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ABSTRACT
We propose a crossover operator that works with genetic
programming trees and is approximately geometric crossover
in the semantic space. By defining semantic as program’s
evaluation profile with respect to a set of fitness cases and
constraining to a specific class of metric-based fitness func-
tions, we cause the fitness landscape in the semantic space to
have perfect fitness-distance correlation. The proposed ap-
proximately geometric semantic crossover exploits this prop-
erty of the semantic fitness landscape by an appropriate sam-
pling. We demonstrate also how the proposed method may
be conveniently combined with hill climbing. We discuss the
properties of the methods, and describe an extensive com-
putational experiment concerning logical function synthesis
and symbolic regression.

Categories and Subject Descriptors: I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic methods

General Terms: Algorithms

Keywords: Geometric Crossover, Program Semantics, Global
Convexity, Fitness-distance Correlation

1. INTRODUCTION
Geometric crossover, also known as topological crossover [9],
under metric d is a binary genetic operator with the property
that each offspring lies in the segment between its parents
in the metric space induced by d in the population of in-
dividuals. Geometric crossover has been intensively stud-
ied for genetic programming (GP) as well as for vector-
based solution representations. In [9], Moraglio and Poli
introduced a representation-independent geometric general-
ization of crossover and mutation for binary strings and real
vectors. The usefulness of crossover for the all-pairs shortest
path problem using EA has been recently proven theoreti-
cally [3]. Other related concepts, like distance preserving
crossover and respectful crossover have been also proposed
and studied [8].
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The lure of geometric crossover, though not always explic-
itly expressed in the publication, comes from at least two
factors. Firstly, geometric crossover does what crossover is
supposed to do, i.e., produces an offspring that preserves
some common properties of its parents. Secondly, the off-
spring produced by geometric crossover is likely to benefit
from fitness-distance correlation (also known as big valley)
[15]. Fitness-distance correlation (fdc) is the property of the
fitness landscape that may be shortly characterized as sig-
nificant correlation of the value of the fitness function f and
the distance from the global optimum. Technically, this cor-
relation is strongly positive for minimized fitness function,
and strongly negative for maximized fitness function; in fol-
lowing we assume f is minimized. Though formally fdc is a
measure of the fitness landscape, in following we refer to it
as a property of the problem.

Fitness landscapes with fdc are often (though not neces-
sarily) unimodal and approximately convex, hence yet an-
other name of this property, global convexity. The word
’global’ is supposed to point out that the convexity does not
have to hold locally, but at a sufficiently large scale, the
landscape appears convex.

Given a problem with strictly convex fitness landscape,
geometric crossover is guaranteed to produce an offspring
with fitness that is not worse than the worse of its par-
ents. Moreover, the offspring is likely to outperform both
parents if they happen to occupy the opposite slopes of the
same ridge of the fitness landscape. Of course, such strict
convexity is not common among real-world problems, and,
for globally convex problems, these observations have to be
stochastically relaxed. Nevertheless, for such problems the
probability of producing a well-performing offspring using
geometric crossover is higher than in case of problems with
low fdc.

It should be emphasized that global convexity is not a
property of the problem alone, but depends also on the met-
ric applied to the solution space. In theory, given any enu-
merable solution space, it is possible to reorder the solutions
(and, thus, define a metric) in such a way that the fitness
landscape spanned over them becomes convex. Similarly,
the choice of the metric is also critical for the geometricity
of the crossover operator.

The dependence of the convexity of the fitness landscape
both on the space as well as on its metric is of crucial impor-
tance for the method presented in this paper. In particular,
we demonstrate how to benefit from the global convexity of
the space of semantics of GP programs.
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2. CONVEX FITNESS LANDSCAPES
OF PROGRAM SEMANTICS

One of major difficulties that hinders our understanding of
GP is the gap that spans between the genotype (the symbolic
encoding) of the evolved program and its phenotype (what
the program is actually doing). The domain-specific knowl-
edge embedded in GP function set, terminals, data types,
etc., make the genotype-phenotype mapping extremely com-
plex and difficult to generalize across different application
areas. This issue has been raised multiple times in past lit-
erature on the topic, with Rothlauf’s work on locality of
genotype-phenotype mapping being the prominent example
[12, 13]. No wonder that recently we can observe a quest for
tools that could help us to close this gap.

One of such tools is program semantics. Though there is
no firm consensus around the formalization of this term, we
may roughly define it as a concise and minimal (irreducible)
description of what the program is doing, expressed in sim-
pler terms than the original GP tree (for the sake of this
study, we identify GP program with GP tree). As GP pro-
grams usually process some input data, semantics is often
defined with respect to them. In this spirit, Beadle and
Johnson [2] used reduced ordered binary decision diagrams
(ROBDDs) to describe semantics of GP programs and to de-
fine a semantically-driven crossover for GP. Their crossover
computes ROBDDs for the parents and the offspring candi-
date, and discards offspring with the ROBDD equivalent to
any of its parents. The representation of semantics of GP
solutions as binary decision diagrams has been also used by
Yanagiya[17] for performance purposes.

In this paper, we rely on the definition of program se-
mantics inspired by Poli’s and Page’s work on sub-machine
code GP [11] and McPhee et al.’s work on semantic building
blocks [7]. This definition assumes that the fitness function
is based on a finite vector of fitness cases c. Given such a
set, we define the semantics s of a program p as the vector
of the values returned by p for consecutive elements of c:

sc(p) ≡ [p(c1), p(c2), . . . , p(cm)] (1)

In following, we omit the index c for clarity. In other words,
s(p) is defined here as an evaluation profile of p. If we agree
to identify the semantics of a program with its phenotype,
s() becomes the genotype-phenotype mapping.

We focus here on a subclass of problems for which the
ideal semantic s∗ is known, i.e., one knows in advance what
is the desired response (output, individual’s behavior) for
all fitness cases. Examples of such problems are quite com-
mon in practice and include symbolic regression (ci’s are the
independent coordinates of approximation points and s∗ is
the vector of the desired values of the dependent variable),
and synthesis of logical functions like parity or multiplexer
(ci’s usually enumerate all combinations of independent vari-
ables and s∗ is the vector of desired responses of the evolved
function). In this class of problems, the [minimized] fitness
function f is usually defined as a metric that measures the
divergence of s with respect to s∗. For instance, symbolic
regression typically involves square error (Euclidean metric)
while logical problems rely on Hamming distance.

Obviously, metric-based fitness functions are unimodal by
definition and have fitness-distance correlation equal to 1,
because such fitness is a distance in the semantic space. Any
linear combination of a pair of semantics is guaranteed to be

not worse than the worse of them. Unfortunately, there is
no obvious way of exploiting this property, as we do not
control the semantics of a GP program directly: s(p) is only
an image of what p computes for c. Because the genotype-
phenotype mapping is typically a very complex, many-to-one
function, the inverse of the genotype-phenotype mapping
does not exist and the convexity of the fitness function in the
semantic space cannot be directly exploited in the genotype
space. Nevertheless, in the following section we propose a
method that does it in an indirect way.

3. SEMANTIC CROSSOVER
Past work on geometric crossover in the genotype space
of GP trees demonstrates that it is not easy to design a
crossover operator that is geometric under a metric in the
genotype space [10]. Usually, one needs both an appropri-
ately designed crossover operator and a specialized metric to
guarantee geometricity (for instance, homologous crossover
[5] requires specialized normalized structural Hamming dis-
tance to become geometric[10]).

Given the complexity of the genotype-phenotype mapping
in GP, the prospects of designing a crossover operator that
works in the genotype space and behaves geometrically in
the corresponding semantic space are even more gloomy.
Though in theory it is possible, the required assumptions
would be very strong and render it impractical. Therefore,
rather than guaranteeing the geometric behavior, our oper-
ator tries to approximate it by analysing the offspring after
it has been bred. In other words, despite the poor locality
of the genotype-phenotype mapping in GP [13], it tries to
behave like a geometric crossover in the space of semantics.
Technically, it makes an attempt to produce offspring that
has semantics as close as possible to the linear combination
of its parent’s semantics. We refer to this operator as ap-
proximately geometric semantic crossover (SX for short).

SX employs a form of brood selection to search for a good
approximation of geometric offspring [14, 1]. Given a pair of
parents (x, y), SX applies n times a binary crossover opera-
tor CX to (x, y) to create a pool of candidates C. Techni-
cally, CX, referred to as base [crossover] operator in follow-
ing, can be any crossover operating in the genotype space,
like the common tree-swapping operator. Next, for both
parents and for each candidate z ∈ C, the algorithm cal-
culates their semantics s(x), s(y), s(z). Finally, it appoints
as the offspring the candidate that minimizes the following
expression:

arg min
z∈C

d(s(z), s(x)) + d(s(z), s(y)) (2)

where d is a metric in the semantic space, i.e., a non-negative
symmetric function that observes the triangle inequality and
such that d(x, x) ≡ 0. Thus, the algorithm chooses the
candidate that is semantically most similar to both parents.

Due to triangle inequality observed by d, the lower bound
of (2) is d(s(x), s(y)). When (2) reaches this bound, the off-
spring’s semantic is geometric with respect to the semantics
of its parents. Let us refer to offspring with that property
as semantically geometric offspring and denote it by z(x, y).
For a pair of parents, there may exist many such offspring.

The geometric interpretation of s(z(x, y)) obviously de-
pends on the metric d. For the Euclidean distance, s(z(x, y))
belongs to the section [s(x); s(y)]. For the space of Boolean-
valued semantics and under Hamming distance, s(z(x, y)) is
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any bitstring with the property that, for each bit, its value
is the same as the value of the corresponding bit in the se-
mantics of at least one of its parents (x, y) [9].

Note that there may be many geometric offspring for a
given pair of parents (x, y). Also, for some metrics d (e.g.,
the Hamming distance), there may exist more than one se-
mantic s(z) that globally minimizes (2). However, these
observations do not affect the following reasoning.

With geometric offspring, one could exploit the global con-
vexity in the most efficient manner. Unfortunately, produc-
ing z is non-trivial. There are at least three factors that
influence the likelihood of minimizing (2).

1. The first of them and the most critical one are the
particular parents (x, y). If the parents do not contain
the appropriate genetic material (GP code fragments),
breeding z(x, y)) becomes impossible, no matter how
sophisticated is the base crossover operator CX.

2. Secondly, if the parents’ genomes contain the required
genetic material, then the chance of minimizing (2)
depends mostly on the particular base crossover op-
erator CX. It may be expected that some types of
GP crossovers are more likely than others to produce
an offspring that has semantics s(z(x, y)); some opera-
tors will be unable to do so. However, we hypothesize
that this depends also on the semantics of particular
GP functions and terminals. Therefore, we rely here
on the standard tree-swapping crossover and postpone
the consideration of other base crossovers.

3. Finally, the third factor that determines the chance
of minimizing (2) is the pool size n. Most of popular
GP crossover operators are indeterministic and yield
different outcomes when applied multiple times to the
same parent pair (x, y). The set of all offspring that
may be produced by CX for a pair of parents (x, y)
is sometimes referred to as image Im [9]. Now, if z ∈
Im(CX(x, y)), then the probability of our algorithm
producing z is greater than zero and grows with the
candidate pool size n.

Given these three factors, it becomes clear that the overall
chance of producing z by the proposed algorithm is rather
low. However, it may be easily proved that the expected
distance of the offspring semantic from the semantic of z
does not increase with n:

Ex,y[d(s(SXn(x, y)), s(z(x, y)))]
≤ Ex,y[d(s(SXn+1(x, y)), s(z(x, y)))]

(3)

where SXn denotes our approximately geometric semantic
crossover working with the candidate pool of size n. The
proof is trivial: SX chooses the candidate that minimizes
(2), and that minimum cannot get greater with larger pool.

This implies that, leaving aside the two other factors dis-
cussed earlier, n stochastically controls the ‘geometricity’
of the produced offspring. This an important observation,
as the more the semantics of the actual offspring resembles
s(z), the more chance for benefiting from fitness-distance
correlation.

The obvious conclusion is that we should use large n. Un-
fortunately, this comes at a price of extra calls of CX and
calculating semantics, with the latter being usually com-
putationally more expensive. Calculating the semantics re-
quires applying the candidate to all fitness cases in c, so this

action is computationally almost as expensive as evaluating
the individual.

This inconvenience, however, opens a possibility of an easy
extension of the SX procedure: with s(z) already calculated,
the fitness f(z) = f∗ − d(s(z), s∗) comes at almost no cost
(the fitness is maximized and refers to the ideal fitness f∗).
Thus, as s(z)’s are computed anyway, we calculate also f(z)
for all candidates and find the most fit of them:

zbest = arg max
z∈C

f(z) (4)

Next, if f(zbest) > max(f(x), f(y)), we return zbest. Oth-
erwise, the algorithm returns the candidate indicated by (2).
In short, if a candidate outperforms both parents, we ap-
point it as offspring, sacrifying semantic geometricity for the
sake of fitness. This may be also interpreted as switching to
hill climbing (HC) if it brings profit; that is why we term
this method SHCX.

Finally, it seems worthy to discuss a possible weakness
of both SX and SHCX. For a given constant value l, all
candidates z for which d(s(z), s(x)) + d(s(z), s(y)) = l are
equally penalized by the term in formula (2), no matter how
far they are from the closer of the parents. In particular, a
candidate being a semantic clone of one of its parents (e.g.,
s(z) = s(x)) will be considered as good as any other per-
fectly semantically geometric offspring z(x, y). This warns
us that by promoting geometricity, SX may also unwillingly
promote excessive semantic similarity between the parents
and its offspring. This phenomenon is inconvenient, as it
decreases the chances of exploiting the convexity of the se-
mantic fitness landscape.

To counteract this risk, we come up with an equidistance-
promoting extension of SX, referred to as SX+ in following.
It consists in extending Formula (2) by a penalty term that
promotes balanced distance from both parents:

arg min
z∈C

d(s(z), s(x)) + d(s(z), s(y)) (5)

+|d(s(z), s(x))− d(s(z), s(y))|

We introduce also the same extension to SHCX, leading
to the method called henceforth SHCX+.

It should not come as a surprise that, in technical im-
plementation of all aforementioned methods it is worth to
cache offspring semantics as well as fitness values. Thanks to
caching the former, the parents’ semantics is already known
when applying the crossover in the subsequent generation.
Thanks to the latter, the evolutionary algorithm does not
require an extra evaluation stage. Of course, these observa-
tions hold provided that the offspring does not undergo sub-
sequent genetic manipulations, like mutation. Under this
assumption and assuming that the costs of other stages of
evolutionary algorithm are negligible, our algorithm is ap-
proximately (n− 1) times slower than standard GP.

4. THE EXPERIMENT
The objective of the experiment is to verify the usefulness
of considering the semantics in the family of SX crossover
operators introduced in Section 3. In particular, we want
to test if they have any positive impact on the convergence
and success rate of evolutionary run.

There are two features of our operators that may po-
tentially contribute to their performance when compared
to conventional GP crossover operators: the tendency to

989



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

A
va

ra
ge

 fi
tn

es
s 

fo
r m

ul
tip

le
xe

r x
3

Generation

GP
HCX

SHCX
SHCX+

SX
SX+

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

A
va

ra
ge

 fi
tn

es
s 

fo
r m

ul
tip

le
xe

r x
5

Generation

GP
HCX

SHCX
SHCX+

SX
SX+

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

A
va

ra
ge

 fi
tn

es
s 

fo
r m

ul
tip

le
xe

r x
8

Generation

GP
HCX

SHCX
SHCX+

SX
SX+

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

A
va

ra
ge

 fi
tn

es
s 

fo
r m

ul
tip

le
xe

r x
10

Generation

GP
HCX

SHCX
SHCX+

SX
SX+

Figure 1: Mean fitness graphs for mux11, for n = 3, 5, 8, and 10.

select the most semantically geometric candidate, and, in
the case of the hill climbing-enabled operators (SHCX and
SHCX+), incorporation of hill climbing, i.e., choosing the
best offspring if it outperforms the better of its parents, no
matter what its semantics. To isolate the contribution of
the former feature, for the control experiment we design a
comparable yet semantic-less crossover operator called hill-
climbing crossover (HCX). Similarly to SX, HCX builds a
pool of candidates of size n and returns the fittest candidate
if its fitness outperforms the better of the parents. Other-
wise however, it returns a randomly chosen candidate. Thus,
other things being equal, HCX has no idea about semantics,
so any difference in behaviors may be attributed only to
SX’s ability to take the semantics into account. Assuming
the same pool size n, computational overheads caused by SX
and HCX are almost the same, the only difference being the
– practically negligible – cost of comparing the semantics
using the metrics d.

The baseline for SX and HCX is the canonical GP equipped
with subtree-swapping crossover. To compensate for the
presence of pools of size n in SX and HCX, we run GP
with n-times larger population (10240 individuals compared
to 1024 in the remaining runs).

To sum up, for each problem and each considered pool
size n = 3, 5, 8, and 10, six methods will be confronted in
this experiment:

• Two control methods:

– GP: standard Koza-I style genetic programming
(GP) using population size 10240,

– HCX: hill-climbing semantic-less crossover (HCX)
using population size 1024,

• Four methods of interest (all using population size
1024):

– SX: the basic approximately geometric semantic
crossover (see formula (2)),

– SHCX: approximately geometric semantic crossover
switching to hill-climbing if better offspring is found
(cf. formula (4)),

– SX+: SX extended by promotion of equidistance
(formula (5)),

– SHCX+: SHCX + promotion of equidistance.

To verify the generality of the semantic approach, we test
it on two qualitatively distinct benchmark problems: logic
function synthesis (11-bit multiplexer, mux11 ) and symbolic
regression (sextic polynomial, sextic). For the former, we
substitute Hamming distance for d; for the latter, d is de-
fined as Euclidean distance. Another important difference
between these two problems is that, for the former problem,
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Figure 2: Mean fitness graphs for sextic, for n = 3, 5, 8, and 10.

the fitness cases ci enumerate all possible combinations of in-
dependent (input) variables (211 = 2048 in this case), while
for the latter ci’s are only a limited sample of the infinite
domain of the approximated function; in our experiment, we
used 20 fitness cases for symbolic regression.

The software testbed has been implemented with help of
ECJ [6]. For both problems, we use the default Koza-I-style
settings [4] as implemented in ECJ. In particular, our op-
erators employ the standard subtree-swapping crossover as
the base operator CX. For each considered settings and
method, we run evolution 30 times and present the aggre-
gated results in the following tables and graphs.

Figure 1 presents the fitness graphs averaged over 30 runs
for the mux11 problem. Figure 2 depicts the analogous
graphs for the sextic problem. Table 1 lists the mean best-
of-run fitness for all methods (means ± confidence intervals).

The most evident observation concerning the presented
data is the inconclusive result for the sextic problem. For
most values of n, the methods converge here on average in a
very similar way, the only exception being the SX and SX+
methods for n = 10. Our approximately geometric semantic
crossover not only did not outperform the control methods
on this problem; it did not behave any different from them
in a significant and systematic way. In our opinion, the most
likely explanation of this phenomenon is the relative simplic-
ity of the sextic problem, which caused all the algorithms to
converge very quickly and did not leave much space for im-

provement for our geometric crossovers. Another plausible
reason is the probably very poor locality of the genotype-
phenotype mapping of symbolic regression problems – such
low locality does not give chance our base crossover operator
CX to generate an offspring with semantic that is at least
slightly geometric with respect to its parents.

Things look very different for the mux11 problem (Fig. 1):
the particular crossover methods exhibit here significantly
different dynamics. Purely semantic methods (SX, SX+)
perform the worse, and only when combined with the hill
climbing (SHCX, SHCX+) are they able to compete with
the reference runs (GP, HCX), sometimes temporarily out-
performing them. SHCX and SHCX+ are also usually better
than the bare hill-climbing crossover (HCX), indicating that
the contribution of the semantic geometricity is significant.
Finally, we may observe also the anticipated dependency on
n: the greater its value, the more competitive the semantic
crossovers when compared to GP and HCX.

For the methods that combine geometric crossover with
hill climbing (SHCX and SHCX+), Figures 4 and 5 present
the share of offspring produced by the ‘semantic principle’,
i.e., the frequency of cases when the crossover outputs the
most geometric offspring. The remaining share, i.e., one mi-
nus the number observed in the graph, is the frequency of
cases when the operator found an offspring that outperforms
the better of the parents. Not surprisingly, the share geo-
metric offspring is quite moderate in the beginning of the
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Table 1: Best-of-run fitness for all methods averaged over 30 runs with .95 confidence intervals.
Best-of-run fitness

Problem n GP HCX SX SHCX SX+ SHCX+
sextic 3 0.9852±0.0048 0.9754±0.0063 0.9658±0.0113 0.9785±0.0057 0.9716±0.0102 0.9730±0.0090

5 0.9910±0.0026 0.9821±0.0051 0.8474±0.0741 0.9845±0.0037 0.8636±0.0754 0.9810±0.0053
8 0.9911±0.0028 0.9849±0.0036 0.8949±0.0457 0.9810±0.0039 0.8457±0.0644 0.9805±0.0058
10 0.9922±0.0025 0.9889±0.0023 0.9064±0.0337 0.9833±0.0050 0.9240±0.0276 0.9783±0.0053

mux11 3 0.9010±0.1081 0.4727±0.1795 0.3744±0.1732 0.4736±0.1792 0.5082±0.1790 0.5730±0.1777
5 0.9339±0.0900 0.6710±0.1693 0.2589±0.1489 0.9018±0.1072 0.7050±0.1639 0.9344±0.0894
8 1.0000±0.0000 0.7367±0.1589 0.0069±0.0005 1.0000±0.0000 0.8699±0.1206 0.9672±0.0643
10 1.0000±0.0000 0.8677±0.1228 0.0043±0.0003 0.9672±0.0643 0.9086±0.0874 1.0000±0.0000

run, when the mean fitness in population is low and produc-
ing a better-performing offspring is relatively likely. In this
phase of evolution, hill climbing dominates the behavior of
SHCX and SHCX+. As the evolution progresses and the
overall fitness increases, geometric offspring becomes more
frequent and account for up to over 90% of the crossover ap-
plications. This tendency is very well observable for mux11
(Fig. 4); for the sextic problem (Fig. 5), this process is dis-
turbed in the very beginning of the evolution. Explanation
of this phenomenon require an extra study.

However, the results presented in Figs. 4 and 5 do not tell
us how geometric are the actual offspring produced by SX
and SX+. To monitor this feature, in Fig. 6 we present a
graph of geometricity, defined as (cf. Formula (2)):

min
z∈C

d(s(z), s(x)) + d(s(z), s(y))

d(s(x), s(y)) + 1
(6)

and averaged over all calls of semantic crossover in a given
generation (+1 term in denominator saves us from division
by zero for semantically equivalent parents). The graph
proves that both crossover operators are able to maintain
good geometricity over the entire timespan of evolutionary
run. This is remarkable, knowing that with time the solu-
tions and their semantics become more and more similar.
Also, the version of the operator equipped with the promo-
tion of equidistant offspring (Formula (5)) produces offspring
that is more geometric on average.

It should be emphasized that in the above experiment we
fairly compensated for the presence of pools of size n in SX
and HCX, rewarding GP with n times greater population.
If we assume that the unit cost of all crossover operators
is the same, things change dramatically. Figure 3 presents
the results of the considered methods confronted with GP
running with the same population size (1024 individuals),
for n = 3. The graphs present the performance of the best-
so-far individuals. This time, GP is inferior with respect
to all the other methods, whether they involve hill climbing
(like SHCX+) or not (like SX). For larger values of n, the
difference in favour of semantic-based operators is even more
significant. This clearly demonstrates that semantics and
convexity of the semantic space are worth considering.

5. CONCLUSION AND FUTURE WORK
In this study we have shown that the perfect fitness-distance
correlation of the semantic fitness landscape of GP problems
with the fitness function based on fitness cases may be ex-
ploited by a geometric semantic crossover operator SX that
tries to approximate the geometric behavior in the space

of semantics. Evolutionary runs that use SX perform not
worse than the conventional GP in terms of effort. SX is
representation-independent and applicable to a broad set of
real-world applications of GP.

In the fair competition that equaled the computational ef-
fort of all methods, the proposed method in its current shape
does not outperform the reference approach. However, we
envision some promising ways of attaining this goal. The
most obvious of them would consist in using partial (incom-
plete) semantics vectors that would be based only on a subset
of fitness cases from c. Attaining perfect geometricity in the
semantic space is unrealistic in GP, so it should not do much
harm if we minimize expression (2) only in an approximate
way. This could allow us to reduce the computational cost
of SX and possibly find a break-even size of the candidate
pool.

The weak point of the presented methodology is that it is
extremely oriented towards the phenotype space, to the ex-
tent that it actually ignores the individuals’ genotypes. This
was intentional, as we wanted to investigate the pure effect
of exploiting semantic geometricity only. In this light, refer-
ring to fitness-distance correlation, though methodologically
correct, is slightly inappropriate, as fdc has been designed to
investigate the relations between the genotype space and the
phenotype space (and, indirectly, their relations to fitness).
Thus, in a longer perspective it would be desirable to make
the semantic crossover more ‘aware’ of the genotypes, by, for
instance, exploiting the convexity of the semantic space to
choose the most promising loci for crossover. Our current
research aims at this objective. Apart from that, we would
like to investigate more thoroughly what is the effect of the
modification of selection pressure (with respect to standard
GP), which the semantic crossover inevitably involves. For
that purpose, we plan to employ the methodology proposed
in [16].
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