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Abstract

Whenever the invariant stationary density of metastable dynamical
systems decomposes into almost invariant partial densities, its computa-
tion as eigenvector of some transition probability matrix is an ill-condition-
ed problem. In order to avoid this computational difficulty, we suggest to
apply an aggregation/disaggregation method which only addresses well-
conditioned sub-problems and thus results in a stable algorithm. In con-
trast to existing methods, the aggregation step is done via a sampling
algorithm which covers only small patches of the sampling space. Finally,
the theoretical analysis is illustrated by two biomolecular examples.
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Introduction

Consider general dynamical systems in equilibrium with a unique stationary
density. Among them, metastable dynamical systems are characterized by the
fact that there exist almost invariant subsets wherein the system remains for “a
long time”, once it is in there. In molecular dynamical systems, which represent
the main class of interest here, the almost invariant subsets are the metastable
conformations; for general dynamical systems, we also speak of metastable clus-
ters. Throughout this paper, we fix the stationary density to be the Boltzmann
distribution without loss of generality. Within each of the conformations, the dy-
namics is often said to be “rapidly mixing”, whereas between them it is “slowly
mixing”. Any of the available sampling strategies will, when applied to such
systems, suffer from the undesirable fact that they are prone to be “trapped”
within conformations. Difficulties of this kind also arise in a special multi-scale
approach called conformation dynamics, which has been developed in recent
years (for surveys see [10, 35, 11]) and which will represent our algorithmic
frame here.

In this paper, we deal with the trapping problem as it shows up in compu-
tational sampling techniques for metastable dynamical systems. We design an
efficient sampling strategy, especially for high-dimensional systems, which both
exploits the fast mixing within the conformations and, at the same time, safely
covers the rare transitions between the conformations. For our computations,
we use the meshless implementation ZIBgridfree [45, 44] of conformation dynam-
ics. In the presence of metastabilities, the arising Markov chains will be nearly
completely decomposable or nearly reducible [39, 7, 29, 8]. The metastable con-
formations to be identified are analyzed via a stochastic transfer matrix, using
our recently developed Robust Perron Cluster Analysis (PCCA+) [12, 44]. The
basic reasoning behind the approach to be advocated herein is the following: As
we will show below, the computation of the stationary density via the transfer
matrix is highly ill-conditioned, whereas the identification of the metastable con-
formations is well-conditioned. On the basis of this insight, we suggest a domain
decomposition of the state space into sub-domains, ideally the conformations or
certain computationally available approximations of them. Our method may be
regarded as an infinite dimensional analog of aggregation/disaggregation meth-
ods known from finite dimensional problems. The disaggregation step comprises
the determination of the partial Boltzmann densities, using our algorithm ZIB-
gridfree. The aggregation step realizes the construction of the overall stationary
density, using our newly developed algorithm ConfJump, which works efficiently
only when applied to the already identified conformations.

The paper is organized as follows. Existing sampling algorithms and their
difficulties in the treatment of metastable dynamical systems are analyzed in
Section 1. In Section 2, we derive the basic idea of aggregation/disaggregation
in function space and show how our proposed method can overcome the de-
scribed difficulties. Finally, we present three numerical examples, one trivial
but elucidating, the other two from biochemistry.



1 Difficulties of existing sampling methods

In recent years, the efficient exploration of molecular state spaces and the iden-
tification of metastable conformations have been in the focus of our research, for
surveys see [10, 11, 35, 36]. Our algorithms are embedded in the mixed deter-
ministic/stochastic approach called conformation dynamics. This approach is
based on the analysis of a stochastic transfer operator corresponding to a specific
Markov chain and, after some spatial discretization, on a Perron cluster analysis
of a stochastic matrix. In the present section, we will shortly revisit conforma-
tion dynamics algorithms as they have been used up to now. In the sampling
part of these algorithms, some computational dilemma arises unavoidably, as
we will show. However, the same kind of difficulty would equally arise with any
other sampling technique when applied to metastable dynamical systems.

1.1 Conformation dynamics revisited

Throughout the paper, we consider a canonical ensemble where the stationary
density of states ¢ in a continuous state space 2 is given by the Boltzmann
density 7(g). Conformation dynamics aims at a description of the continuous
dynamical process in terms of a jump process on the discrete set of conforma-
tions. Given a molecule’s geometry, we identify ne metastable conformations
Ci,...,Chy C Q together with their life times and transition patterns. Confor-
mations are given by measurable functions &; defined in Q (e.g. characteristic
functions of the sets {C;}), which, together with the Boltzmann density, deter-
mine the conformational weights or, more general, cluster weights

Uiexact _ /Q&,(q)w(q) dg, 1=1,...,nc. (1)

In order to make the computations feasible, the continuous state space is de-
composed into a number of N discrete “spatial” states, £ = {1,..., N}, and
the discrete dynamical process is described as a Markov chain on these states.
The stationary density of the corresponding transition probability matrix is de-
noted by w = (w1, ..., wn), in contrast to the stationary density m(q) of the
continuous process. The entry w; of the discrete stationary density is denoted
as statistical weight of state ¢ € E. The vector w arises as normalized left
eigenvector of the transition probability matrix P, i.e.

w'P=w'. (2)

As a result of our cluster algorithm PCCA+, membership vectors {x;}X, are
obtained, in contrast to the continuous functions &;(¢). The entry x;(j) is
a number between 0 and 1 and denotes the grade of membership of state j
w.r.t. conformation i. Given these values and the stationary density w, the
continuous cluster weights in (1) are approximated by discrete cluster weights

N
i =3 xi(j)w; ~ ofXact (3)
j=1

The information about the discrete cluster dynamics is condensed in the
so-called coupling matriz P, the stochastic matrix describing the transitions be-
tween the metastable conformations. With diagonal matrices D = diag({w;};-<;)



and D = diag({o;}:-%, ), this matrix can be computed via
P=D"'x"DPy. (4)
From [10], the characteristic life times of conformations are known to behave

(in first order) like
-

O ()
where 7 is the molecular dynamics simulation time step. Note that these times
are extremely sensitive to perturbations of p;; < 1 when p;; ~ 1.

Summarizing, both the computation of the relevant dynamical information
P and the cluster weights {o;} depend on a well-conditioned determination of
w in (2) and a reasonable clustering .

Sampling strategy. Within conformation dynamics, a Hybrid Monte Carlo
(HMC) sampling technique [13] is used, which is known as a quite efficient
method for the sampling of canonical ensembles. However, as with other sam-
pling strategies, its main problem is the so-called “trapping” effect, which means
that the sampling remains for a “too long” time in the neighborhood of some
potential well, an effect also named as “critical slowing down”. As a conse-
quence, the method fails to visit further physically relevant parts of the confor-
mational space — a significant lack of reliability. One possibility to circumvent
this undesirable effect is to modify the potential energy surface accordingly and
to re-weight the generated sampling points. However, such techniques require
some deep knowledge about the energy landscape and tend to accumulate too
many low-weighted sampling points in transition regions. Therefore, we will ad-
vocate below the use of a domain decomposition method instead. Its realization
requires our recently developed software package ZIBgridfree to be presented
next.

Meshless algorithm ZIBgridfree[45, 44]. The name of this algorithm stands
for a gridfree (or meshless) partitioning of the sampling space such that different
regions can be sampled independently. The decomposition of high-dimensional
spaces is a difficult problem of its own. Regular grids are well-known to be
inappropriate, because they suffer from the “curse of dimensionality”, for an il-
lustration see Figure 1, left, where the line represents the conformation domain.
In order to overcome this problem, this algorithm realizes a decomposition into
“domains” {£2;} via overlapping sigmoidal functions {¢;}, see Figure 1, right.
Thus, more precisely, the algorithm realizes a decomposition in function space
rather than in position space. However, even though the support of these basis
functions is the whole state space €2, they are strongly localized in the confor-
mation domain. Hence, we may as well loosely speak of domain decomposition
in . Throughout the paper, we assume that we have already realized some
decomposition by means of N basis functions ¢1,...,¢n : @ — [0,1], where
¢i(q) determines the grade of membership of position state ¢ € 2 w.r.t. Q;. For
later purposes, we already mention here that this algorithm may be regarded as
realizing a disaggregation step in infinite dimension.

In detail, the dynamics is described via a Markov operator T7 [35] that
propagates densities in 2 for some time 7. The corresponding transition proba-
bilities between domains §2; can be expressed in terms of a stochastic transition



Figure 1: Different discretizations of conformations (lines) in position space.
Left: Regular grids require too many unnecessary boxes, giving rise to the “curse
of dimensionality”. Right: Meshless methods realize an adaptive, function-
based and overlapping discretization. The circles indicate the “domains” {Q;}
corresponding to the strongly localized Gaussian radial basis functions {¢; }.

matrix P € RV*Y as follows,

(NT™ b d
Pli.j) = Jo?i(@) T ¢j(q) 7(q) q
Jo ¢i(a) m(q) dg
It can easily be shown that the integral can be rewritten in terms of local
densities Si(@m(a)
i\q)T\q
mi(q) = /7~ 6
=T @ )
as

P@ﬁ=AT%@m@@-

The local densities are Boltzmann densities corresponding to modified potentials
{Vi(q)}, which depend on the basis functions {¢;(¢)}, so that

_ __ exp(=pVi(9))
Jo exp(=3Vi(a)) dg

mi(q

with

W@zvm—%mwm» (7)

The first step of the sampling routine comprises the generation of sampling
points {q,gl)}g/le according to the local density m;(¢). This is similar to the
famous umbrella sampling technique introduced by Torrie and Valleau [42]. The
second step includes the application of a propagator T7 to these sampling points
and the evaluation of the integral by Monte Carlo quadrature,

1 & ;
P(i,j) ~ 72 3 6;(T7q("). (®)
k=1

Actually we compute an approximation of P, because Monte Carlo integration
introduces truncation errors, which, within ZIBgridfree, are controlled by means
of certain stopping criteria. For more details see [44].



Robust Perron Cluster Analysis (PCCA+). Transition matrices of com-
pletely decoupled Markov chains with n¢ independent clusters can be reordered
to block diagonal structure and have an nc-fold Perron eigenvalue {\;};'¢, = 1.
In the presence of metastabilities, we deal with nearly completely decomposable
Markov chains. In this case, there exists a Perron cluster of eigenvalues near
the Perron eigenvalue \; = 1. The perturbation is measured as the gap to the
2nd largest eigenvalue [12], i. e. as

621—)\2, (9)

which is understood to be a small number, positive by construction.

In contrast to a reordering of states according to clusters, PCCA+ aims
at an assignment of states ¢ € {1,...,N} to clusters j € {1,...,nc} with
certain grades of membership y;(i). Let X € RV*"¢ denote the matrix of the
eigenvectors corresponding to the Perron eigenvalue cluster. In [12, 44] it has
been shown that y can be expressed as a linear combination of the eigenvectors

X = XA,

where 4 € R™"¢*™C ig a regular matrix. The algorithm PCCA+ computes this
transformation matrix via maximizing the metastability, which is the sum of
the diagonal entries of the coupling matrix.

Sampling algorithm ConfJump. In [43], we described the sampling algorithm
ConfJump that uses the results of an a priori analysis of the potential energy
surface to enhance the sampling by additional intermediate jumps between low-
energy regions. This method allows a much faster sampling than the hybrid
Monte Carlo algorithm. There is a class of alternative methods, so-called smart
methods, which have been designed to overcome the trapping problem, see [4]
for a survey. ConflJump can be regarded as an extension of the Smart Darting
Monte Carlo [2] and the Jump Between Wells (JBW) [37, 38] method. However,
ConfJump achieves larger acceptance ratios than these methods, i.e., within the
Monte-Carlo setting the part of proposed states which are accepted as next state
in the Markov chain is larger. For algorithmic details see [43]. Since ConfJump
combines jumps with the hybrid Monte Carlo method, it is not only a correct
sampling method for the Boltzmann distribution, but also provides dynamical
information.

1.2 Stability analysis

In the preceding Section 1.1 we arranged the basic tools for conformation dy-
namics. On this basis we are now ready to compare the condition of global
versus local density computation in the presence of metastable conformations,
which is the case of interest here.

Ill-conditioned global density computation. If we want to compute the
probabilities for the system to stay within each of the conformations, then we
have to solve two problems. The first one is the clustering problem to find
the hidden block structure of a transition matrix P and thus to determine
the metastable conformations. This problem can be solved by ZIBgridfree and



PCCA+ as described in the preceding section. The second problem is the deter-
mination of the stationary density w required to compute the discrete cluster
weights {0;}7:S, as defined in (3). Unfortunately, a careful analysis reveals that
this problem is ill-conditioned. For a deeper understanding, we will briefly recall
the line of argument as given in [44].

Assume we want to compute the stationary density via solving the eigenvalue
problem (2). In this case, the truncation error of the transition matrix sampling

leads to the following estimate,
[W = Wirlloo < K [|P = Prrlloo, (10)

where wy,., P, indicate the result of the algorithm after truncated sampling, and
w, P the true values. As for the choice of condition number, we select kK = Ky g
suggested by Meyer [30], since it can be conveniently estimated via the sorted
eigenvalues A\ = 1> Xy > ... > Ay of P as

L < < 2N-1) (11)
—_—— K —_———————.
NT= ) ="™MF =TV, (1-\)

In view of (9), we thus obtain that, in the presence of at least two conformations,
k~0O(1/e)>1.

Summarizing, we are now ready to understand the computational difficulties
arising in the existing conformation dynamics algorithms:

e In the presence of conformations, when there exists a Perron cluster of
eigenvalues of P near the Perron root A\; = 1, i.e. when ¢ <« 1, the
computation of the global stationary density w is ill-conditioned.

e If the second eigenvalue Ao of P is sufficiently bounded away from 1, i.e. if
¢ is not small, then the computation of the stationary density is well-
conditioned, but PCCA+ will not identify any metastable conformations.

The theoretical results so far can also be summarized in a slightly different
wording as follows. While the absolute error ||P — Py ||s can be controlled by
the stopping criterion within ZIBgridfree, the element-wise relative error

is important for the determination of the stationary density w in the presence
of at least two conformations. If the transition probability between two states
is small, then the relative error may be very large although the sampling con-
verged and the absolute error is moderate. In this case & in equation (10) will
necessarily be large.

Well-conditioned local density computation. Assume there is a molec-
ular system with ne pronounced metastable conformations. Then there exists
a Perron cluster of eigenvalues Ay, ..., A\, and an eigenvalue A, 4; sufficiently
bounded away from A, < 1. Via PCCA+ we can identify the corresponding
hidden block-structure of P. Assume we have identified disjoint index subsets
Ii,..., I, for each of these hidden blocks and reordered the states accordingly



(what we do not do explicitly!). Then we can construct a real block-diagonal
matrix P similar to P by applying the Simon-Ando disaggregation technique
[39]. That means, we take P, set all outer-block elements equal to 0, which
is a perturbation of order €, and change the diagonal elements such that Pis
stochastic again. This matrix P is reducible and can be split into n¢ stochastic
sub-matrices {P;}. An easy calculation shows that each of these sub-matrices
defines a reversible Markov chain with a stationary density equal to the cor-
responding part {wy, }1'¢; of w apart from a scale factor. Due to reversibility,
DP and DP are symmetric. A standard eigenvalue estimate [19] then yields
that A,,41 is a measure for the deviation of the second largest eigenvalue of
each sub-matrix from 1. Since, by assumption, A,,+1 is well bounded away
from 1, the upper bound in (11) yields a condition number &; for each of the
sub-matrices such that
ki < K,

i.e. local density computation is well-conditioned. This result strongly indicates
that some aggregation/disaggregation technique might be useful. This idea will
be worked out in Section 2.

1.3 An illustrative example

For an illustration of the above stability analysis, consider a two-dimensional
dynamical system given by Hamiltonian differential equations,

Let be given a characteristic potential energy V : IR? — IR in the form

V(q) = min(f(q),9(q), h(q)), q€IR?

fl@) = 3(q1—3)(q1 —3) —5(q1 —3)(q2 +4) +3(q2 +4)(q2 +4) +0.25
g9(q) = 3@4—-q)4—q)—54—-q1)(q2—3) +3(q2 —3)(g2 — 3) +0.25
h(q) = 3qaq + 399

This potential has three well-separated local minima. The central minimum
has the deepest potential energy, but at the same time the smallest cluster
weight such that it is impossible to derive the cluster weights from the energy
values of the local minima. The potential gives rise to a Boltzmann density with
well-separated partial densities, see Figure 2(a). Two of the conformations are
symmetric, but their basins of attraction have different orientations, which is
disadvantageous for the original ConfJump method [43]. The weights of the three
conformations can be computed analytically (rounded to four decimal digits) as

{o€XaCt) — 10,3690, 0.2619, 0.3690}. (12)

Application of ZIBgridfree. Since the single peaks are completely separated
and transitions from one cluster to another are rare events, we cannot expect
Z|Bgridfree to deliver the correct stationary density.

We used N = 11 basis functions {qﬁk}g:l. The two symmetric minima were
covered by different numbers of basis functions (three and four) so that the
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(a) Correct density.

(b) Approximate density computed as left eigenvector
of the transition probability matrix.

(¢) Approximate density computed by ConfJump.

Figure 2: Artificial Potential: Spatial Boltzmann density computed in three
different ways.
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discretization does not inherit the symmetry. Moreover, the minima directly
coincide with the center of one of the basis functions. The central minimum
is resolved by four symmetrically located basis functions. As a result of our
algorithm, the basis functions should have the same statistical weights.

For each modified potential {V;}¥ | as defined in (7), 2000 points were gener-
ated by hybrid Monte-Carlo sampling. These points were propagated by Hamil-
tonian dynamics applying 60 steps of the velocity-Verlet algorithm [16] with time
step A7 = 0.013 fs. We applied PCCA+ to the 11 x 11 transition probability
matrix P which resulted in a decomposition into three clusters.

Ill-conditioned global density computation. The stationary density was
calculated by solving the eigenvector problem of P according to the eigenvalue
A = 1. The eigenvector was computed by the Matlab routine eigs [18] based on
the implicitly restarted Arnoldi method. The Meyer condition number for this
calculation appeared as

k=2-10".

‘Well-conditioned local density computation. On the basis of the cluster-
ing, we approximated the transition matrix P by a block-diagonal matrix Pin
that we added the entries outside the blocks row-wise to the diagonal, a process
described in Section (1.2) above. Next, we calculated the stationary densities
of the blocks. This time, the corresponding Meyer condition numbers arose as

{Ri} = {2.15,4.10,4.69}.

As one can see, the local condition numbers are extremely smaller than the
global condition number.

Computation of cluster weights. We decomposed the density according to
the proposed clustering into the partial densities. We know that these partial
densities are reliable because our samplings were rapidly mixing within the
clusters. But we do not know the ratios or proportionality factors exactly. The
cluster weights computed according to (3) came out wrong as

{o;} = {0.4303,0.3453,0.2244}.

Given the statistical weights {w;};¢, of the basis functions, we computed a
histogram of the Boltzmann density. For this purpose, we decomposed 2 into
70 x 70 boxes. Then we counted the number of sampling points within each of
these boxes. In this counting process, every point g was scaled by a factor

w(q) = wiq)/M;

where w;(q) is the weight of the basis function i from which g was generated, and
M; is the total number of points that was generated to sample the Boltzmann
distribution according to basis function ¢. The histogram according to our
example is illustrated in Figure 2(b).

The computed weights are expected to reflect the symmetry of the potential
energy surface. Obviously, this is not true in Figure 2(b). Hence, these weights
must be incorrect — in agreement with the analysis in Section 1.2 above.
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2 Sampling based aggregation/disaggregation

Recall from Section 1.2 that the stationary density w can, in principle, be
computed as left eigenvector of the stochastic matrix P to the Perron eigenvalue
A = 1. In the presence of at least two metastable conformations, this eigenvector
is very close to further eigenvalues in the Perron cluster. The computation of
the degenerate Perron cluster eigenspace as a whole is well-conditioned, but
the computation of any eigenvector in this space is ill-conditioned. This is the
situation, when the matrix P, which has been computed by truncated sampling,
is given as the input and the stationary density w to be computed is the output.
The result of this insight is that the computation of the matrix as such introduces
some algorithmic instability.

In order to circumvent this instability, we will step back behind the compu-
tation of P, i.e. we will modify the underlying sampling technique. Therefore,
in the present section, we will replace the global sampling, which gives rise to
the instability introduced via the ill-conditioned eigenvalue problem for the ma-
trix P, by a set of independent local samplings corresponding to sub-matrices
{P;} associated with well-conditioned eigenvalue problems for the computation
of sufficiently accurate partial (or local) densities.

2.1 Basic idea

The key idea to overcome the above described computational difficulties is to
transfer the well-known matrix based aggregation/disaggregation approach due
to Simon and Ando [39] to some domain decomposition realized in the frame of
the sampling technique.

Matrix based aggregation/disaggregation. The computation of station-
ary densities of Markov chains has been the topic of intensive research for many
years [32, 40, 9, 3|. Tterative aggregation/disaggregation (IAD) methods as in-
troduced in [26, 5, 25, 41] turned out to be efficient algorithms for nearly com-
pletely decomposable Markov chains. TAD methods are matrix based domain
decomposition methods. Here, domain decomposition refers to the sampling
space, and the states of the Markov chain are defined by the partitioning {€;}.
First, in the disaggregation step, the states €2; are grouped to n¢c subsystems (in
the following called clusters) which are solved separately. Then, in the aggrega-
tion step, the global solution is constructed from the partial solutions. In other
words, the unknown overall vector w is divided into partial vectors {w;};<;
which may well be of different dimensions,

W= (Wi, Wae),  [[wll =1

The solutions of the disaggregation step are the partial densities

~ W,
Wi

lwilla
where the overall normalization constants,
51' Z:HWZ'Hl, izl,...,nc

are unknown. These normalization constants denote the discrete cluster weights.
Note that they are special instances of {¢;} defined in (3) in the case that {x;}
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are characteristic functions. From a coupling matrix one can estimate these
missing cluster weights which are then used to construct the overall density in
the aggregation step,

W = (51‘\,?\71', ce ,5nCVanC).

The method benefits from the fact that the computation of the partial vectors w;
is well-conditioned. An iterative process, which alternately estimates {&;} and
w, accounts for the interactions between the subsystems. These interactions
are given by transition probabilities between states which belong to different
clusters. If these values were correct, the IAD algorithm would compute the
stationary density efficiently. However, our problem is different in that we can-
not rely on these values. That means, we cannot apply the method directly to
our transition matrix because the aggregation step would fail. Consequently,
we had to find a method for the computation of the cluster weights which does
not rely on the matrix.

Transfer to sampling techniques. There exist several sampling methods
which are based on aggregation/disaggregation techniques. One of them is
the hierarchical uncoupling-coupling Monte Carlo method (UCMC) by Fischer
[15, 14]. To approximate ratios of normalizing constants of different densities,
UCMC uses temperature based bridge sampling. However, that technique suf-
fers from the fact that the densities must be sampled correctly on every hierarchy
level which is very expensive. In our case, here configuration based bridge sam-
pling [28, 17] would also fail due to missing data in the overlap of sampling
regions and due to different shapes of these regions.

This situation motivated the development of a new approach which does not
suffer from drawbacks as described above. The partitioning of the molecular
state space into N different sampling regions as in ZIBgridfree can be consid-
ered as the disaggregation step. It also includes the clustering of states into
metastable conformations. This partitioning is based on the eigenvector struc-
ture of the transition matrix P which is analyzed via PCCA+ [12]. With the
result of the clustering we obtain normalized partial densities

~ Xi\q)m\q .
wi(q):M, i=1,...,nc.

g;
This definition is comparable to the definition of local densities in (6), but here
partial densities correspond to clusters whereas local densities correspond to the
discretization. In order to construct the global density

m(q) = Z oi7i(q)

one has to estimate the normalizing constants {o;};-¢, which equal the weights

of the conformations. This is part of the sampling based aggregation step which
will be described next.

Algorithmic structure. The relation of the different parts of the algorithm
together with the stability aspects is schematically presented in Figure 3. The
sampling based aggregation/disaggregation algorithm carefully observes the con-
dition of the global versus the local eigenvalue problems as analyzed in Section
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input output
— error —_— error
(MC truncation error) | well-conditioned lw—wi Il
problem
stable l unstable A
disaggregation matrix k> 1 aggregation
. error
(ZIBgridfree) PR, I ill-conditioned (Confdump)
eigenvalue problem

domain
decomposition

A
sub-matrices K =1 | |
. —_— Wi,
IP,—R ¢ I b
well-conditioned

eigenvalue problems

Figure 3: Stability diagram corresponding to basic aggregation/disaggregation
algorithm.

1.2 above. Note that in passing we thus have assured that the overall problem
as such is well-conditioned. The questions of how to realize this basic algorithm
in detail will be discussed in the forthcoming sections.

2.2 Global aggregation

Assume we are given the correct partial densities apart from the scaling factors.
ConfJump can generate sampling points according to the partial Boltzmann
densities even if they are nearly completely separated. Simply counting the
points results in the correct scaling of the partial densities. Since we want to
avoid re-sampling within conformations, they are replaced by small patches, in
our case “domains” of selected basis functions. By applying ConfJump to these
“domains”, we are able to weight them against each other and thus to compute
the correct cluster weights for all conformations. For each conformation we

Figure 4: Application of ConfJump to selected “domains” §2; C Cj, Q; C Cj
corresponding to basis functions ¢;, ¢;.
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select the basis function with maximum weight within this cluster. From the
original N basis functions, we only have n¢ patches at the start of ConfJump,
see Figure 4. After renumbering the indices, denote these basis functions by
@1,...,0n. and the statistical weights of them, computed with ZIBgridfree, by
Wi, ..., Wn,. Recall that the computation of these weights is ill-conditioned and
the goal of ConfJump here is to correct these weights. For each basis function ¢;
we select a representative node m;, for example the point of minimum energy
from the trajectory that was generated to sample the Boltzmann distribution
according to V;. The jump proposition matrix A is computed as described in
[43]. One step of the adapted ConfJump method reads as follows:

1. Let ¢ be the initial configuration (in Cartesian coordinates) w.r.t. basis
function ¢;

2. Pick a random number z in (0,1).

3. If z > jumpRate, perform a hybrid Monte Carlo step within basis function
¢; (i.e. with the modified potential V;)

4. Else, perform a jump step :

(a) Select another basis function ¢; with probability A;;.

(b) Compute z, the internal coordinates (Z matrix) of q.

(c) Compute & = z+(m;—m;), and transform & to Cartesian coordinates
to get the new point q.

(d) Accept the new point with probability min (1, e’ﬁ(vﬂ'((i)*vi(q)))
(Metropolis acceptance criterion with modified potentials).

The numbers of sampled points within each of the patches divided by the
number of all ConfJump sampling points give the new weights {w}*V}!'%. Thus
we get correction factors

Based on the assumption that the ratios w; /wy, are correct if basis functions 4
and k belong to the same cluster, we consider the factors f; as correction factors
for all statistical weights of basis functions belonging to conformation j. This
assumption is correct if the local weight computation is well-conditioned. Now
we need to multiply the N original statistical weights by the correction factor
corresponding to their conformation. A crisp clustering ¥ can be performed on
the basis of the membership functions x. The entry X(¢,7) is set to 1 if cluster
j is the one to which basis function ¢ belongs with largest probability, and 0
otherwise. Given the crisp membership vectors Y, the new statistical weights
{wiev N | of the basis functions can be computed as

nc
W™ =3 X jwify, i= 1. N, (13)
Jj=1

After normalization we obtain the corrected statistical weights of each basis
function. This leads to the corrected cluster weights of the conformations via

3)-
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Note that theoretically the correction factors can be determined as accu-
rately as needed if the ConfJump sampling has run long enough. As an advan-
tage, the success of Conflump does not depend on any local regularity of the
potential energy function, which is a key feature of Monte-Carlo-based algo-
rithms. Although ConfJump also works without a decomposition method like
ZIBgridfree, it is only applicable for larger molecules in combination with ZIB-
gridfree. This is due to the fact that larger molecules have basins of attraction
with very different shapes and energies which leads to low acceptance ratios
in the jump algorithm [43, 33]. Only jumps near the position states m; have
a higher probability to be accepted. Therefore, ConfJump benefits from the
restriction to smaller regions via ZIBgridfree.

2.3 Local aggregation via density estimation

Sometimes the acceptance ratio in the ConfJump algorithm is undesirably low,
especially if the jump patches have large differences in shape and in the average
energy. In such cases, an alternative aggregation method can be used, known as
density estimation. This heuristical method does not use an iterative sampling
strategy. Thus, there is no convergence against the correct re-weighting factors.
Density estimation constructs an estimate for the underlying continuous Boltz-
mann density function based on the observed sampling points. Given a sample
{qr}}_, of points in §, the numerically computed density at an arbitrary point
q can be estimated by the kernel density approximation [31]

Ha) == S Wa - a)
k=1

As kernel function W, we usually choose an exponential function
W(q) = exp(—cllgl]), ¢ €R, (14)

which is similar to the basis functions used within ZIBgridfree. In our case, the
points {gr} were sampled according to N different basis functions. The points
{q,gl)} correspond to the basis function ¢;. With the statistical weights {w;}1¥,
of these basis functions computed by PCCA+, the formula for the density esti-
mation must be modified in the following way,

N
7o) = 5 > S Wig - g, (15)

where M; denotes the number of sampling points corresponding to basis function
l.

Furthermore, we know the unnormalized value of the restricted Boltzmann
density at an arbitrary point ¢,

m(q) x exp(—BV(q)).

This allows us to compute correction factors. As in the previous section, we
first select the basis function with maximum weight within each cluster. Then we
choose from the sampling points corresponding to this basis function the point
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with minimum energy. For these points {m;} S, we compute the estimated
densities 7(m;) according to (15) and scale them such that > . 7(m;) = 1.
Moreover, we calculate 7(m;) = exp(—8V(m;))/ >, exp(—BV (m;)). The ra-
tios

fJ:ﬁ'(mJ)/fr(mj), j:l,...,nc

are the correction factors for the weights of cluster j. Now we multiply the
N original statistical weights of the basis functions by the correction factor
corresponding to their conformation, as shown in equation (13). Then we apply
(3) and normalize to obtain the cluster weights.

Since this method does not need a new sampling, it is very fast and cheap.
One might have the impression that the approach via local density estimation
outperforms the ConfJump algorithm. However, one should be aware that local
density estimation only works well in areas where the potential energy surface is
sufficiently smooth. This is especially satisfied for small systems and near min-
ima. As already mentioned, ConfJump does not depend on any local regularity
assumption.

2.4 Numerical Examples

The advantage of the aggregation/disaggregation methods will become clear in
the following examples. We shortly revisit the artificial example from Section 1.3
and then present two biochemical applications.

Artificial potential. Recall Section 1.3 where the stationary density had
been computed as eigenvector of the transition probability matrix, which meant
that the cluster weights were incorrect.

This is the point where ConfJump comes into play. Within each cluster,
we select the basis function with largest weight and apply the jump method to
obtain the scaling factors of the partial densities {7;(a)}. Then we obtain the
corrected cluster weights,

{o;} ~ {0.3777,0.2585,0.3637},

to be compared with {o€¥8¢t} in (12). The corresponding histogram is illus-
trated in Figure 2(c). Now it reflects the symmetry of the potential energy
quite satisfactorily and the approximated cluster weights agree with the analyt-
ical weights 0®X8Ct - Alternatively, we corrected the height of the histogram by a
local density approximation. We used the exponential kernel (14) with ¢ = 6.5.
Other values for ¢ in the range [4,10] were tested as well but the results were
insensitive w.r.t. the choice of this constant. We obtained the following cluster
weights:
{o:} = {0.3798,0.2611,0.3591}.

The weights agree quite well with the cluster weights obtained by ConfJump and
the exact weights in (12).

Bicyclononane (BCN). This molecule is a hydrocarbon which consists of
two connected 6-rings. Each of these rings has two major conformations, the
chair (C) and the boat (B) conformation. Thus, we expected four possible com-
binations (CC), (CB), (BC), and (BB), all separated by high energy barriers. A
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computation with ZIBgridfree at a temperature of 300K with eight basis func-
tions @1, ..., ¢g led to an 8 x 8-transition matrix P with the following spectrum:

{\} = {1.000,0.999,0.986,0.972,0.916, 0.848, 0.774, 0.692}.

We have ¢ = 1 — Ay = 0.001 and a significant gap after \y. Hence we apply
PCCA+ with ng = 4. The uncorrected cluster weights of the four conformations
(CC), (CB), (BC), and (BB) came out to be:

{o:} =~ {0.943,0.056,0.001,2 - 10~ '*}.

Obviously, the expected symmetry of the (CB) and the (BC) conformation does
not show up correctly. The reason for that is, that due to

K ~ 1/e ~ 1000,

the global weight computation is not reliable. Note that a correct weight com-
putation does not only depend on x, but also on the expected truncation er-
ror ||P — Py lleo. A variance-based estimation provides the truncation error
|P — P.|| =~ 0.008. Unfortunately, if we want to reduce this error by a factor
of 10, we have to sample a factor of 100 times more points. As described in
Section 1.2, we computed the transition probability matrix p corresponding to
a completely decoupled Markov chain. The maximum condition number & for
the sub-matrices of P is
Ak =maxk; = 6.17.

K3

In order to scale the well-sampled local densities against each other, we applied
the pointwise density estimation for a correction of the weights. Here, in contrast
to the artifical example, V(g) is invariant against rotation and translation of
q € Q. Therefore, we first aligned the trajectories to the points where we
wanted to estimate the density via Kabsch’s alignment algorithm [23, 24]. Via
local density estimation (Section 2.3) we computed the corrected cluster weights
of the four conformations as

{o:} ~ {0.9893,0.0053,0.0054,3 - 10~ *¢}.

In both examples we used an irregular decomposition of the conformational
space into basis functions ¢1,...,¢x. The discretization did not reflect the
symmetry of the molecule. This means that the reproduction of the molecular
symmetry within the weight computation is not an artificial result but a generic
property of the described algorithms and can be viewed as a proof of concept.

Inhibitor BSI. The molecule BSI (short name of 2-(Biphenyl-4-sulfonyl)-
1,2,3 4-tetrahydro-isoquinoline-3-carboxylate) is a possible inhibitor for human
neutrophil collagenase (MMP-8), which degrades collagen.

Not only the cluster weights o; inherit the symmetry of the molecule: If
a change in internal degrees of freedom of the molecule leads to chemically
identical structures, all corresponding histograms for these degrees of freedom
are symmetric, too. BSI is an example of a molecule for which many sampling
steps are necessary in order to compute the correct probability densities. Figure
5 shows this molecule as structural formula.
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o/S O /93

92/ O
Figure 5: Possible MMP-8 inhibitor BSI with three torsion angles 6;, 6§ — 2,
and #3 which induce symmetric conformational changes. The values of 6, are

symmetrically distributed, because the negative charged COO-group has a de-
located electron pair instead of a single and a double (C-O)-bond.

BSI has three rotationally symmetric bonds. We discretized the configura-
tion space of BSI into 187 basis functions ¢, . .., ¢187. We performed a sampling
with 3000 up to 15000 steps per basis function (total number of steps: &~ 1 mil-
lion), depending on a convergence indicator. We propagated each sampling
point by a molecular dynamics simulation with randomized initial momenta for
a time-span 7 = 78 fs. After computation of the 187 x 187-transition matrix
P we computed the ill-conditioned, incorrect statistical weights {w; } 187 of the
basis functions.

In Figure 6(a) the results for the pure ZIBgridfree approach are plotted with
dashed lines. The histograms do not reflect the correct symmetry of the three
bonds. But after local density estimation as in Section 2.3 we corrected the
statistical weights and found that the histograms (dash-dotted line in Figure
6(b)) are symmetric now. However, note that for this special example the good
results of the local density estimation are due to the symmetric choice of the
center points ¢ for the kernel density approximation. In the example of BSI, each
of the 187 basis functions was used for the pointwise density estimation. If the
re-weighting process with ConfJump is based on each single basis function, this is
comparable to performing the pure ConfJump method for the original potential.
In the case of BSI, the pure ConfJump approach with 1 million sampling points
leads to very good dihedral histograms [33], see Figure 6(c). It was possible for
the first time to sample the Boltzmann density in such a way that it correctly
reflects the inherent symmetry of the molecule. The jump acceptance ratio was
about 32%, which is very high for this approach [43]. We repeated the ConfJump
approach with different random number sequences and found out that it is very
stable.

Knowing a good approximation of the stationary density, we can compute
the coupling matrix P according to (4). We obtained two conformations with

P 0.999987 0.000013
~\ 0.000002 0.999998 /-

They result from a rotation of the unsymmetric N-S-bond. With time span
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(a) ZIBgridfree without re-weighting. The lack of symmetry clearly indicates that
the statistical weights of the discretized states are incorrect.

(b) Same sampling as in Figure 6(a), but re-weighted by pointwise density estima-
tion. Here, symmetry is nicely reproduced.

(c) ConflJump re-weights the sampling points in such a way that they correctly
represent the Boltzmann distribution. Here, histograms came out symmetric.

Figure 6: Inhibitor BSI: Equilibrium distribution of values for the dihedral
angles 01, 65, and 03 (from left to right) obtained from different samplings of
the Boltzmann density (from top to bottom). Symmetry of the histograms in
the interval [—m, 7] w.r.t. zero indicates that the Boltzmann density was sampled
correctly.
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7 = 0.78 fs, the life times computed according to (5) are
71 =6ns, 7 = 39ns.

These numbers demonstrate how our model can be used to predict the long-term
behavior of molecules from short-term molecular simulations. Thus we are able
to bridge the time-gap between molecular simulations, which use time steps of
femtoseconds, and chemical experiments in the range of nanoseconds.

Conclusion

The paper suggests a stable aggregation/disaggregation algorithm for the well-
conditioned computation of stationary densities of metastable dynamical sys-
tems. The algorithm as it stands now scales with the number of identified
conformations and can be used as a postprocessor applied to traditional confor-
mation analysis. Future work will aim at telescoping the traditional tools with
this postprocessor.
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