
On Using Static Analysis to Detect Type Errors

in PHP Applications

EPFL-REPORT-147867

Etienne Kneuss, Philippe Suter, and Viktor Kuncak

firstname.lastname@epfl.ch

EPFL School of Computer and Communication Sciences, Lausanne, Switzerland

Abstract. We describe our experience in using abstract interpretation
to analyze applications written in PHP. Our work focuses on reconstruct-
ing type information from mostly unannotated code. We present the
abstract domain of our analysis, focusing on the features that improve
analysis precision. We have implemented our approach as a tool that
supports the full specification of PHP 5. We describe several bugs that
we were able to find in deployed web applications.

1 Introduction and Background

PHP is a very popular scripting language. PHP scripts are behind many web
sites, including wikis, content management systems, and social networking web
sites. It is notably used by major web actors, such as Wikipedia1, Facebook2 or
Yahoo [Rad06]. Unfortunately, it is very easy to write PHP scripts that contain
errors. Among the PHP features that are contributing to this fact is the lack
of any static system for detecting type or initialization errors. PHP files being
usually compiled for every executions, the speed requirement on the compiler
makes it impossible to do any smart analysis during that phase.

This paper presents Phantm
3, a static analyzer for PHP 5 based on ab-

stract interpretation [CC77a]. Phantm is an open-source tool written in Scala
and available from http://github.com/colder/phantm. It contains a robust
parser that passes 10’000 tests from the PHP test suite, and a static analy-
sis algorithm for type errors. Phantm uses an abstract interpretation domain
that approximates values of variables for both simple and structured types, such
as arrays and objects. Phantm is flow-sensitive, supporting a form of types-
tate [DF01,DF04,FD02,BA05,FL03,FGRY03,FYD+06,LKR05,SY86], which is
natural given that the same PHP variable can have different types at different
program points.

Phantm supports a large number of PHP constructs in their most common
usage scenarios, with the goal of maximizing the usefulness of the tool. It incor-
porates precision-enhancing support for several PHP idioms that we frequently

1 http://www.mediawiki.org/wiki/MediaWiki
2 http://developers.facebook.com/hiphop-php/
3 PHp ANalyzer for Type Mismatch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147958706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://github.com/colder/phantm
http://www.mediawiki.org/wiki/MediaWiki
http://developers.facebook.com/hiphop-php/

2 Kneuss, Suter, Kuncak

encountered and for which our initial approach was not sufficiently precise. A few
other features, such as generic error handlers for undefined methods Phantm

reports as bad practices instead of attempting to abstract the complex behavior
of the PHP interpreter.

Phantm analyzes each function separately, but uses PHP documentation
features to allow users to declare types of function arguments. It also comes with
detailed type prototype information for a large number of library functions, and
can be very helpful in annotating existing code bases. By providing additional
flexibility that goes beyond simple type systems, we expect Phantm to influence
future evolution of the language and lead to much more reliable applications.

We have applied Phantm to three substantial PHP applications. The first
application is a webmail client used by several thousand users. The second is
the popular DokuWiki software4, and the third is the feed aggregator library
SimplePie.5 Using Phantm, we have identified a number of errors in these ap-
plications.

In the rest of the paper, we illustrate the capabilities of Phantm through
a number of examples, describe Phantm’s abstract interpretation domain, de-
scribe main aspects of the implementation, and discuss our experience in using
the tool to find real errors.

2 Example

PHP has a dynamic typing policy: types are not declared statically, and variables
can adopt various types at different times, depending on the values assigned to
them. The basic types are booleans, integers, floating point numbers, strings, ar-
rays and objects. There is also a null type for undefined values and a special type
for external resources such as file handlers or database connections. Variables are
not declared. Reading from an uninitialized variable results in null.

PHP arrays are essentially maps from integers and strings to arbitrary values.
For instance, the following is a valid definition:

$arr = array(”one” ⇒ 1, −1 ⇒ ”minus one”, 3 ⇒ 3.1415);

After this assignment, $arr is an array defined for the keys ”one”, -1 and 3.
Contrary to many programming languages, PHP arrays are by default passed
by value.

As of PHP 5, the object model is rather standard. Classes declare methods
and (possibly static) fields, and can inherit from at most one another class.
Fields can be added at runtime by simply writing to undeclared ones, so in this
sense objects are maps as well. Objects are always passed by reference, unless
explicitly cloned.

A small example. We illustrate some of the challenges in applying type recon-
struction to PHP programs and show how Phantm can tackle them. Consider
the following code:

4 http://www.dokuwiki.org
5 http://simplepie.org

http://www.dokuwiki.org
http://simplepie.org

On Using Static Analysis to Detect Type Errors in PHP Applications 3

$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
$content = fread($conf[”file”]);
fclose($conf[”file”]);

First, note that several values of different type are stored in an array. To check
that the call to the library function fopen is correctly typed, we need to be able to
establish that the value stored in $conf[’readmode’] is a string. This immediately
points to the fact that our analyses cannot simply abstract the value of $conf as
“any array”, as the mapping between the keys and the types of the value needs
to be stored. On this code, Phantm correctly concludes that the entry for the
key ”readmode” always points to a string.

The function fopen tries to open a file in a desired mode and returns a pointer
to the file –a resource, in PHP terminology– if it succeeded, and the value false
otherwise. To properly handle this fact, Phantm encodes the result of the call
as having the type “any resource union false”. Because fread expects a resource
only, Phantm will display the following warning message:
Potential type mismatch. Expected: Array[file => Resource, ...], found:

Array[file => Resource or False, ...]

This warning points to the fact that the case when the file cannot be opened is
not handled properly. Although fclose expects only a resource as well, our tool
will not emit a second warning for the fourth line. The reason is that whenever
Phantm detects a type mismatch, it applies type refinement on the problematic
variable, assuming that the intended type was the one expected rather than
the one found. In many cases, this eliminates or greatly reduces the number of
warnings for the same variable.

We can change the code to properly handle failures to open the file as follows:

$conf[”readmode”] = ”r”;
$conf[”file”] = fopen($inputFile, $conf[”readmode”]);
if($conf[”file”]) {

$content = fread($conf[”file”]);
fclose($conf[”file”]);

}

Now that the calls to fread and fclose are guarded by a check on $conf[”file”],
Phantm determines that their argument will never evaluate to false and accepts
the program as type correct.

3 Abstract Domain

Concrete states. We model runtime values as elements from disjoint sets
corresponding to the possible types (see Figure 1). A concrete program state is
characterized by a mapping from a set of constant strings to values as well as a
heap state. A heap state is simply a set of mappings from object references to
object states, where an object state is a mapping from a set of constant strings,
namely the names of fields, to values. Object methods are not modelled by the

4 Kneuss, Suter, Kuncak

state. We view methods as global functions that take as an extra parameter the
receiver ($this). Such approach is possible in part because method definitions are
static.

V = {True, False, Null} ∪ Ints ∪ Floats ∪ Strings values

∪ Maps ∪ Objs ∪ Resources

Maps = (Ints ∪ Strings) →֒ V maps

Tags = {StdClass, all classes defined in the program}

H = Objs →֒ (Tags × (Strings →֒ V)) heap states

S = (Strings →֒ V) × H program states

Fig. 1. Characterization of the concrete states. A →֒ B denotes all partial func-
tions from A to B.

V♯ = {Undef♯
, True♯

, False♯
, Null♯, Int♯

, Float♯
, String♯

, abstract values

Resource♯} ∪ Maps♯ ∪ Objs♯

Maps♯ = (Ints ∪ Strings ∪ {?}) →֒ V♯ abstract maps

H♯ = Objs♯ →֒ (Tags × (Strings →֒ V♯)) abstract heap states

S♯ = (Strings →֒ V♯) × H♯ abstract program states

Fig. 2. Definition of the abstract domain.

β(Undef♯) = {Null}, β(Null♯) = {Null}

β(True♯) = {True}, β(False♯) = {False}, β(Int♯) = Ints

β(t ∈ Tags) = t, β(i ∈ Ints) = i, β(s ∈ Strings) = s

β(m♯ ∈ Maps♯) = {m | ∀(k 7→ v) ∈ m.

(∃(k♯ 7→ v♯) ∈ m♯ . k ∈ β(k♯) ∧ v ∈ β(v♯)) ∨

((¬∃(k♯ 7→ v♯) ∈ m♯ . k ∈ β(k♯)) ∧ (∃(? 7→ v♯) ∈ m♯ . v ∈ β(v♯)))}

β(o♯ ∈ Objs♯) = {o ∈ Objs | o was allocated at program point o♯ }

β(h♯ ∈ H♯) = {h | ∀(o 7→ (t, m)) ∈ h . ∃(o♯ 7→ (t, m♯)) ∈ h♯
. o ∈ β(o♯) ∧ m ∈ β(m♯)}

γ(s♯) = β(m♯) × β(h♯) for s♯ = (m♯
, h♯) ∈ S♯

Fig. 3. Concretization function. The concretization for Float♯, String♯ and
Resource♯ similar to the case for Int♯.

On Using Static Analysis to Detect Type Errors in PHP Applications 5

Abstract states and concretization. Our abstract domain is presented in
Figure 2. Figure 3 describes the meaning of abstract type elements using a
concretization function γ. Most scalar types are abstracted by a single value,
with booleans being the exception. String and integer constants are abstracted
by their precise value only when they serve as keys in a map. In maps, we use
the special value ? to denote the set of keys in a map that are not otherwise
represented by a constant. For example, to denote all maps where the key "x" is
mapped to an integer and all other keys are undefined we use the abstract value

Map♯[”x” 7→ Int♯,? 7→ Undef♯]

We use allocation-site abstraction [CWZ90] for objects. Whereas Objs represents
the set of possible memory addresses in the heap, Objs♯ represents the set of
program points where objects can be created.

PHP does not distinguish between variables that have never been assigned
and variables that have been assigned to the value null. However, using null as a
value often has a meaning, while reading from unassigned variables is generally
an error. To be able to distinguish between these two scenarios, our analysis uses
two different abstract values for these two uses and handles them differently in
the transfer function. Our analysis thus incorporates a limited amount of history-
sensitive semantics.

Our goal is to approximate the set of types a variable can admit at a given
program point. To do so, we consider for our abstract domain not only the
values representing a specific type (such as Int♯), but also combinations by union
of these. We refer to such combinations of abstract values as union types, and
we use the symbol τ to denote such a type. Even though we could in principle
consider arbitrary union of maps, we chose to simplify them by computing them
point-wise, thus, for example,

Map♯[k♯
1 7→ τ1, k

♯
2 7→ τ2, . . . ,? 7→ τD] ∪ Map♯[k♯

1 7→ τ ′

1, k
♯
3 7→ τ ′

3, . . . ,? 7→ τ ′

D]

is approximated with

Map♯[k♯
1 7→ τ1 ∪ τ ′

1, k
♯
2 7→ τ2 ∪ τ ′

D, k♯
3 7→ τD ∪ τ ′

3, . . . ,? 7→ τD ∪ τ ′

D]

What is lost is the simplification is the relation between the types for various
indices. This is consistent however with the treatment of types for variables:
keeping the complete type would amount to a form of dependent analysis for
elements of arrays, which we do not do for variables. In other words, just like we
analyze variables independently from each other, so do we analyze array entries.

The concretization of a union type τ1 ∪ τ2 is naturally given by β(τ1)∪β(τ2).
It is straightforward to verify that the set of union types forms a lattice where
the partial order corresponds to the notion of subtyping.

In general, a type can be the union of any two types. We denote type unions
by the symbol ∪. The subtyping relation is naturally extended with the following
two rules:

τ ⊑ (τ1 ∪ τ2) ⇐⇒ τ ⊑ τ1 ∨ τ ⊑ τ2

(τ1 ∪ τ2) ⊑ τ ⇐⇒ τ1 ⊑ τ ∧ τ2 ⊑ τ

6 Kneuss, Suter, Kuncak

The subtype relation is defined point-wise for array types:

Map♯[k1 7→ τ1, k2 7→ τ2, . . . ,? 7→ τD] ⊑ Map♯[k1 7→ τ ′

1, k3 7→ τ ′

3, . . . ,? 7→ τ ′

D]

⇐⇒ τ1 ⊑ τ ′

1 ∧ τ2 ⊑ τ ′

D ∧ τD ⊑ τ ′

3 ∧ . . . ∧ τD ⊑ τ ′

D

Therefore, Map♯[? 7→ ⊥] and Map♯[? 7→ ⊤] are a subtype and a supertype of all
array types, respectively.

Enforcing termination. As in constant propagation, one reason for termina-
tion follows from the fact that the set of constants and keys is limited to those
syntactically occurring in the program. However, an additional potential for an
infinite-height lattice are nested arrays. We thus enforce termination by limiting
the array nesting depth to a constant (currently 5). We have found this approach
to work well in practice.

Optimistic assumptions on heap manipulations. We assume that each
function and method affect distinct parts of the heap. We ignore side effects
on objects passed to functions, and assume that functions returning objects al-
ways return a fresh instance. This allows us to perform intraprocedural analysis.
Note that we do take into account type annotations on parameters from PHP
declarations as well as a common documentation format, which allows the de-
veloper to improve the precision by additional type annotations. While these
assumptions are clearly optimistic, we should note that, given our coarse model
for runtime values (abstracting the type information), reasoning only becomes
unsound when functions affect the type of an object’s field. For example, we do
not expect a setter method to change the type of a field.

3.1 Transfer Function

For space reasons we only give a brief outline of the abstract transfer function.
A compact description of the transfer functions of our analysis in Scala is given
in around 1000 lines of Scala source code. 6

Type refinement. Since the PHP language allows little to no type annotations,
it is often the case that types of values are completely unknown before being
actually used. In order to reduce the number of false positives generated by
consecutive uses of such values, it is crucial that their types get refined along
the way. For instance, the following piece of code will only generate one notice:

$b = $a + 1;
$c = $a + 2;

After the first statement, it is assumed that $a is a valid operand for mathe-
matical operations, by refining it with the type Int♯ ∪ Float♯. For this purpose,
we compute the lattice meet between the type lattice elements corresponding to

6 File src/phpanalysis/controlflow/TypeFlow.scala in the repository at
http://github.com/colder/phantm/

src/phpanalysis/controlflow/TypeFlow.scala
http://github.com/colder/phantm/

On Using Static Analysis to Detect Type Errors in PHP Applications 7

the current and the expected variable types. To get the idea of this operation,
we show a typical computation of the intersection of array types:

Map♯[k♯
1 7→ τ1, k

♯
2 7→ τ2, . . . ,? 7→ τD] ⊓ Map♯[k♯

1 7→ τ ′

1, k
♯
3 7→ τ ′

3, . . . ,? 7→ τ ′

D] =

Map♯[k♯
1 7→ τ1 ⊓ τ ′

1, k
♯
2 7→ τ2 ⊓ τ ′

D, k♯
3 7→ τD ⊓ τ ′

3, . . . ,? 7→ τD ⊓ τ ′

D]

Such type refinement corresponds to deriving an ’assume’ statement that is a
consequence of successful execution of an operation, and therefore preserves the
monotonicity of transfer functions.

Conditional filtering. Type refinement is also used in assume statements
implied by various control structures. It is important to note that PHP allows
values of every types to be used as boolean conditions, and gives different boolean
values to inhabitants of those types. This allows us to do some refinement on the
types of values used as boolean conditions. For instance the type null can only
evaluate to false while integers may evaluate to both true or false (always true
except for 0). This is especially useful for booleans, for which we also define true
and false as types. We can then precisely annotate a function returning false on
error, and a different type on success, and rely on the type refinement to filter
it out only when the error is correctly checked for. In case the type of the value
drops to ⊥ during the refinement, we assume that the branch cannot be taken,
allowing us to detect unreachable code.

4 Reporting Type Errors using Reconstructed Types

When the analysis reaches its fixpoint, it has effectively reconstructed possible
types for variables at all program points. At this point in time, Phantm makes
a final pass over the program control-flow graph and reports type mismatch.
Because transfer functions already perform type refinement, they contain all the
necessary information to report type mismatch, and we reuse them to report
type errors. Phantm reports a type mismatch whenever the computed type at a
given program point does not match the expected type. Phantm has a number
of options to control the verbosity of its warnings and errors.

5 Implementation Highlights

5.1 Overview

This tool can be separated into four parts: lexing, parsing, structural analysis
and data flow analysis. Lexing has been implemented using JFlex7. Since PHP
uses flex, the lexer description could be translated directly from the original one
with only few modifications. The parser is implemented using a modified version
of CUP8. Again, it was possible to import the original yacc version without
many modifications. The last two parts are implemented in Scala [OSV08] and
represent the core of Phantm.

7 http://jflex.de/
8 http://www2.cs.tum.edu/projects/cup/

http://jflex.de/
http://www2.cs.tum.edu/projects/cup/

8 Kneuss, Suter, Kuncak

5.2 Features

Built-in Support for Important APIs. By default, PHP comes with a
very dense library of functions and classes. In fact, the main extensions that are
shipped with PHP consist of more than 2’500 functions and classes. Being able
to correctly represent this internal API is a key factor to obtain useful analysis
results. This API is stored in an external XML file, allowing easy modifications
and also do not require a re-compilation. Additionally, a --importAPI command
line option is available to specify a list of API files that can be imported into
the symbol tables. Along with an external API, Phantm will extract in-code
annotations written in the PHP Documentor9 format (similar to JavaDoc, for
instance):

/∗∗
∗ @param $a Int
∗ @return Array | false
∗/
function foo($a) {

if ($a < 0)
return false;

else
return range(0, $a); }

}

Based on the various call-sites of the user-defined functions, Phantm will
also be able to generate a corresponding API in XML format. This file can then
easily be refined by hand, and imported for subsequent analyses in order to get
more precise results.

Include resolutions. In order to allow the analysis of large applications, it is
required to automatically resolve include and require calls. They are mainly used
to import definitions or blocks of code in a given scope. A file name is passed
as argument as a string. Phantm will resolve the name for any combination by
concatenation of the following:

– string literals
– context-dependant –or magic constants defined by PHP, such as FILE .
– well-defined constants (similar to C macros)
– some pure functions commonly used as part of include statements such as

dirname()

Any other file inclusion will prompt a warning and be ignored. Since constants are
defined using the define function, some trivial constant propagation techniques
are used to determine the value of most constants before data-flow analysis. This
means that the CFG will not have to change during the fix-point analysis.

IDE integration. Phantm exposes many run-time configuration options that
allows a focused analysis (e.g. per-file or per-function). Additionally, it can

9 http://www.phpdoc.org

http://www.phpdoc.org

On Using Static Analysis to Detect Type Errors in PHP Applications 9

prompt errors in several formats, making it easy to integrate with various IDEs.
For instance, it integrates smoothly with VIM10, a popular text editor. Being
able to look at errors from the context of an editor is a definite advantage when
it comes to filtering out false positives, as the context of the error is crucial. By
default, Phantm will simply prompt errors and display the corresponding line,
highlighting the erroneous part. Since type errors using structural types rapidly
become hard to read, it will only include the relevant part of the types that
mismatch.

5.3 Design Decisions

Conditional declarations. In PHP, functions or classes can be declared con-
ditionally. This naturally creates problems for our analyses, but also induces per-
formance hits on servers equipped with so-called opcode cachers. Those cachers
are responsible for storing the intermediate –or compiled– version of each file,
function and class, the goal being to speed up the process by reducing the num-
ber of compilations required per request. This cannot be done easily if those
declarations are conditional. Phantm will consider the first declaration to be
global and discard future declarations. We argue that this behavior will be valid
for analyzing most code-bases. Indeed, the primary reason for using conditional
declarations is to provide a userland implementation of an internal class/func-
tion, if the application is being run by a version of PHP in which it is not
defined.

References. References will be ignored as they introduce too many aliasing
problems. The usage of references is in most cases discouraged. As effect, ref-
erence usage is more and more sparse, up to a point where providing reference
support to correctly analyze such a small fraction of the code-bases would not
justify the increased complexity.

Dynamic object properties. PHP allows dynamic references to an object
property using a variable or expression (e.g. $name = ”a”; $obj->$name instead
of $obj->a). This is usually considered bad practice and will result in a global
access/modification of the object

Dynamic variables. PHP allows to reference a variable using either a variable,
or an expression11: ($$var or ${’prefix’.$name.foo()}). This is considered bad
practice and will be ignored, as treating it as a global access/modification would
introduce too many false positives.

Assignments in conditional expressions. Assignments in PHP return the
value assigned, they are hence valid expressions inside conditional expressions.
However, history tells us that most of the time, this is an actual typographic
error replacing the comparison operator == with the assignation operator =.
This tool will thus emit a warning if such expression is found inside an if() or

10 http://www.vim.org/
11 PHP Variable variables: http://php.net/variables.variable

http://www.vim.org/
http://php.net/variables.variable

10 Kneuss, Suter, Kuncak

for() condition. We exclude while() on purpose as there is a common use-case
where assignations are done directly inside the while() expression.

Dynamic code execution. Phantm will ignore all kind of dynamic code
execution, such as eval() or create function() which accepts actual code as string
arguments. Using these methods are generally discouraged.

Autoload. PHP provide a way to load classes on-demand. This is done by
defining a set of functions that will be called whenever an undefined class is
being referenced. This feature would be close to impossible to model and hence
will be ignored by Phantm. This limitation is however trivial to circumvent.
Indeed, one can simply prepend a file including all undefined classes statically.

6 Evaluation

We evaluated Phantm on three benchmarks. The first one is an email client
which we will call WebMail, similar in functionality to IMP.12 It has been in
production for several years. There are currently over 5000 users registered to
the service. WebMail was written in PHP 4.1 and has not evolved much since
its launch. The source code is not public but has kindly been made available to
us by the development team. Our second benchmark is the popular open source
wiki project DokuWiki and the third benchmark is SimplePie, an open source
library to manage the aggregation of RSS and Atom news feeds.

6.1 Analysis of WebMail

Issues identified. We discuss some of the bugs and other issues we were able
to find in the source code of WebMail.

– By running Phantm on all PHP files in the document root, that is all files
accessible from the web, we identified a vulnerability in the file lib.php. It
contains the following line of code:

require once(”$inc dir/functions.php”);

Phantm reports a warning that the variable $inc dir is not defined. The
problem is that lib.php is not supposed to be accessed directly. (No link
in WebMail points to it.) The file is only meant to be included from other,
accessible, files. In particular, it is normally included in a context where the
variable $inc dir is defined. Because in PHP 4.1 variables passed to scripts
through HTTP queries are directly available in the code, this code is subject
to potential attacks. By using a crafted HTTP query on lib.php such as

GET /lib.php?inc dir=http://example.com/attacker script.phps?

an attacker can have an arbitrary PHP script downloaded and run on the
server where WebMail is deployed. This can lead to the exposure or corrup-
tion of important data, such as root passwords or email account credentials.

12 http://www.horde.org/imp/

http://www.horde.org/imp/

On Using Static Analysis to Detect Type Errors in PHP Applications 11

– In a function handling the conversion from one string format to another,
Phantm emitted a warning on the following line:

$newchar = substr($newcharlist, strpos($charlist, $char), 1);

The warning indicated that substr() expects a string as its second argu-
ment, but that in this case the type False ∪ String had been found. The
library function strpos() searches for the index of first occurrence of a string
within another one and returns false if it could not find it. The developers
were assuming that $charlist would always contain $char. However, a closer
inspection of the code revealed that this was not always the case. We found
that because of this bug, some passwords were improperly stored, potentially
resulting in some email accounts to be inaccessible from WebMail. While in
this case Phantm did not point us directly to the source of the bug (the
value of $charlist), we could most certainly not have found it without the
tool. We note that this bug had not been uncovered so far, despite the fact
that WebMail has over 5000 registered users.13

– In several places, two distinct functions were called with too many argu-
ments. This was apparently the result of an incomplete refactoring during
the development. Although these extra arguments did not cause any bug
(they are silently ignored by the PHP interpreter), they were clearly errors.
Subsequent changes to the code could also have led to new bugs because of
them.

– In a file containing definitions for the available languages, Phantm reported
a warning on the second of the following lines:

$dict[”en”][”fr”]=”anglais”;
$dist[”en”][”de”]=”englisch”;

The first line is well formed and stores the translation for “English” in
French. The second line stores the translation in German but the name of
the array is misspelled. The assignment is valid in PHP and creates an array
where the entry for ”en” is defined to be the array { ”de” → ”englisch” }.
Because the entry $dist[”en”] is not defined to be an array previously in the
code, though, Phantm flags this as bad style and reports a warning. This
bug was never reported as its only consequence was that German-speaking
users saw the default spelling (“English”) instead of the correct translation
in some menus.

– There were several warnings for code such as $i = $str * 1, which essentially
casts a string into an integer by using the implicit conversion triggered by
the multiplication. Although it is not incorrect, it is flagged as bad style.

Sources of false positives. What we found to be the main source of false
positives in the analysis of WebMail are arrays built from SQL queries. For
instance, the following code

13 A partial explanation is that a bug report could only lead to the discovery of the
problem if the user included his password, and this is discouraged by the fact that
the bug tracking system is public.

12 Kneuss, Suter, Kuncak

$row = mysql fetch row(mysql query(”SELECT name FROM ’users’ where id=’12’”));

will assign to the variable $row an array where the key ”name” is well-defined
and points to a value of the right type. Our tool currently cannot infer such
information and a subsequent access to $row[”name”] will therefore trigger a
warning.

6.2 Analysis of DokuWiki

Issues identified.

– We found multiple instances where the code relied on implicit conversions.
Even though this is a commonly used feature of PHP, relying on them often
highlights programming errors. For example, the following line

$hid = $this→ headerToLink($text,’true’);

calls the method headerToLink which is defined to take a boolean as its
second argument, not a string. This code is not wrong per se, as the string
”true” will evaluate to true which is likely to be the intended behavior, but
”false” would evaluate to true as well.

– Keeping code documentation synchronized with the code itself is often prob-
lematic. As an illustration of this fact, Phantm uncovered multiple errors
in the annotations. An example of an incorrect annotation was:

/∗ @return String The encrypted output ∗/
function encryptBlock($L, $R) {

// ...
return array(’L’ ⇒ $R, ’R’ ⇒ $L);

}

Since DokuWiki uses the PHPDocumentor format, Phantm takes the an-
notations into account and checks that they are correct. The last line being
the only return statement, it is clear that the function always returns an
array rather than a string, as declared.

– We found a potential bug resulting from an unchecked file operation in the
following function:

function bzfile($file) {
$bz = bzopen($file,”r”);
while (!feof($bz)){

$str = $str . bzread($bz,8192);
}
bzclose($bz);
return $str;

}

If bzopen fails to open the file denoted by $file, it will return false and as
a consequence the call to feof will always return false, thus resulting in an
infinite loop.

On Using Static Analysis to Detect Type Errors in PHP Applications 13

Sources of false positives. In the case of DokuWiki, the principal source of
false positives came from the representation of the type assigned to the iterator
in foreach loops. Most of the time, the program logic seems to be ensuring
that the keys can only range over integers or only over strings, but because of
previous dynamic updates on the iterated arrays, Phantm cannot exclude string
or integers and assumes both can be present.

6.3 Analysis of SimplePie

Issues identified.

– The following line of code assumes different operator precedence rules than
those used by PHP:

if (... && !($file→method & SP FILE SRC REMOTE === 0 ...))

The code first compares the constant SP FILE SRC REMOTE to 0 –this is
always false– and then computes the bitwise conjunction, while the goal
is clearly to check whether a flag is set in $file→method. This is obviously
wrong, as the intended behavior is to check whether a particular flag is not
set on that variable. Phantm found that mistake by reporting that the
right-hand side of & is a boolean value, and that an integer was expected
(because bitwise operations are only valid on integers). The same pattern is
used in several places and has been successfully reported each time.

– The following code was also flagged by Phantm as incorrect:

if (... && strtolower(trim($attribs[’’][’mode’]) == ’base64’))

The warning indicated that strtolower() expects a string as an argument,
not a boolean. A close inspection of the statement shows that the right
parenthesis of the call to strtolower is misplaced, in effect computing the
lower case version of a boolean.

Sources of false positives. Our main concern with SimplePie is the om-
nipresent use of high-dimensionality arrays to organize data. Code such as the
following is ubiquitous:

if(isset($this→data[’child’][SP NS RDF][’RDF’][0][’child’][SP NS RSS 10][’textinput’])) {
...

}

Even with refinement, the use of such constructs with different indices at various
places is likely to generate a lot of false positives. It is also worth noting that those
false positives would also occur on fully annotated code, since PHPDocumentor
does not support the specification of structural array types. As a consequence,
$this→data can only be annotated as being an array.

14 Kneuss, Suter, Kuncak

6.4 Summary

We summarize the results of our evaluation in Figure 4. In general, we were able
to quickly identify the source of problems using hints from Phantm, despite
the fact that we were initially not familiar with any of the applications. We also
found that the running time of the analysis was never problematic, even on a
relatively large project such as DokuWiki.

Lines of code Warnings Bugs Bad style Analysis Time

DokuWiki 31486 368 3 48 23 s.
WebMail 3850 126 5 32 21 s.
SimplePie 15003 294 4 76 15 s.

Total 50339 788 12 156 59 s.

Fig. 4. Summary of evaluation results. “Bugs” is the number of problems identi-
fied that can lead to crashes or other defects, or that are blatant mistakes. “Bad
style” indicates instances where the code relies on implicit type castings that
could be simply rewritten into explicit ones.

7 Related Work

Abstract interpretation for type inference. Our work performs type infer-
ence using a abstract interpretation, resulting in a flow-sensitive static analysis.
Early work on the use of abstract interpretation for type analysis is [CC77b]. A
systematic analysis of type analyses of different precision is presented in [Cou97].

Static analysis of PHP. Existing work on static analysis of PHP primarily
focused on specific security vulnerabilities. Pixy [JKK06a, JKK06b] is a static
analysis tool checking for security vulnerabilities such as cross site scripting
(XSS) or SQL injections, which remain the main vectors for attacks on PHP
applications. However, it does not support PHP5. Wassermann and Su [WS07]
present work on statically detecting SQL injections.

It is only recently that some work have been focusing on static analysis of
types in PHP applications. Notably, the Facebook HipHop project14 is relying
on a certain amount of type analysis in order to optimize the PHP runtime.
In essence, HipHop tries to find the most specific type used in order to map it
to a native C++ type. In case such a type cannot be inferred, it simply falls
back to a generic type. The recently released tool PHPLint

15 has as the goal
detecting bugs through type errors. Even if its goal is close to the present work,
our tool has a much more precise abstract domain, and therefore reports many
fewer spurious warnings.

14 http://github.com/facebook/hiphop-php/
15 http://www.icosaedro.it/phplint/

http://github.com/facebook/hiphop-php/
http://www.icosaedro.it/phplint/

On Using Static Analysis to Detect Type Errors in PHP Applications 15

Type inference for other languages. Researchers have also considered flow-
sensitive type inference in other languages. Soft typing approach has been ex-
plored primarily in functional languages [Fag92,AWL94], and supports even first
class functions, but is not flow-sensitive and does not support value array types.
In [KRCF05] researchers present an analysis of Cobol programs that recovers
information corresponding to tagged unions. The work on the C programming
language [JMX07, CR99] deals with a language that allows subtle pointer and
address arithmetic manipulations, but already contains significant static type
information. PHP is a dynamically type safe language in that the run-time sys-
tem stores dynamic type information, which makes e.g. ad-hoc tagged unions
often unnecessary. On the other hand, PHP language by itself provides no static
type checking, which makes the starting point for analysis lower. In addition to
considering a different language, one of the main novelties of our work is the
support for not only flat types but also heterogeneous maps and arrays. Our
Phantm tool is publicly available, and we report verifiable experimental re-
sults on significant code bases, including popular software whose source code is
publicly available.

8 Conclusion

We have presented a framework for static analysis of PHP code based on ab-
stract interpretation. Our analyses attempt to reconstruct type information from
untyped code in order to statically detect potential errors. Using this approach,
we recover some of the benefits of statically typed programming languages. We
have implemented these ideas as a tool and have evaluated it over three existing
PHP projects, totalling over 50’000 lines of code. We were able to detect several
errors, ranging from simple typos with little or no consequence to security vul-
nerabilities and functional defects. Although the code contained few or no type
annotations, we were able to obtain meaningful diagnosis messages that quickly
led us to the critical program points.

References

AWL94. Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In Proc. 21st ACM POPL, pages 163–173, New
York, NY, 1994.

BA05. Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification
with typestates. In Harald C. Gall, editor, Proceedings of ESEC-FSE ’05,
pages 217–226, September 2005.

CC77a. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. 4th POPL, 1977.

CC77b. Patrick Cousot and Radhia Cousot. Static determination of dynamic
properties of generalized type unions. In Language Design for Reliable
Software, pages 77–94, 1977.

16 Kneuss, Suter, Kuncak

Cou97. Patrick Cousot. Types as abstract interpretations. In Proc. 24th ACM
POPL, 1997.

CR99. Satish Chandra and Thomas Reps. Physical type checking for C. In
Workshop on Program analysis for software tools and engineering
(PASTE), 1999.

CWZ90. David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of
pointers and structures. In Proc. ACM PLDI, 1990.

DF01. Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in
low-level software. In Proc. ACM PLDI, 2001.

DF04. Robert DeLine and Manuel Fähndrich. Typestates for objects. In Proc.
18th ECOOP, June 2004.

Fag92. Mike Fagan. Soft Typing: An Approach to Type Checking for Dynamically
Typed Languages. PhD thesis, Rice University, 1992.

FD02. Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. In Proc. ACM PLDI, 2002.

FGRY03. John Field, Deepak Goyal, G. Ramalingam, and Eran Yahav. Typestate
verification: Abstraction techniques and complexity results. In Int. Symp.
Static Analysis, volume 2694 of LNCS. Springer, 2003.

FL03. Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic typestates.
In International Workshop on Aliasing, Confinement and Ownership in
object-oriented programming (IWACO), 2003.

FYD+06. Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual
Geay. Effective typestate verification in the presence of aliasing. In
ISSTA’06, 2006.

JKK06a. Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static
analysis tool for detecting web application vulnerabilities. In IEEE
Symposium on Security and Privacy, pages 258–263, 2006.

JKK06b. Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Precise alias
analysis for static detection of web application vulnerabilities. In
Programming Languages and Analysis for Security (PLAS), 2006.

JMX07. Ranjit Jhala, Rupak Majumdar, and Ru-Gang Xu. State of the union:
Type inference via Craig interpolation. In TACAS, pages 553–567, 2007.

KRCF05. Raghavan Komondoor, Ganesan Ramalingam, Satish Chandra, and John
Field. Dependent types for program understanding. In TACAS, 2005.

LKR05. Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate
checking for data structure consistency. In 6th Int. Conf. Verification,
Model Checking and Abstract Interpretation, 2005.

OSV08. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: a
comprehensive step-by-step guide. Artima Press, 2008.

Rad06. Michael J. Radwin. PHP at Yahoo!
http://public.yahoo.com/~radwin/talks/php-at-yahoo-mysqluc2006.ppt,
2006.

SY86. Robert E. Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE TSE, January 1986.

WS07. Gary Wassermann and Zhendong Su. Sound and precise analysis of web
applications for injection vulnerabilities. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
32–41, 2007.

http://public.yahoo.com/~radwin/talks/php-at-yahoo-mysqluc2006.ppt

	On Using Static Analysis to Detect Type Errors in PHP Applications
	Etienne Kneuss, Philippe Suter, and Viktor Kuncak

