
Neural Network based On-Chip Thermal Simulator
Pratyush Kumar, David Atienza

Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL)
EPFL-STI-IEL-ESL, Station 11, 1015 Lausanne, Switzerland

{pratyush.kumar,david.atienza}@epfl.ch

Abstract— With increasing power densities, runtime thermal
management is becoming a necessity in today’s systems, espe-
cially so for highly integrated Multi-Processor Systems-on-Chip
(MPSoCs). In this paper, we propose a neural network (NN)
based approach to implement an on-chip thermal simulator
to aid such runtime management for MPSoCs. The proposed
method combines the advantage of approximating the thermal
properties of the chip as a linear system with the ease of fully
parallel analog implementation of NNs. We perform a case
study with the Niagara UltraSPARC T1 MPSoC for real-life
applications, benchmarking our results with an accurate higher
order Runge-Kutta (RK4) solver, that is employed in tools such
as HotSpot. Within a few gate delays, the proposed NN design
can simulate temperatures of the MPSoC 500 ms into the future -
corresponding to thousands of iterations of the RK4 solver, with
a maximum error of 1-2 K.

I. INTRODUCTION

The ever increasing power densities in VLSI systems are
translating to higher operating temperatures and consequently,
lower system reliability and poorer performance guarantees.
This is especially true for highly integrated systems such as
Multi-Processor Systems-on-Chip (MPSoCs). While packag-
ing and mechanical cooling solutions are being constantly
upgraded, such solutions by themselves are proving to be
insufficient in facing upto the problems posed by the thermal
wall. The use of runtime thermal management policies, such
as clock-gating, DVS and task/thread migration, is now being
widely accepted as a necessary part of today’s MPSoCs [1].

For such thermal management policies, proactive control
can be much more effective in avoiding thermal hazards in
MPSoCs [2]. Such proactive control methods need to be able
to simulate the temperatures of the chip into the future, during
runtime. Another class of applications which require runtime
thermal simulation is fine grain control: where thermal data is
required at a finer granularity than can be provided by thermal
sensors. Examples include register assignment optimization [3]
and liquid coolant flow control in 3d chips [4].

In this paper, we propose a Neural Network (NN) based
thermal simulator, which by virtue of its design can be easily
implemented in VLSI. We perform a case study with an
actual MPSoC system: the Niagara UltraSPARC T1 chip. We
benchmark our NN simulator against accurate higher-order
differential equation solvers, which are currently used in tools

This research has been partially funded by the Nano-Tera.ch NTF Project
CMOSAIC (ref. 123618), which is financed by the Swiss Confederation and
scientifically evaluated by SNSF.

such as Hotspot [5]. The results show that within a few gate
delays, with error margins of 1-2 K, the NN system can
simulate 500 ms in real time. This is equivalent to thousands
of iterations of the differential equation solver, which take up
several seconds on a quad-core desktop computer.

The rest of the paper is organized as follows. In Section
II, we highlight other techniques of thermal simulation that
have been proposed. In Section III, we lay the theoretical
foundations for using NNs for thermal simulation. We discuss
a VLSI implementation in Section IV. And in Section V, we
detail results of a case study with the said Niagara chip.

II. RELATED WORK

Thermal simulation with reference to runtime management
has received sufficient research attention. One line of research
is to employ simple techniques such as window-based predic-
tions to aid in proactive thermal management [2]. However,
such methods are not robust enough to provide performance
guarantees in all scenarios. A contrasting approach is to
integrate thermal models with sophisticated optimization tech-
niques such as convex optimization [6] and Model Predictive
Control (MPC) [7]. While the former requires at design-time,
detailed and accurate thermal and workload models, the later
is compute intensive requiring a dedicated processing unit.

A different line of research has been to improve algorithms
for thermal simulation, in terms of efficiency and accuracy,
by applying concepts such as multigrid, model-reduction,
conjugate heat transfer, Alternating Direction Implicit (ADI),
and Green’s functions. These methods again are compute
intensive with complicated data-structures, and are thus more
suited for design-time thermal-aware optimizations.

Thus, methods which are accurate and can provide guaran-
tees either have software-only implementations or expensive
hardware implementations. In this work, we address this trade-
off with the proposed NN design, which while being based
upon the accurate equations of heat flow, can be inexpensively
implemented as an efficient fully parallel analog design.

III. NEURAL NETWORKS FOR THERMAL SIMULATION

A. Compact Model Based Thermal Simulation

Compact modelling is an important step in architecture-
level thermal simulation [5], wherein the spatial and temporal
evolution of temperature is captured in an equivalent electrical
network. In the compact model, the Si and the Cu layers of
the chip are divided into a grid of blocks (Fig. 1(a)), with each

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 1599

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147958673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) (b)

Fig. 1. Compact modelling of a chip

block represented by a node with resistances to its adjacent
layers and capacitances to ground (Fig. 1(b)). The Cu layer
additionally is connected through interface resistances to the
ambient. This network is excited by a set of current sources
which correspond to power consumption in the actual chip.
As per the duality between thermal and electrical systems, the
node potentials obtained in the electrical network correspond
to temperatures on the chip. Thermal simulation is performed
by transient analysis of such a network by solving a set of
first order differential equations:

Gx(t) + Cẋ(t) = i(t) (1)
where G and C are matrices that represent the resistance and
capacitance networks, respectively, x(t) is the vector of node
potentials and i(t) is the set of injected source currents. These
are most commonly solved by discretizing the time domain
and iteratively solving for x(t), represented in general as

x(tn+1) = x(tn) + hDn (2)
where h = tn+1 − tn and Dn is an iteration-dependent
differential operator specific to the method employed. For all
such methods, the inaccuracy rises on increasing h and thus
for accurate simulations the time step h is chosen to be small
enough: in the order of a hundreds of µs [8].

B. Linear Time Invariant Approximation

The thermal resistance of silicon is a function of tempera-
ture, and thus G in Eqn. 1 is a function of x(t). If we, however,
relax this dependence - an approximation which we evaluate
with experimental results (cf. Section V.C) - then a dynamical
system with state equations given by Eqn. 1 represents a
Linear Time Invariant (LTI) system, for the duration of time
when i(t) remains constant. Changes in i(t) are required at
times of updated power consumption numbers. Let the power
consumption values be updated such that they remain constant
from t = tn to t = tn + ∆t = tn+1. Then, the theory of LTI
systems states that, there exist matrices A and B such that

x(tn+1) = Ax(tn) +Bi(tn) (3)
Thus, for a given circuit, neglecting the temperature depen-
dence of resistance parameters, if we identify the matrices A
and B, we can simulate the equivalent electrical network at
time-steps of ∆t. For MPSoCs, power values are updated once
every hundreds of milliseconds. Hence ∆t can be 2-3 orders of
magnitude larger than h that differential equations are bounded
by. Matrices A and B can be systematically identified using
step-input responses. But this method would be cumbersome
for large networks, which compact model based networks

(a) (b)

Fig. 2. Modelling thermal simulation as a Neural Network

typically are. We propose to use NNs to learn the matrices
and subsequently perform the operations of Eqn. 3.

C. Neural Network Solution

Neural networks are Multi-Input Multi-Output (MIMO)
function approximators, which can be used to learn an un-
known functional dependence between inputs and outputs
using test data. Given our specific application of thermal
simulation of MPSoCs, we restrict ourselves to a discussion
of linear NNs: with a single layer and without any activation
function. Consider an example 3-input 2-output linear neural
network shown in Fig. 2(a). Two operators are shown: the
arrows are multipliers with multiplicands shown as weights
and the circles are summers. Thus, output yi is given by

yi =
∑
j

wijxj , (4)

where w terms represent the weights. By learning appropriate
weight terms, any linear dependence between the outputs and
inputs can be expressed by such a NN.

Given the linear nature of Eqn. 3, we can similarly have a
NN with inputs {x(tn), i(tn)} and outputs x(tn+1) (Fig. 2(b)).
The weights would then appropriately model the matrices A
and B. Test data for training the NN can be easily obtained
from actual chip measurements or accurate computations per-
formed by a simulator like HotSpot. While the learnt NN
simulates ∆t into the future in one pass through the network,
it would still retain the accuracy of the method that was used
to train it. Thus, A and B can be learnt without deriving them
directly from the compact model parameters.

IV. VLSI IMPLEMENTATION

The advantages provided by the NN solution to thermal
simulation are heightened by the possibility of implementing
them natively in VLSI systems. In this section, we discuss an
implementation of the NN system, specific to our application.

Consider a NN, where the temperature of every node of the
compact model is computed by a separate neuron subcircuit so
as to perform a fully parallel computation. The complexity of
the interconnection required between these neurons is O(N2),
where N is the number of blocks into which the chip has
been divided. This can be prohibitively large, given the large
size of compact models. We thus, propose a relaxation of the
fully connected NN to one where interconnection is retained
between output and input nodes only if the corresponding
grid blocks are within a given physical distance, say r, in the
chip. This approximation, though natural given the diffusive
nature of heat flow, is likely to add to the inaccuracy of the

1600

(a) (b)

Fig. 3. Implementation of the NN subcircuit: (a) Multiplier neuron, and (b)
Summer with current to voltage convertor

obtained results. We evaluate this inaccuracy quantitatively in
the section on the case study (cf. Section V).

A. Neural Network Subcircuit

As mentioned earlier, the NN subcircuit for our application
is devoid of an activation function. Only linear analog mul-
tiplier neurons followed by a summer are necessary. Several
analog multiplier neurons have been proposed in the literature
and the topic still is being actively researched [9], [10]. The
final choice of the implementation is governed by the nature of
the application at hand. As would be clear from the discussion
under the case study, accuracy of representing weights is a
crucial factor for thermal simulation. Hence, we choose an
implementation where the weights can be digitally stored.
An added advantage is that, if the digital weights are made
software programmable, then software-aided learning can be
performed on-chip. To provide the desired high simulation
speed, the multiplication should be analog in nature.

Given these considerations we choose to use the multiplier
neuron, shown in Fig. 3(a), as presented in [11]. The weight
is digitally expressed by the string of bits bn . . . b0. The W/L
ratio of the transistors are suitably designed to provide a
binary-weighted current source array. Such neuron multipliers
are connected together to form a summer with a differential
current-to-voltage convertor as shown in Fig. 3(b). Thus, as in
Eqn. 4, the output voltage, for some constant K, is given by

Vout = K
∑
j

(∑
i

bij2
i
)
Vinj

(5)

V. CASE STUDY

A. Target System and Benchmark Applications

Our case study is based on the 8-core UltraSPARC T1
(Niagara-1) architecture from Sun Microsystems [12]. The
floorplan of this chip in two accuracies for the compact model:
340 and 42 cells, is shown in Fig. 4. We derive the thermal
parameters and thickness of Si and Cu layers based on [13].
For benchmarking applications we have chosen several real-
life applications which are run on the UltraSPARC T1 chip
and the utilizations of the cores are noted as reported in [14].
From these utilization numbers we derived the power traces
based on the average power values reported in [12].

(a) (b)

Fig. 4. Floorplan of the Niagara T1 chip divided into (a) 340 and (b) 42
cells as used in the compact modelling

B. Training the Neural Network

We use the fourth-order Runge-Kutta (RK4) differential
equation solver, with a small time-step of h = 100µs to
generate accurate temperature profiles to train the NN, with
the backpropagation learning algorithm [15]. We train the NN
every 5000 iterations of the RK4 solver. Thus, the NN is
trained to predict the temperatures 500 ms into the future.
In [2], it has been shown that for the UltraSPRAC T1 system,
proactive control with predictions of 500 ms can reduce
hotspots by 60% over reactionary policies.

An important issue with the analog implementation of NNs
is the quantization error in translating real valued weights to
corresponding parameters of the analog circuit. The chip-in-
the-loop technique [16] is a method to alleviate this problem.
With this approach, learning of the NN is performed ensuring
that at all times the parameters of the NN are such that an
accurate translation can be made to an analog circuit. From
the circuit shown in Fig. 3(a), it is clear that the quantization
is governed by the number of bits, say b, used to represent
the digital weights: the least normalized unit is 2−b. In the
training phase, at the end of every training epoch, we ensure
that weights are rounded to this normalized unit.
C. Results

After training the NN, we benchmark it against the iterative
RK4 solver that was used to train the NN. We note that the
RK4 solver is used in tools such as HotSpot and factors the
temperature dependence of the resistance matrix. Comparing
our NN method with it would indicate the inaccuracies intro-
duced by the LTI assumption and due to the finite values of
b and r. We quantify this inaccuracy by Emax defined as the
absolute value of the temperature difference between the RK4
solver and the trained NN, maximized across all blocks of the
compact model over a large number of simulation iterations.

We study three parameters of the design: a) accuracy of the
floorplan as used in the compact model, b) r - the maximum
distance between cells with interacting neurons, and c) b -
the number of bits used to represent the digital weights.
The accuracy of the floorplan would be dependent on the
application. Most proactive control techniques are still at the
core level and representing the floorplan at a coarse level
would suffice functionally. Fine grain control however, would

1601

TABLE I
E AND TRANSISTOR COUNT FOR VARIOUS DESIGN POINTS

r b
42 Cells 340 Cells

Emax Trans. Cnt. Emax Trans. Cnt.
(in K) (x1000) (in K) (x1000)

Full

3 1.7473 28 2.3896 1850
5 1.7214 42 2.2428 2775
7 1.2311 56 1.7912 3699
∞ 0.9969 - 1.1213 -

5

3 4.4683 8 8.8695 69
5 2.8861 12 6.1024 102
7 1.3322 17 2.0436 137
∞ 1.2433 - 1.6790 -

4

3 7.3592 5 14.6799 44
5 3.1695 8 8.0665 66
7 1.3920 10 2.5806 88
∞ 1.3822 - 1.9787 -

3

3 12.6393 3 19.7790 25
5 4.3556 5 11.9544 37
7 2.0842 6 4.3181 49
∞ 1.7888 - 3.1191 -

require a higher accuracy of the floorplan. As shown earlier
in Fig. 4, we choose to divide the floorplan into 42 and 340
cells, to be representative of the above two scenarios.

The finer the floorplan, the more the number of temperatures
to be predicted, and lower is the expected accuracy for a
given fixed amount of training. Further, when either of the two
design parameters, r and b, is increased, a higher accuracy
is expected, but at a larger on-chip area cost. To study the
dependence of the accuracy on these paraemters, we vary the
parameters and for each combination, train and benchmark a
separate NN. The results as given by Emax and transistor
counts necessary to implement the neuron multipliers (Fig.
3(a)) are shown in Table I. The results are also shown in
the scatter plot in Fig. 5. We mark one pareto-optimal design
point for either accuracy of floorplan (labelled A and B), to
aid our discussion. These design points restrict the maximum
error over all cells and simulation iterations to within 1-2 K:
a 3-5% margin of the typical operating temperature ranges
of MPSoCs. These designs have transistor counts of about
10 and 100 thousands, for the 42 and 340 cell floorplans,
resepectively, which are acceptably small fractions of the
transistor count for the full Niagara chip - reported at 279
million. Thus, with small error margins and acceptable area
cost, within a few gate delays, the NN designs can thermally
simulate the MPSoC for 500 ms. For an iterative thermal
simulator like HotSpot, this is equivalent to thousands of
iterations of the RK4 solver, which on average required several
seconds, on a quad-core desktop computer.

VI. CONCLUSIONS AND PROSPECTS

The proposed neural network based solution to thermally
simulate on-chip combines the advantages of applying the LTI
approximation to accelerate thermal simulation with those of
NNs: learning with test-data and effectiveness of native VLSI
implementation. For the Niagara UltraSPARC T1 chip, we
studied a specific neuron circuit, identified design parameters
and experimented with several NN designs to quantify the
tradeoff of implementation cost and accuracy. The results

Fig. 5. Plotting of various design points for pareto-optimizations

indicate that with a carefully chosen set of design parameters,
an accuracy of within about 1-2 K, for thermal simulating the
MPSoC for 500 ms in real time, can be achieved with a design
of about 10-100 thousand transistors.

This work strongly motivates the integration of NN based
simulators into an all-hardware sensor-simulator-controller-
actuator loop. Such a system can potentially react to impend-
ing thermal hazards much quicker than existing methods which
rely on software constructs. Further, the reconfigurable nature
of NNs opens the unique prospect of on-chip reconfiguration,
which can negate modelling errors, account for process vari-
ations and adapt to changing workloads.

REFERENCES

[1] J. Donald and M. Martonosi, “Techniques for multicore thermal man-
agement: Classification and new exploration”, ISCA, 2006, pp. 78-88.

[2] A. K. Coskun, et al: “Proactive temperature balancing for low cost
thermal management in MPSoCs”, ICCAD, 2008

[3] D. Atienza, et al, “Joint Hardware-Software Leakage Minimization
Approach for the Register File of VLIW Embedded Architectures”,
Integration - The VLSI journal, 41(1):38-48, 2008

[4] A. K. Coskun, et al, “Modeling and Dynamic Management of 3D
Multicore Systems with Liquid Cooling”, VLSI-SoC, vol. 1, 2009

[5] W. Huang et. al, “ HotSpot: a compact thermal modeling methodology
for early-stage VLSI design”, Trans. on VLSI, vol. 14, 2006

[6] S. Murali, et al, “ Temperature-aware processor frequency assignment
for MPSoCs using convex optimization”, DAC, 2008.

[7] F. Zanini, et al, “Multicore Thermal Management with Model Predic-
tive Control”, ECTTD, vol. 1, 2009.

[8] F. Zanini, et al, “Optimal Multi-Processor SoC Thermal Simulation via
Adaptive Differential Equation Solvers”, VLSI-SoC, vol. 1, 2009

[9] C. Mead, M. Ismail, ”Analog VLSI implementation of neural systems”,
Springer, 1989

[10] M. Valle, “Analog VLSI Implementation of Artificial Neural Networks
with Supervised On-Chip Learning”, Analog Integrated Circuits and
Signal Processing, 3, pp. 263-287, 2002

[11] P. Hollis, J. Paulos, “Artificial neural networks using MOS analog
multipliers”, Journal of Solid-State Circuits, 1990

[12] P. Kongetira et al., “Niagara: A 32-way multithreaded SPARC proces-
sor”, IEEE Micro, 2005

[13] M. N. Sabry, “High-precision compact-thermal models”, Trans. on
Components and Packaging Tech., 2005

[14] A. K. Coskun, et al., “Static and Dynamic Temperature-Aware Schedul-
ing for Multiprocessor SoCs”, IEEE Trans. on VLSI, vol.16 no.9, pp.
1127-1140, Sept. 2008

[15] P. Baldi, K. Hornik, “Learning in Linear Neural Networks: a Survey”,
Trans. on Neural Networks, vol. 6, 1995

[16] A. Annema, “Feed-forward Neural Networks”, Kluwer Academic Pub-
lishers, 1995

1602

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index

	Table of Contents

