoretical and
practical relevance. This problem emerges in a number of
contexts, such as the design of VLSI, optical and wireless
communication systems, as well as transportation and dis-
tribution networks (see, e.g., [27]).

The Steiner tree problem appears already in the list of
NP-hard problems in the book by Garey and Johnson [19].
In fact, it is NP-hard to find solutions of cost less than
96
95

times the optimal cost [5, 10]. Hence, the best one can
hope for is an approximation algorithm with a small but
constant approximation guarantee. Without loss of general-
ity, we can replace the weighted graph given as input by its
metric closure1. It is well-known that a minimum-cost ter-
minal spanning tree T is a 2-approximation for the Steiner
tree problem [20, 41]. A terminal spanning tree is a Steiner
tree without Steiner nodes: such a tree always exists in the
metric closure of the graph. A sequence of improved ap-
proximation algorithms appeared in the literature [29, 35,

1The metric closure of a weighted graph is a complete
weighted graph on the same node set, with weights given
by shortest path distances with respect to original weights.
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38, 42], culminating with the famous 1+ ln(3)
2

+ε < 1.55 ap-
proximation algorithm by Robins and Zelikovsky [38] (here
ε > 0 is an arbitrary small constant).

All the mentioned improvements are based on the follow-
ing idea. A full component (or, for short, component) of a
Steiner tree is a maximal subtree whose terminals coincide
with its leaves. Note that the edge set of the Steiner tree is
partitioned by its components. A k-restricted Steiner tree
is a Steiner tree whose components contain no more than k
terminals (k-component). The following result by Borchers
and Du [6] shows that, in order to obtain a good approx-
imation factor, it is sufficient to restrict our attention to
k-restricted Steiner trees. We let Opt and Optk denote an
optimal Steiner tree and an optimal k-restricted Steiner tree,
respectively. Moreover, opt := c(Opt) and optk := c(Optk).

Theorem 1. [6] Let ρk be the k-Steiner ratio, i.e. the

supremum of the ratio optk/opt. Then ρk = (r+1)2r+s
r2r+s

≤

1 + 1
⌊log2 k⌋

, where r and s are non-negative integers such

that k = 2r + s and s < 2r.

We remark that, given an optimal k-restricted Steiner tree
S∗, its components are optimal Steiner trees connecting the
corresponding terminals. For any fixed k, a list {Z1, . . . , Zq},
q = O(nk), of all potential k-components can be computed
in polynomial time by considering all subsets R′ of at most
k terminals, and computing an optimal Steiner tree2 on ter-
minals R′. Unfortunately, selecting the cheapest subset of
{Z1, . . . , Zq} spanning the terminals is an NP-hard prob-
lem already for k ≥ 4 [18]. For this reason, [38] and previous
papers rather select a subset of the Zi’s with a local-search
approach. The idea is to start with a minimum-cost termi-
nal spanning tree T 0 (which is formed by 2-components),
and iteratively improve it. At each step, one considers each
Zi, and checks how much adding Zi to the current solution
(and removing redundant edges) improves the solution it-
self. The algorithm each time selects the Zi leading to the
largest improvement, and halts when no further improve-
ment is possible. Different algorithms (essentially) differ in
the way the improvement is evaluated.

Despite the efforts of many researchers in the last 10 years,
the approach above did not provide any further improve-
ment after [38]. This motivated our search for alternative
methods. One standard approach is to exploit a proper
LP-relaxation (see, e.g., [21] for a list of LP-relaxations for
Steiner tree). A natural formulation for the problem is the
undirected cut formulation (see [22, 41]), where we have a
variable for each edge of the graph and a constraint for each
cut separating the set of terminals. Each constraint forces to
pick at least one edge crossing the corresponding cut. Consi-
dering its linear relaxation, 2-approximation algorithms can
be obtained either using primal-dual schemes [22] or iter-
ative rounding [28]. However, this relaxation has an inte-
grality gap of 2 already in the spanning tree case, i.e., when
R = V (see example 22.10 in [41]).

Another well-studied but more promising LP is the so
called bidirected cut relaxation [8, 12, 36]. Let us fix an
arbitrary terminal r (root). Replace each edge {u, v} by two

2We recall that, given k terminals, the dynamic-
programming algorithm by Dreyfus and Wagner [11] com-
putes an optimal Steiner tree among them in O(3kn+2kn2+
n3) worst-case time. A faster parameterized algorithm can
be found in [33].

(a)

r

(b)

Figure 1: (a) A 4-restricted Steiner tree S, where
rectangles denote terminals and circles represent
Steiner nodes. (b) Edges of S are directed towards
a root r. The resulting directed components are de-
picted with different colors.

directed edges (u, v) and (v, u) of cost c({u, v}). For a given
cut U ⊆ V , define δ+(U) = {(u, v) ∈ E | u ∈ U, v /∈ U} as
the set of edges leaving U . The mentioned relaxation is

min
X

e∈E

c(e)ze (BCR)

X

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V \ {r} : U ∩ R 6= ∅

ze ≥ 0 ∀e ∈ E.

We can consider the value ze as the capacity which we are
going to install on the directed edge e. The LP can then be
interpreted as computing the minimum-cost capacities that
support a flow of 1 from each terminal to the root. In a
seminal work, Edmonds [12] showed that BCR is integral in
the spanning tree case.

Theorem 2. [12] For R = V , the polyhedron of BCR is
integral.

The best-known lower bound on the integrality gap of
BCR is 8/7 [31, 41]. The best-known upper bound is 2,
though BCR is believed to have a smaller integrality gap
than the undirected cut relaxation [36]. The authors in [8]
report that the structure of the dual to BCR is highly asym-
metric, which complicates a primal-dual approach. More-
over, iterative rounding based on picking a single edge can-
not yield good approximations, as was pointed out in [36].

Finding a better-than-2 LP-relaxation for the (k-restricted)
Steiner tree problem is a long-standing open problem [8, 36].
We remark that good LP-bounds, besides potentially leading
to better approximation algorithms for Steiner tree, might
have a much wider impact. This is because Steiner tree ap-
pears as a building block in several other problems, and the
best approximation algorithms for some of those problems
are LP-based. Strong LPs are also important in the design
of (practically) efficient and accurate heuristics.

1.1 Our Results and Techniques
We next state the main result of this paper (see Section

4.1 for a derandomization of this result).

Theorem 3. For any constant ε > 0, there is a polynomial-
time randomized approximation algorithm for the Steiner
tree problem with expected approximation ratio ln(4) + ε.

Our algorithm is based on the following directed-component
cut relaxation for the k-restricted Steiner tree problem (see
also [34]). Consider a k-restricted Steiner tree S with the
edges directed towards the chosen root terminal r (see Fig-
ure 1). Consider the (undirected) k-components Zi intro-
duced before. Make a copy C of each Zi for each choice



of one (sink) terminal ui in it, and direct all the edges
of C towards ui. Let C1, . . . , Ch be the resulting directed
k-components. Observe that h = O(knk) is polynomially
bounded for any fixed k. We denote by c(Cj) the cost of Cj .
Recall that c(Cj) is the cost of an optimal Steiner tree over
R ∩ V (Cj), and that this tree can be computed in polyno-
mial time (for constant k). We also let sink(Cj) be the sink
terminal of Cj , and sources(Cj) := V (Cj)∩R \ {sink(Cj)}
be the other terminals (sources of Cj). We say that a com-
ponent Cj crosses U ⊆ R if Cj has at least one source in
U and the sink outside. By δ+

k (U) we denote the set of
k-components crossing U . Our LP-relaxation is then:

min
X

j

c(Cj)xj (k-DCR)

X

Cj∈δ+

k
(U)

xj ≥ 1 ∀U ⊆ R \ {r}, R 6= ∅

xj ≥ 0 ∀j = 1, . . . , h.

The LP above can be solved in polynomial time (see Section
2).

We remark that k-DCR is a relaxation for the k-restricted
Steiner tree problem. In fact, consider the optimal integral
solution Optk. As already observed, we can direct all its
edges towards an arbitrary root terminal r. At this point,
Optk consists of a set of directed k-components Cj , where
each Cj is an optimal Steiner tree over R ∩ V (Cj). Setting
xj = 1 for those components, and the remaining variables to
zero, provides a feasible solution to k-DCR of cost exactly
optk.

We combine our LP with a (to the best of our knowledge)
novel iterative randomized rounding technique. We solve the
LP, sample one component Cj with probability proportional
to its value xj in the optimal fractional solution x, contract
Cj into its sink node sink(Cj), and reoptimize the LP. We
iterate this process for a suitable number of times. With
a simple analysis we can show that a minimum-cost termi-
nal spanning tree on the remaining terminals plus the sam-
pled components cost (in expectation) at most 3/2 times the
cost of the optimal k-restricted Steiner tree (see Section 3).
With a refined analysis, we improve this bound to ln(4) (see
Section 4). A ln(4)ρk ≤ ln(4)(1 + 1

⌊log2 k⌋
) < 1.39 approx-

imation for Steiner tree immediately follows from Theorem
1 by choosing k large enough3. This bound can be further
improved for special graph classes, as for example for quasi-
bipartite graphs, where non-terminal nodes are not adjacent
(details will be given in the journal version of the paper).

We remark that our algorithm combines features of ran-
domized rounding (where typically variables are rounded
randomly, but simultaneously) and iterative rounding (where
variables are rounded iteratively, but deterministically). We
believe that our iterative randomized rounding technique
will also find other applications, and is henceforth of inde-
pendent interest.

The key insight in our analysis is to quantify the expected
reduction of the cost of the optimal terminal spanning tree
and optimal Steiner tree in each iteration. To show this, we
exploit a Bridge Lemma, relating the cost of terminal span-
ning trees with the cost of fractional solutions to k-DCR.
The proof of the lemma is based on Edmonds’ Theorem 2

3Observe that our approach provides approximation factors
strictly better than 2 for any k ≥ 6, since ρ6 = 1.4

[12]. In our opinion, our analysis is simpler (or at least more
intuitive) than the one in [38].

As an easy consequence of our analysis, we obtain that the
integrality gap of k-DCR is at most 1+ ln(2) < 1.694, hence
answering to the mentioned open problem in [8, 36] (for the
k-restricted case). A more technical analysis, based on an
adaptation of the analysis of Robins and Zelikovsky which
exploits our Bridge Lemma, leads to the following improved
result (see Section 5).

Theorem 4. For any constant k, there is a polynomial-
time algorithm which computes a solution for k-restricted

Steiner tree of cost at most 1 + ln(3)
2

< 1.55 times the cost
of the optimal fractional solution to k-DCR.

As mentioned before, integrality gap results of this type
often provide new insights to variants and generalizations of
the original problem. We expect that this will be the case
with the above theorem as well, since Steiner tree appears
as a building block in many other problems.

1.2 Related Work
One reason for the importance of Steiner tree is that it

appears either as a subproblem or as a special case of many
other problems in network design. A (certainly incomplete)
list contains Steiner Forest [1, 22], Prize-Collecting Steiner
tree [3, 22], Virtual Private Network [13, 14, 25], Single-Sink
Rent-or-Buy [15, 16, 26], Connected Facility Location [15,
16, 39] and Single-Sink Buy-At-Bulk [23, 26, 40].

Both the previously cited primal-dual and iterative round-
ing approximation techniques apply to a more general class
of problems. In particular, the iterative rounding technique
introduced by Jain [28] provides a 2-approximation for the
generalized Steiner network problem, and the primal-dual
framework developed by Goemans and Williamson [22] gives
the same approximation factor for a large class of constrained
forest problems.

Regarding the integrality gap of LP relaxations for the
Steiner tree problem, upper bounds better than 2 are known
only for special graph classes. For example, BCR has an in-
tegrality gap smaller than 2 on quasi-bipartite graphs, where
non-terminal nodes induce an independent set. For such
graphs Rajagopalan and Vazirani [36] (see also Rizzi [37])
gave an upper bound of 3/2 on the gap. This was recently
improved to 4/3 by Chakrabarty, Devanur and Vazirani [8].
Still, for this class of graphs the lower bound of 8/7 holds [31,
41]. Könemann, Pritchard and Tan [31] showed that for a
different LP formulation, which is stronger than BCR, the
integrality gap is upper-bounded by 2b+1

b+1
, where b is the

maximum number of Steiner nodes in full components.
Finally, we remark that under additional constraints, Steiner

tree admits better approximations. In particular, a PTAS
can be obtained by the technique of Arora [4] if the nodes
are points in a fixed-dimension Euclidean space, and using
the algorithm of Borradaile, Kenyon-Mathieu and Klein [7]
for planar graphs.

2. A DIRECTED-COMPONENT
CUT RELAXATION

We now prove some crucial properties of our k-DCR. The
optimal fractional solution to k-DCR is denoted by Optf

k,

and optf
k is its cost. For a given (directed or undirected)

component C′, R(C′) := R ∩ V (C′) is the set of its termi-



nals. Recall that k is a constant, hence k-DCR has a poly-
nomial number of variables. Despite the fact that k-DCR
has an exponential number of constraints, it can be solved
to optimality using the Ellipsoid method [24, 30], since we
can solve the separation problem in polynomial time.

Lemma 5. k-DCR can be solved in polynomial time, for
any constant k.

Proof. We show how to solve the separation problem in
polynomial time. Create a new directed graph G′, on node
set V ′ = R ∪ {vj | j = 1, . . . , h}. For every component
Cj , insert edges (u, vj) for any u ∈ sources(Cj), and one
edge ej = (vj , sink(Cj)). Set the capacity of each ej to
w(ej) := xj , and let w(e) := ∞ for the remaining edges. It
is not hard to see that, for a terminal s ∈ R \ {r}, there is
an s-r cut U ′ ⊆ V ′ of minimum capacity

P

e∈δ+(U′) w(e),
consisting of edges ej only. Moreover, given a non-empty
subset R′ ⊆ R \ {r}, there is a cut U ′ such that

X

e∈δ+(U′)

w(e) =
X

ej :Cj∈δ+

k
(R′)

w(ej) =
X

Cj∈δ+

k
(R′)

xj .

It then follows that a non-empty subset R′ ⊆ R \ {r} mini-
mizing

P

Cj∈δ+

k
(R′)

xj can be computed via |R|−1 minimum-

cut computations in G′. The claim follows.

Note that one can solve k-DCR alternatively by a compact
LP formulation which computes a minimum-cost multicom-
modity flow in G′ (setting the cost of ej to c(Cj)). This can
be done even in strongly-polynomial time using the frame-
work of Frank and Tardos [17] (see also Theorem 6.6.3 in
[24]). Details will appear in the full version of the paper.

Let T 0 be a minimum-cost terminal spanning tree, i.e.,
T 0 spans R, but does not contain any Steiner node. It is a
well-known fact that c(T 0) ≤ 2 ·opt (see e.g. Theorem 3.3 in
[41]). Extending the standard proof, this bound also holds
w.r.t. our LP relaxation:

Lemma 6. For any k, c(T 0) ≤ 2 · optf
k.

Proof. For each component Cj of Optf
k, obtain a TSP

tour on R(Cj) of cost at most 2c(Cj), remove one edge of
the tour, and direct the remaining edges towards sink(Cj).
This induces a fractional solution to k-DCR of cost at most
2 · optf

k, with the property that only components with 2 ter-
minals and without Steiner nodes are used. This provides a
feasible fractional solution to BCR of the same cost. Since
BCR without Steiner nodes is integral [12], the claim fol-
lows.

We next prove our Bridge Lemma, which is the heart of
our analysis. This lemma relates the cost of any terminal
spanning tree to the cost of any fractional solution to k-DCR
via the notion of bridges, and its proof is based on Edmonds’
Theorem 2.

Before proving the lemma, we need a few intermediate
results. Let R′ be a subset of k′ terminals. Consider a given
tree S, with edge weights c, containing the terminals R′.
The weight function c associated to S will be clear from the
context. Let us collapse the terminals R′ into one node,
and consider the minimum-cost tree S′ ⊆ S in the resulting
(possibly, multi-)graph, spanning all nodes of S. Observe
that S′ will contain all the edges of S but k′ −1 edges, since
collapsing R′ decreases the number of nodes in S by k′ − 1.

3 4

b1

7 1

b3

6

1 1
b2

2
b4 8

1

e1

7

e2

2

e4

8

e3

6

Figure 2: Steiner tree S is drawn in black. Termi-
nals of R′ are gray shaded. Bold black edges indi-
cate BrS(R′) = {b1, . . . , b4}. The corresponding edges
e1, . . . , e4 of Y ′ are drawn in gray and labeled with
w(ei). Note that w(ei) = c(bi). Observe also that b3 is
the unique bridge on the cycle contained in S ∪{e3}.

We call the latter edges the bridges of S w.r.t. R′, and
denote them by BrS(R′)4. Intuitively, if we imagine to add
zero cost dummy edges between the terminals R′, BrS(R′)
is a maximum-cost subset of edges that we could remove
from S and still have a connected spanning subgraph (see
Figure 2). In other terms, BrS(R′) is equal to

argmax
n

c(B) | B ⊆ S, S\B ∪
`

R′

2

´

connects V (S)
o

.

Let us abbreviate brS(R′) := c(BrS(R′)). For a (directed or
undirected) component C′, we use BrS(C′) and brS(C′) as
shortcuts for BrS(R(C′)) and brS(R(C′)), respectively.

A key ingredient in the proof of our Bridge Lemma is the
construction of a proper weighted terminal spanning tree as
described in the following lemma. We define a bridge weight
function w : R × R → Q+ as follows: For any terminal pair
u, v ∈ R, the quantity w(u, v) is the maximum cost of any
edge in the unique u-v path in S.

Lemma 7. Let R′ ⊆ R and BrS(R′) = {b1, . . . , bk′−1}
with k′ := |R′|. Then one can construct a spanning tree
Y ′ = {e1, . . ., ek′−1} on R′ such that, for i = 1, . . . , k′ − 1,

(a) w(ei) = c(bi) (hence w(Y ′) = brS(R′)).

(b) bi is the only bridge edge on the cycle in S ∪ {ei}.

Proof. Observe that S \ BrS(R′) is a forest of trees
F1, . . . , Fk′ , where each Fi contains exactly one terminal
ri ∈ R′. Each bridge bi connects exactly two trees Fi′ and
Fi′′ . For each bi, we add edge ei = {ri′ , ri′′} to Y ′. Clearly
Y ′ is a spanning tree on R′. The path Pi between ri′ and ri′′

contains bi and no other bridge. Hence bi is a maximum-cost
edge on Pi and w(ei) = c(bi) (see Figure 2).

The following lemma is the heart of our analysis.

Lemma 8. [Bridge Lemma] Let T be a terminal spanning
tree and x be a k-DCR solution. Then

c(T ) ≤
X

j

xj · brT (Cj).

4As usual, we break ties according to edge indexes.



(1) For t = 1, 2, . . . , µ
(1a) Compute an optimal fractional solution xt to k-

DCR (w.r.t. the current instance).
(1b) Sample one component Ct, where Ct = Cj with

probability xt
j/

P

i xt
i. Contract Ct.

(2) Compute a terminal spanning tree T µ in the remaining
instance.

(3) Output T µ ∪
Sµ

t=1 Ct.

Figure 3: A 3/2-approximation algorithm for k-
restricted Steiner tree.

Proof. For every component Cj we construct a spanning
tree Yj on R(Cj) with weight w(Yj) = brT (Cj) according to
Lemma 7. Then we direct the edges of Yj towards sink(Cj).
We define a directed capacity reservation y : R × R → Q+

as follows: For every j, install capacity xj in a cumulative
manner on Yj . In other terms, y(u, v) :=

P

Yj∋(u,v) xj . The

directed tree Yj supports at least the same flow as com-
ponent Cj with respect to R(Cj). It then follows that y
supports one unit of flow from each terminal to the root. In
other terms, y is a feasible fractional solution to BCR. By
Theorem 2, BCR is integral when no Steiner node is used.
As a consequence there is an (integral) terminal spanning
tree F that is not more costly than the fractional solution
y, i.e. w(F ) ≤

P

e∈R×R w(e)y(e).
Recall that w(u, v), for u, v ∈ R, is the maximum cost

of any edge of the unique cycle in T ∪ {u, v}. It follows
from the classical cycle rule for minimum-cost spanning tree
computation that w(F ) ≥ c(T ) (see, e.g., Theorem 6.2 in
[32]). Altogether

X

j

xjbrT (Cj) =
X

j

xjw(Yj)

=
X

e∈R×R

w(e)y(e) ≥ w(F ) ≥ c(T ).

3. ITERATIVE RANDOMIZED
ROUNDING

In this section we present our approximation algorithm for
k-restricted Steiner tree. To highlight the novel ideas of the
approximation technique more than the approximation fac-
tor itself, we present a simplified analysis providing a weaker
3/2 approximation factor (which is already an improvement
on the previous best 1.55 approximation). The more com-
plex analysis leading to ln(4) is postponed to Section 4.

Our 3/2-approximation algorithm for k-restricted Steiner
tree is described in Figure 3. Let xt be the optimal fractional
solution to k-DCR at a generic iteration t. By sampling a
component Ct, we mean selecting one of the components
Cj with probability xt

j/
P

i xt
i. Contracting a component

Ct means collapsing all its terminals into its sink sink(Ct),
which inherits all the edges incident to Ct (in case of parallel
edges, we only keep the cheapest one).

Recall that h = O(knk) is the number of potential k-
components. Observe that the quantity Σt :=

P

i xt
i might

vary over the iterations t. In order to simplify the analysis,
we apply the above algorithm to a slightly different LP where
we add a dummy component Ch+1 formed by the root only
(hence of cost zero), and add the constraint xh+1 = Σ −
Ph

i=1 xi. Here Σ = O(h) is an upper bound on the possible
sum of the xi’s in the original LP. The number µ of iterations

is fixed to δΣ, where δ is a proper constant to be chosen later.
(W.l.o.g., δΣ is integral). It is easy to see that the running
time of the algorithm is polynomial.

We first outline the analysis of our algorithm. Let Optt
k

be the optimal k-restricted Steiner tree at the beginning of
iteration t, and let optt

k be its cost. By optf,t
k :=

P

j xt
j ·c(Cj)

we denote the cost of the optimal fractional solution at the
beginning of iteration t. Lemma 9 bounds the expected cost
of the final terminal spanning T µ. The basic idea is showing
that the current terminal spanning tree is getting cheaper
by a factor (1 − 1

Σ
) at each iteration (in expectation): This

is an easy consequence of the Bridge Lemma. Lemma 13
bounds the expected cost of each sampled component Ct.
For this component we pay in expectation a 1

Σ
fraction of

optf,t
k , which is in turn upper bounded by optt

k. Hence it is
sufficient to bound the cost of optt

k (Corollary 12). In order
to do that, we show that the cost of the optimal Steiner
tree decreases by a factor (1− 1

2Σ
) at each iteration (Lemma

12). Also in this case the proof relies crucially on the Bridge
Lemma.

The next lemma bounds the cost of the final terminal
spanning tree.

Lemma 9. One has E[c(T µ)] ≤
`

1 − 1
Σ

´µ
· 2optf

k .

Proof. Let T t (T 0, resp.) be the minimum-cost terminal
spanning tree at the end of iteration t (for the original in-
stance, resp.). Consider an arbitrary iteration t = 1, . . . , µ.
The reduction in the cost of T t w.r.t. T t−1 is at least
brT t−1(Ct). Therefore:

E[c(T t)] ≤ c(T t−1) − E[brT t−1(Ct)]

= c(T t−1) −
1

Σ

X

j

xt
j · brT t−1(Cj)

Bridge Lem 8

≤

„

1 −
1

Σ

«

· c(T t−1).

It follows that

E[c(T µ)] ≤

„

1 −
1

Σ

«µ

· c(T 0)
Lem 6

≤

„

1 −
1

Σ

«µ

· 2optf
k.

It remains to bound the cost of the sampled components.
The proof of the following technical lemma is based on stan-
dard techniques (see, e.g., [29]).

Lemma 10. For any Steiner tree S, brS(R) ≥ 1
2
c(S).

Proof. Turn S into a binary tree with leaves R by adding
dummy Steiner nodes and zero cost edges. For each Steiner
node of S, mark the most expensive edge out of the edges
going to its 2 children. Let B ⊆ S be the set of marked edges.
Observe that c(B) ≥ 1

2
c(S). Furthermore, after contracting

R, one can remove B while keeping S connected. From
the definition of bridges it follows that brS(R) ≥ c(B) ≥
1
2
c(S).

The next lemma and corollary bound the expected de-
crease of the cost of the optimal Steiner tree after each con-
traction.

Lemma 11. Let S be any Steiner tree and x be a feasible
solution to k-DCR. Sample a component C randomly w.r.t.
x. Then there is a subgraph S′ ⊆ S such that S′ ∪ C spans
R and

E[c(S′)] ≤

„

1 −
1

2Σ

«

· c(S).



Proof. Let BrS(R) = {b1, . . . , bq}. We apply Lemma 7
to S to obtain a terminal spanning tree Y consisting of edges
e1, . . . , eq such that w(ei) = c(bi) (hence w(Y ) = brS(R))
and bi is the unique bridge on S ∪ {ei}. Choose

S′ := S\{bi | ei ∈ BrY (C)}.

(Here BrY (C) is computed w.r.t. weights w(ei)). Observe
that S′ ∪ C spans R. In fact, consider any edge ei =
{ui, vi} ∈ Y \BrY (C). The ui-vi path in S contains only
one potential bridge edge, namely bi. Hence, if two termi-
nals are connected by Y \BrY (C), then they are so in S′.
The claim follows since (Y \BrY (C)) ∪ C is connected due
to the definition of bridges. We conclude

E[c(S′)] = c(S) − E[brY (C)]

= c(S) −
1

Σ

X

j

xjbrY (Cj)

Bridge Lem 8

≤ c(S) −
1

Σ
w(Y )

= c(S) −
1

Σ
brS(R)

Lem 10

≤
“

1 −
1

2Σ

”

c(S).

Corollary 12. For every t = 1, . . . , µ,

E[optt
k] ≤

„

1 −
1

2Σ

«t−1

· optk.

Proof. Observe that, in Lemma 11, if the initial Steiner
tree S is k-restricted, then S′ ∪ C is k-restricted as well.
Hence, this lemma implies that E[optt+1

k ] ≤
`

1 − 1
2Σ

´

· optt
k

for any iteration t = 1, . . . , µ − 1. The claim follows.

Corollary 12 immediately provides an upper bound on
optf,t

k . An upper bound on the expected cost of the sam-
pled components easily follows.

Lemma 13. For every t = 1, . . . , µ,

E[c(Ct)] ≤
1

Σ

„

1 −
1

2Σ

«t−1

· optk.

Proof. One has

E[c(Ct)] =
1

Σ
E

ˆ

P

j xt
j · c(Cj)

˜

=
1

Σ
E[optf,t

k ]

≤
1

Σ
E[optt

k]

Cor 12

≤
1

Σ

„

1 −
1

2Σ

«t−1

· optk.

We now have all the ingredients to show a 3/2-approxi-
mation factor for the problem.

Theorem 14. For any k = O(1), there is a polynomial-
time randomized approximation algorithm for k-restricted
Steiner tree with expected approximation ratio 3/2.

Proof. Consider the algorithm of Figure 3 with µ = δΣ
and δ = ln(4). The cost of the computed solution is c(T µ)+

(1) For t = 1, 2, . . .

(1a) Compute an optimal fractional solution xt to k-
DCR (w.r.t. the current instance).

(1b) Sample one component Ct, where Ct = Cj with
probability xt

j/
P

i xt
i. Contract Ct.

(1c) If the instance consists only of the root, return
St

i=1 Ci.

Figure 4: A ln(4)-approximation algorithm for k-
restricted Steiner tree.

Pµ
t=1 c(Ct). The expected approximation ratio satisfies

E

»

c(T µ) +
Pµ

t=1 c(Ct)

optk

–

Lem 9 + 13

≤ 2 ·

„

1 −
1

Σ

«µ

+
1

Σ

µ
X

t=1

„

1 −
1

2Σ

«t−1

= 2 ·

„

1 −
1

Σ

«δ·Σ

+ 2 − 2 ·

„

1 −
1

2Σ

«δ·Σ

≤ 2e−δ + 2 − 2 · e−δ/2 =
3

2
.

In the last inequality we used the fact that (1 − 1
y
)δy −

(1 − 1
2y

)δy is an increasing function of y > 1, and that

limy→∞(1 − 1
y
)y = 1

e
.

Theorems 1 and 14 immediately imply an expected (3/2+ε)-
approximation algorithm for the Steiner tree problem.

4. A REFINED APPROXIMATION
In this section, we present a (ln(4)+ ε)-approximation for

Steiner tree. The algorithm is the same as in the previous
section, with the difference that now we let it run until all
the terminals collapse into the root. The set of sampled
components provides the desired solution (see Figure 4).

We first give a high-level description of our analysis. Let
S∗ := Optk be the optimal k-restricted Steiner tree for the
original instance (in particular, c(S∗) = optk). Each time
we sample a component Ct, we will delete a proper subset
of edges from S∗. Consider the sequence S∗ = S1 ⊇ S2 ⊇
. . . of subgraphs of S∗ which are obtained this way. We
will guarantee that at any iteration t, the edge set St plus
the previously sampled components yields a subgraph that
connects all terminals. Furthermore, we will prove that a
fixed edge e ∈ S∗ is deleted after an expected number of
at most ln(4) · Σ iterations. This immediately implies the
approximation factor of ln(4).

In order to track which edges can be safely deleted from
S∗, we will construct an artificial terminal spanning tree Y
(the witness tree) and assign a random subset W (e) of edges
of Y to each edge e ∈ S∗. The choice of W (e) guarantees
(deterministically) that, if a pair of terminals is connected
by Y ′ ⊆ Y , then they are as well connected by {e ∈ S∗ |
W (e) ∩ Y ′ 6= ∅}.

At each iteration, when component Ct is sampled, we
mark a proper random subset BrY (Ct) of edges of Y . This
set guarantees that (Y \BrY (Ct)) ∪ Ct is connected (deter-
ministically). The intuitive reason for using BrY (Ct) rather
than BrY (Ct) is that we want to sample each edge of Y
more uniformly. When all the edges in W (e) are marked,



we delete e from S∗. Summarizing, we consider the following
random process:

For t = 1, 2, . . ., sample one component Ct from
xt and mark the edges in BrY (Ct). Delete an
edge e from S∗ as soon as all edges in W (e) are
marked.

The subgraph St is given by the edges of S∗ which are not
yet deleted at the beginning of iteration t.

We next give the details of our analysis. A combination of
Farkas’ Lemma together with our Bridge Lemma provides
the existence of random sets BrY (Cj) such that every edge
in Y is marked with probability at least 1

Σ
per iteration.

Lemma 15. Let Y be any terminal spanning tree and x be
any k-DCR solution with Σ =

P

j xj. Then there exist ran-

dom sets BrY (Cj) ⊆ Y such that if we sample a component
C randomly w.r.t. x one has

(1) Pr[e ∈ BrY (C)] ≥ 1
Σ

for all e ∈ Y ;

(2) Y \BrY (Cj) ∪ Cj connects V (Y ) for all Cj .

Proof. For a component Cj , let the set of candidate
bridges BY (Cj) be

{B ⊆ Y | |B| = |R(Cj)| − 1, (Y \B) ∪ Cj connects V (Y )}.

By definition any B ∈ BY (Cj) satisfies Property (2). For
a proper probability distribution w, we let Pr[BrY (Cj) =
B] := wjB . In particular,

P

B∈BY (Cj) wjB = 1. We will

show that there is a w with
X

(B,j):B∈BY (Cj),e∈B

xjwjB ≥ 1

for all e ∈ Y . This implies Property (1) since

Pr[e ∈ BrY (C)] =
X

(B,j):B∈BY (Cj),e∈B

xj

Σ
· wjB ≥

1

Σ
.

Suppose by contradiction that such a distribution w does
not exist. Then the following system of linear inequalities
has no solution5

X

B∈BY (Cj)

wjB ≤ 1 ∀j

X

(B,j):B∈BY (Cj),e∈B

xjwjB ≥ 1 ∀e ∈ Y

w ≥ 0.

Farkas’ Lemma6 yields that there is a vector (y, c) ≥ 0 with

(a) yj ≥
X

e∈B

cexj ∀(B, j) : B ∈ BY (Cj);

(b)
X

j

yj <
X

e∈Y

ce = c(Y ).

In particular,

yj

(a)

≥ xj · max{c(B) | B ∈ BY (Cj)} = xj · brY (Cj).

5We can replace the “=” constraint with “≤” without affect-
ing feasibility since all coefficients of wjB are non-negative.
6∃x ≥ 0 : Ax ≤ b ∨̇ ∃z ≥ 0 : zT A ≥ 0, zT b < 0

3 1 1 2 1 3 1 2

2
e0

1 2 1

1 1

f0

f1 (a) (b)

Figure 5: (a) Optimal Steiner tree S∗ in black, where
bold edges indicate B, and the associated termi-
nal spanning tree Y in gray. Edges e in S∗ are la-
beled with |W (e)|. For example W (e0) = {f0, f1}. (b)
Marked edges in Y at a given iteration t are drawn
dotted; the non-deleted edges in S∗ (i.e. edges of
St) are drawn in black. Non-marked edges of Y and
non-deleted edges of S∗ support the same connec-
tivity on R.

Then

X

j

xj · brY (Cj) ≤
X

j

yj

(b)
< c(Y ),

which contradicts the Bridge Lemma 8.

Next, we define the witness tree Y and the sets W (e) for
each e ∈ S∗. Without loss of generality any Steiner node in
S∗ has degree 3 or more. By adding dummy Steiner nodes
and zero cost edges, we can assume that S∗ is a (not nec-
essarily complete) binary tree, rooted at some Steiner node,
of height at most |R| − 1 . For each Steiner node, choose
uniformly at random one of the two edges to its children.
Let B denote the chosen edges. Clearly Pr[e ∈ B] = 1

2
for

any e ∈ S∗. Let Puv ⊆ S∗ be the unique u-v path in S∗.
The witness tree is

Y := {{u, v} ∈
`

R
2

´

| |Puv ∩ B| = 1}.

Similarly to arguments in Lemma 7, Y is a spanning tree on
R. Furthermore, for each edge e ∈ S∗, we define

W (e) := {{u, v} ∈ Y | e ∈ Puv}.

See Figure 5(a) for an illustration. Note that 1 ≤ |W (e)| ≤
|Y | = |R| − 1. Observe also that |W (e)| = 1 if e ∈ B.
Indeed, the expected cardinality of W (e) is small also for
the remaining edges.

Lemma 16. For any edge e ∈ S∗ at level ke ≤ |R| − 1
(edges incident to the root are at level one), one has

Pr[|W (e)| = q] =

8

>

<

>

:

1/2q if 1 ≤ q < ke;

2/2q if q = ke;

0 otherwise.

Proof. Consider the path v0, v1, . . . , vke from e towards
the root. In particular, e = {v0, v1}. If (vq−1, vq) is the first
edge from B on this path, then |W (e)| = q. This is because,
for each node vj , j ≥ 1, there is one distinct path Puv with
{u, v} ∈ Y that contains e (see also Figure 5(a)). This event
happens with probability 1/2q . Otherwise, |W (e)| = ke by a



similar argument. The latter event happens with probability
1/2ke . The claim follows.

For W ⊆ Y , let M(W ) denote the first iteration when
all the edge in W are marked. The choice for the sequence
S∗ = S1 ⊇ S2 ⊇ . . . is given by St = {e ∈ S∗ | M(W (e)) ≥
t}. In other words, St is the set of edges which are not yet
deleted at the beginning of iteration t.

Lemma 17. The graph St ∪
St−1

t′=1 Ct′ spans R.

Proof. Let Y ′ ⊆ Y be the set of edges which are not
yet marked at the beginning of iteration t (see also Figure

5(b)). Then, by definition of bridges, Y ′ ∪
St−1

t′=1 Ct′ spans
R. Consider any edge {u, v} ∈ Y ′. Then {u, v} ∈ W (e) for
all e ∈ Puv. Hence no edge on Puv is deleted. Therefore u
and v are also connected in St. The claim follows.

Recall that Hq :=
Pq

i=1
1
i

is the qth harmonic number.

Lemma 18. Let W ⊆ Y . Then the expected number of
iterations until all edges in W are marked satisfies

E[M(W )] ≤ H|W | · Σ.

Proof. Let mq be the best possible upper bound on the
expected number of iterations until all out of a given set W
of q edges are marked (over all feasible probability distribu-
tions). We will prove that mq ≤ Hq · Σ by induction on q.
For q = 1, the only edge in W is marked with probability
at least 1

Σ
in each iteration, hence m1 ≤ Σ. Next, let q > 1

and consider the first iteration. Consider the probability
distribution p = (p0, . . . , pq) where pi gives the probability
that i edges are sampled in the first iteration. Of course,
since the expected number of marked edges must be at least
q · 1

Σ
in the first iteration, this distribution has to satisfy the

constraint
q

X

i=0

pi = 1;

q
X

i=0

i · pi ≥
q

Σ
; pi ≥ 0, ∀i = 0, . . . , q. (1)

If we condition on the event that i ∈ {0, . . . , q} edges are
marked in the first iteration, we need in expectation at most
mq−i more iterations until the remaining q − i edges are
marked. Hence we obtain the bound

mq ≤ 1 +

q
X

i=0

pi · mq−i. (2)

Assume pessimistically that p is the distribution which max-
imizes the right-hand side of (2) under Constraint (1). The
value of p is an optimal fractional solution of a linear pro-
gram. In particular, we can assume that p is a vertex of
the polyhedron induced by (1). Hence all but (at most) two
entries of p are zero. Suppose p0 = 0. In this case we would
mark deterministically at least one edge. The claim follows
since, conditioning on the number i ∈ {1, . . . , q} of sampled
edges, one obtains mq ≤ 1 + mq−i ≤ 1 + Hq−i · Σ ≤ Hq · Σ.
Here we use q ≤ |Y | = |R| − 1 ≤ Σ. Otherwise, there must
be an i > 0 such that pi = q

iΣ
, p0 = 1 − q

iΣ
, and pj = 0 for

all 0 < j 6= i. Hence

mq ≤ 1 +
q

iΣ
· Hq−iΣ +

“

1 −
q

iΣ

”

mq.

Rearranging terms yields

mq ≤ Σ ·
“ i

q
+ Hq−i

”

≤ Σ · Hq,

and the assertion follows.

Eventually, we prove the expected approximation of ln(4),
as claimed in Theorem 3.

Proof of Theorem 3. For an edge e ∈ S∗, we define
D(e) = max{t | e ∈ St} as the iteration in which e is deleted.
One has

E[D(e)] =

ke
X

q=1

Pr[|W (e)| = q] · E[D(e) | |W (e)| = q]

Lem 18

≤
ke

X

q=1

Pr[|W (e)| = q] · Hq · Σ

Lem 16
=

ke−1
X

q=1

“1

2

”q

· Hq · Σ +
2

2ke
· Hke · Σ

≤
X

q≥1

“1

2

”q

· Hq · Σ

= Σ ·
X

q≥1

1

q

X

i≥0

“1

2

”q+i

= Σ ·
X

q≥1

1

q

“1

2

”q−1

= ln(4) · Σ.

The expected cost of the approximate solution satisfies

E
h

X

t≥1

c(Ct)
i

=
X

t≥1

1

Σ
E

ˆ

optf,t
k

˜

≤
1

Σ

X

t≥1

E
ˆ

c(St)
˜

=
1

Σ

X

e∈S∗

E[D(e)] · c(e) ≤ ln(4) · optk.

The claim follows.

4.1 Derandomization
After submitting the preliminary version of this paper, we

found a way to derandomize our algorithm via the method of
limited independence (see, e.g., Alon and Spencer [2]). The
basic idea is to partition the sequence of iterations into a
(large) constant number of phases. In each phase, we sample
a proper number of random components (rather than just
one component). The LP is updated only from phase to
phase. This sampling is performed in such a way that only
O(log n) random bits are needed. Hence, the algorithm can
be derandomized by considering all the (polynomially-many)
choices for the random bits. The approximation ratio grows
by a factor (1 + ε). The proof of the following theorem will
appear in the journal version of this paper.

Theorem 19. For any k = O(1) and any constant ε > 0,
there is a polynomial time deterministic (ln(4) + ε)-approxi-
mation algorithm for k-restricted Steiner tree.

Corollary 20. For any constant ε > 0, there is a po-
lynomial-time deterministic (ln(4) + ε)-approximation algo-
rithm for Steiner tree.

5. INTEGRALITY GAP
In this section we bound the integrality gap of k-DCR.

Note that, despite the fact that our analysis is based on
an LP relaxation of the problem, it does not imply a ln(4)
(nor even a 1.5) bound on the integrality gap of the studied



LP. (This is because the LP changes during the iterations of
the algorithm). However, an easy adaptation of the analysis
from previous sections proves the following claim.

Theorem 21. There is a polynomial-time algorithm which
computes a solution to the k-restricted Steiner tree problem
of expected cost at most 1 + ln(2) < 1.694 times the cost of
the optimal fractional solution to k-DCR.

Proof. Consider the algorithm from Figure 3 with µ =
δΣ and δ = ln(2). Observe that, for any t ≥ 1, optf,t

k ≤ optf
k

(contracting components does not increase the cost of the
fractional solution). Hence

E
h

c(T µ) +

µ
X

t=1

c(Ct)
i

Lem 9

≤ 2 ·

„

1 −
1

Σ

«µ

optf
k +

1

Σ

µ
X

t=1

optf,t
k

≤ 2 ·

„

1 −
1

Σ

«µ

optf
k +

µ

Σ
optf

k

≤ (2e−δ + δ)optf
k = (1 + ln(2))optf

k.

In order to achieve the better 1.55 bound on the integral-
ity gap claimed in Theorem 4, we prove that another algo-
rithm, namely the algorithm of Robins and Zelikovsky [38],
produces solutions of cost bounded with respect to the opti-
mal fractional solutions to k-DCR. Our alternative analysis
of this algorithm is, to some extent, inspired by an analo-
gous argument of Charikar and Guha [9] in the context of
the facility location problem. Our argument is essentially
a combination of the analysis in [38] with our new Bridge
Lemma 8. For this reason, the proof of Theorem 4 is post-
poned to the full version of the paper.

We leave it as an interesting open problem to prove a
ln(4) (or even 1.5) bound on the integrality gap of k-DCR (if
possible). This might involve the development of a fractional
version of Lemma 11.

We conclude the paper with a comparison between BCR
and k-DCR. It is easy to see that any feasible solution to
k-DCR can be turned into a feasible solution to BCR of the
same cost. In fact, it is sufficient to split each component
into the corresponding set of edges.

Interestingly enough, the reverse is not true, as observed
in [34]. In other words, for any k, k-DCR is a relaxation
strictly stronger than BCR. In particular, the 1.55 upper
bound on the integrality gap of k-DCR does not imply the
same bound on the integrality gap of BCR. Nevertheless,
Skutella’s graph [31] implies an 8/7 lower bound also on the
integrality gap of our relaxation. It remains as a challenging
open problem to show whether the integrality gap of BCR
is smaller than 2 or not.
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problem on graphs: Inapproximability results.
Theoretical Computer Science, 406(3):207–214, 2008.

[11] S. E. Dreyfus and R. A. Wagner. The Steiner problem
in graphs. Networks, 1:195–207, 1972.

[12] J. Edmonds. Optimum branchings. J. Res. Nat. Bur.
Standards, B71:233–240, 1967.

[13] F. Eisenbrand and F. Grandoni. An improved
approximation algorithm for virtual private network
design. In SODA, pages 928–932, 2005.

[14] F. Eisenbrand, F. Grandoni, G. Oriolo, and
M. Skutella. New approaches for virtual private
network designs. SIAM Journal on Computing 37(3):
706-721, 2007.

[15] F. Eisenbrand, F. Grandoni, T. Rothvoß, and
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G. Schäfer. Connected Facility Location via Random
Sampling and Core Detouring. Journal of Computer
and System Sciences. To appear.
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