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ABSTRACT
Meeting the temperature constraints and reducing the hot-spots are
critical for achieving reliable and efficient operation of complex
multi-core systems. The goal of thermal management is to meet
maximum operating temperature constraints, while tracking time-
varying performance requirements. Current approaches avoid ther-
mal violations by forcing abrupt operating points changes, which
cause sharp performance degradation. In this paper we aim at
achieving an online smooth thermal control action, that minimizes
the tracking error. We formulate this problem as a discrete-time op-
timal control problem, which can be solved via online by using an
embedded convex optimization solver using a receding horizon ap-
proach. The optimization problem considers the thermal profile of
the system, its evolution over time, current and past time-varying
workload requirements. We perform experiments on a model of
the 8-core Niagara-1 multicore architecture, which show that the
proposed method outperforms state-of-the-art thermal management
approaches by enabling performance speed-ups of up to 2.5× and
improvements up to 12× and 3.4× in relation to frequency and
temperature variations over time, respectively.

Categories and Subject Descriptors
B.4.m [Hardware]: Performance and Reliability—Miscellaneous

General Terms
Management, Algorithms

Keywords
Thermal Management Online Convex Optimization MPSOCs

1. INTRODUCTION
Thermal management techniques are receiving a lot of attention.

Many state-of-the-art thermal control policies manage power con-
sumption via dynamic frequency and voltage scaling (DVFS) [3].
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Figure 1: Diagram of proposed Convex Optimization-based
thermal management policy

DVFS can be targeted to power density reduction, which has the
effect of reducing overall temperature. However, these techniques
do not directly minimize thermal gradients or hot-spots [2], [7].

Temperature gradients are a concern not only in space, but also
in time. The frequent abrupt change in working frequencies and
voltages produces thermal cycling that raises the failure rate of the
system [10]. The effect of thermal cycling on the reliability of a
chip can be modelled by the Coffin-Manson relation, which relates
in an exponential way the number of cycles to failure to the mag-
nitude of thermal cycling [11]. In addition, abrupt power-mode
transitions, waste additional power [12].

The proposed approach addresses the frequency assignment of
an MPSoC as a convex optimization problem. The optimization
is a joint optimization that takes into account the heat propaga-
tion model of the MPSoC, the reliability information related with
the workload prediction method and finally future consequences
of present actions over L future time steps. The proposed system
dynamically adapts to the actual run-time situation of the system,
without relying on any exhaustive characterization at design time
of the possible workloads of the target system. The optimal con-
troller predicts the future thermal trajectory of the system, and max-
imizes performance by completely satisfying thermal constraints.
The optimization process requires a small computational complex-
ity and so it can be performed online. The result of this optimiza-
tion is a very smooth control where both satisfied thermal reliability
constraints while achieving significant performance improvements
compared with state-of-the-art methods.
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2. PREVIOUS WORK
Many researchers in computer architecture have recently focused

on thermal control for Multi-Processor System on Chips (MPSoCs)
[7], [3]. Processor power optimization and balancing using DVFS
have been proposed in several works [3]. In [7] a significant reduc-
tion in localized hotspots has been obtained using thread migration
techniques. In [2] a thermal/power model for super-scalar architec-
tures is presented.

The authors of [5] propose a convex optimization based ap-
proach. The input parameters needed for the optimization are the
thermal profile, chip physical parameters and scheduler require-
ments. However, apart from chip parameters, the other two input
data can assume many values. Assumptions needed to make the
system feasible from an implementation perspective degrade the
quality of results.

In [6] the policy is formulated as a discrete-time optimal con-
trol problem, which can be solved using the theory and computa-
tional tools developed in the field of model-predictive control. The
policy is computed on-line by multiplying the vector containing
current thermal profile information and workload requirements by
pre-computed coefficients. The main problem with this approach is
that the number of coefficients to store is usually large for a com-
plex MPSoC system. As a result, this method can be implemented
only in MPSoCs described by thermal models using a small num-
ber of cells (in the order of tenths) while the proposed method can
manage MPSoC modelled with a higher number of cells. In addi-
tion to that the policy does not take into account the past history of
the task arrival process to predict future workload requirements.

In two recent works, the idea of exploiting history information
has been exploited to improve thermal management policies. In
[14] the policy exploits a temperature forecast technique base on a
auto-regressive moving average model. In [15] the authors propose
a novel technique that adapts the thermal management policy to the
current workload characteristics. The adaptation is done online ex-
ploiting information related to the workload history. The problem
with both these techniques is the following. They do not completely
avoid hot spots, but they simply reduce their frequency. The reason
is that the interaction between the prediction method, the thermal
behavior of the MPSoC and the frequency assignment of the MP-
SoC has not been addressed as a joint optimization problem. The
action taken by the policy to avoid hot spots does not address the
problem from a global optimum perspective.

3. DESIGN METHODOLOGY

3.1 High-Level System Description
The block diagram of the proposed control system is shown in

Figure 1. The regulator monitors the MPSoC state composed by
temperature values and working frequencies. The temperature state
at time t is defined as a vector Tt ε �2n, where (Tt)i is the tem-
perature of cell i at time t. The thermal model is composed by
two layers, each one composed by n cells. For this reason the total
number of cells representing the MPSoC thermal model is 2n. The
frequency state at time t is defined as a vector ft ε �p, where (ft)i

is the frequency value of input i at time t and p is the number of in-
puts. Working frequencies are controlled by the regulator, and are
known while temperatures are monitored by on-die thermal sen-
sors. Temperature measurements at time t are defined as a vector
T̃t ε �s, where (T̃t)i is the temperature measurement coming from
sensor i at time t. s is the number of thermal sensors inside the
MPSoC. Thus, the current state of the system Tt at time t is gen-
erated from data derived from real thermal sensor measurements T̃
on the real MPSoC. This approach has the advantage of avoiding
the propagation of some inaccuracies between the model and the
real system.

The regulator receives a workload requirement from higher-level
software layers (e.g., operating system or OS). At time t, the work-
load is defined as a vector wt ε �p, where (wt)i is the frequency
that input i at time t should have in order to satisfy the desired per-
formance requirement coming from the scheduler. The regulator
provides a frequency assignment that minimizes the tracking error.
This error is proportional to the difference between the offered and
required workload. In fact, the tracking error is a direct measure

Figure 2: Design flow of the proposed Convex Optimization-
based thermal management policy

of performance penalty, as it is greater than zero when the con-
troller sets processor working frequencies not exactly matching the
requests coming from the OS.

Constraints on the maximum temperature of the MPSoC need
to be also enforced in the optimization process. Then, the opti-
mal control problem is formulated over an interval of L time steps,
which starts at current time t. For this reason, our approach is pre-
dictive [4]. The workload requirement in the future L time steps is
predicted using a linear model described in detail in following sec-
tion. The result of the optimization is an optimal sequence of future
control moves (i.e., frequency settings for the cores). Only the first
sample of such a sequence is actually applied to the process; the re-
maining moves are discarded. At the next time step, a new optimal
control problem based on new temperature measurements and re-
quired frequencies is solved over a shifted prediction horizon. Such
a receding-horizon mechanism represents a way of transforming an
open-loop design methodology (i.e., the convex based policy pro-
posed in [5]) into a feedback one, as at every time step the input
applied to the process depends on the most recent measurements.

The way the problem has been formalized using convex mod-
els enables a fast and easy numerical computation [16]-[17]. The
experimental results show significant advantages of the proposed
method in terms of both performance and reliability over state-of-
the-art methods (see Section 4.4).

3.2 Proposed System Operation
The procedure is summarized in the following block diagram

of Figure 2. The operation of the system can be divided into two
phases: an off-line design phase and run-time one.

The first and off-line phase is described by the block diagram in
the upper section of Figure 2. During this phase the convex opti-
mization based regulator is designed. The floorplan of the MPSoC,
including thermal sensor locations, are obtained as inputs. Packag-
ing information including heat spreader properties and power con-
sumption correlation data are included as well in the procedure.
The time period at which the policy needs to be applied is also ob-
tained as an input. All previously mentioned data are used to create
the MPSoC thermal model. This model is then simplified using
a Hankel singular value-based model order reduction (see Section
3.3.2 for more details). The reduction process is performed accord-
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ing to performance constraints defined by the designer to include an
embedded solver able to compute the solution to the convex opti-
mization problem in real-time. Even though this algorithm usually
takes few microseconds [16, 17] on normal PC cores, models with
a large number of states can have a prohibitive cost for embedded
systems where computational capabilities are limited. Thus, dur-
ing this off-line phase, the parameters of the linear predictor are
obtained as well by testing the predictor using execution character-
istics derived from benchmarks. Finally, user-defined parameters
used in the optimization process are specified during this phase.

The second phase is called run-time phase. This phase is de-
scribed by the block diagram in the lower section of Figure 2. This
phase shows the operation of the convex optimization based reg-
ulator during its run-time execution. Input data coming from the
scheduler are used by the linear predictor to generate a prediction
on future requests. The prediction is made up to L steps in the fu-
ture and considering the last N samples. The predictor is made
using a polynomial least squares estimator of order d. All these
parameters have been derived during the off-line design phase of
the regulator. Reliability information on the just generated predic-
tion as well as the prediction itself are sent in real time to the con-
vex solver. Information of temperature measurement coming from
thermal sensors and the current frequencies setting of the MPSoC
are sent as well. At this stage the convex solver finds the optimum
frequency assignment for the inputs of the MPSoC system that will
maximize performance under temperature constraints. This is ac-
complished by minimizing a cost function J under some specific
constraints. This is described with more details in next section.
This operations, according to current technology takes few tenth
of microseconds [16]. This time is from 3 to 4 orders of magni-
tude smaller compared with the time the policy is applied (10ms-
100ms). The result of the optimization is an optimal sequence of
future control moves (i.e., frequency settings for the cores). Only
the first sample of such a sequence is actually applied to the pro-
cess, the remaining moves are discarded. This mechanism repre-
sents a way of updating the optimization with the most recent ther-
mal measurements.

3.3 Problem Formulation

3.3.1 Frequency Input Model
The frequency input at time t is defined as a vector ft ε �p,

where (ft)i is the frequency value of input i at time t and p is the
number of inputs. Working frequencies represent our optimization
variable. Working frequencies are assumed in our model to be con-
tinuous and ranging from zero to a maximum frequency value fmax

as described formally by Equation 1.

0 � ft � fmax ∀ t (1)

where the symbol � means element-wise comparison. The fre-
quency vector represents our optimization variable. The value of its
element is assigned by solving the minimization problem described
in following subsections. This minimization will try to achieve
the desired performance requirements while completely satisfying
thermal constraints.

At time t, the relation between the power dissipation pt ε �p and
the frequency of operation ft is expressed by Equation 2.

fα
t = pt ∀ t (2)

where the constant α is chosen depending on the technology and
usually it varies from 1 to 2. If α = 1, we have a linear depen-
dence (i.e., frequency scaling) while if 1 < α ≤ 2 we obtain a
quadratic or sub-quadratic dependence (i.e., DVFS) [5]. In this
work we implement both voltage and frequency scaling, for this
reason we assume α = 2.

3.3.2 Heat Propagation Model
Our thermal model is based on finite-difference analysis as com-

monly used by well-known system-level thermal analysis tools [2,
8]. Two layers have been used on the vertical direction, namely, the
silicon layer and the copper layer. The copper layer here models
both the metallization layers and the heat spreading copper layer.
Then, the chip floorplan has been divided into several thermal cells
of cubic shape, and every single functional unit in the floorplan can

be represented by one or more thermal cells of the silicon layer.
Thermal modelling is computed considering heat conductances and
capacitances of the cells, as computed and validated in [2] and [8].

Any linear system can be represented in state-space form. In our
case, by measuring all temperatures having as reference the room
temperature, the heat propagation process can be represented in the
following way:

Tt+1 = ATt + Bpt (3)

T̃t � CTt (4)

At time t, the temperature of the next simulation step of cell i
(Tt+1)i can be computed thanks to Equation 3. The relation be-
tween the frequency assignment at time t and the power con-
sumption is expressed by Equation 2. Matrices A ε �2n×2n and
B ε �2n×p are the ones describing heat propagation properties of
the MPSoC. Equation 4 describes the location of temperature sen-
sors inside the MPSoC. Matrix C ε �s×2n relates the temperature
value of each cell with the temperature measurement of a particular
sensor. The non-idealites of thermal sensors are taken into account
int the formulation by indicating the � symbol in the relation of
Equation 4.

The way the model has been described before requires a state for
every block composing the floorplan. This requirement is expen-
sive in terms of computational requirements for high accuracy MP-
SoC models. To reduce the number of the states, we first performed
a model reduction using a Gramian-based balancing of state-space
realizations [13]. After that, we reduced the order of the state-space
model by eliminating the states with corresponding small Hankel
singular values. The full MPSoC model is now described by the
following system of equations:

X̃t+1 = ÃX̃t + B̃pt (5)

T̃t � C̃X̃t (6)

where l is the number of states of the new reduced order model,
matrix Ã ε �l×l and matrix B̃ ε �l×p. Equation 5 describes the
state update for the reduced order model of the MPSoC. This equa-
tion is analogous to Equation 3. The only difference is that, in this
case, the states do not represent directly temperature values inside
each cell.

Matrix C̃ ε �s×l. Equation 6 relates the value of the states
with temperature measurements in s specific locations inside the
MPSoC. This equation is analogous to Equation 4 and describes
how the value of states in the reduced system can be derived from
real temperature measurements in limited specific locations inside
the MPSoC. To be able to perform this last operation, matrix C̃
should be with a number of rows s greater or equal to the number
of columns l and needs to have a rank, at least, equal to l.

3.3.3 Workload Model
The workload requirement at time t is defined as a vector

wt ε �p, where (wt)i is the workload requirement value for in-
put i at time t. (wt)i is the frequency that input i at time t should
have in order to satisfy the desired performance requirement com-
ing from the scheduler. In our model it is assumed to be continuous
and ranging from zero to a max value fmax as described formally
by Equation 7.

0 � wt � fmax ∀ t (7)

where the symbol � means element-wise comparison.
The way we measure the performance of the system in achieving

the requested workload requirements at time t is given by the vector
ut ε �p, namely

ut = wt − ft (8)

We call ut undone workload and it expresses the difference be-
tween the requested workload and the workload that is actually ex-
ecuted by the MPSoC.

3.3.4 Minimization Objective Function
The issue we have to address is the performance optimization

and power minimization problem of a linear time-discrete system
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subjected to constraints. Constraints are the ones described in pre-
vious subsections and they are related to performance requirements
to be satisfied and hotspot prevention. The optimization minimizes
the power consumption as well as the difference between the work-
load required by the scheduler and the one actually executed by the
cores. This is done by having a maximum temperature constraint
on the overall MPSoC. Because of the quadratic relation between
the power consumption and the working frequency, the proposed
system, to minimize power, will also try to average the power con-
sumption in time among all the cores. This will lead to avoid not
uniform thermal profile scenarios during the runtime execution of
the system. The frequency assignment problem here is solved by
minimizing function J presented below:

minimize J =

L∑

t=1

γtut + ρ
L∑

t=1

1T pt (9)

subject to : 0 � ft � fmax ∀ t (10)

X̃t+1 = ÃX̃t + B̃pt ∀ t (11)

C̃X̃t � Tmax ∀ t (12)
ut � 0 ∀ t (13)
ut = wt − ft ∀ t (14)
pt � fα

t ∀ t (15)

Function J is expressed by two sums where the summation in-
dex t ranges from 1 to L. During these L future steps the system
tries to minimize the cost function J and compute the frequency
assignment for these steps.

The first term
∑L

t=1 γtut is a weighted sum of the amount
of predicted required workload that has not been executed. The
weight function γt ε �p, with 1 ≤ t ≤ L. The way this function is
computed and the workload prediction has been estimated will be
discussed in detail in next section. Since the system cannot execute
jobs that have not arrived, every entry of ut has to be greater than
or equal to 0 as stated by Equation 13, where the symbols � and �
stand for element-wise inequality relations. Equation 12 states that
temperature constraints should be respected at any time and in any
specified location. The second term ρ

∑L
t=1 1T pt is a weighted

sum of the amount of power (1T pt) required by the system at time
t to execute the predicted workload requirement from t = 1 to
t = L. Where ρ is a constant that quantifies the importance that
power minimization has in the optimization process.

Every time the minimization is performed, a sequence of optimal
control actions is provided for the next L steps. However, only the
first step is computed and all the other moves are discarded. Such
a mechanism represents a way of creating a feedback loops where
the solution is updated with the most recent measurements. This
formulation performs a frequency assignment by embedding not
only a prediction on the chip temperature profile but also on the
future workload to be executed. This prediction and its reliability
information are embedded into the optimization process.

The power equation 2, using α = 2, is a non-convex equality.
Because of the fact that all constraints in the minimization prob-
lem of Equation 9 must be convex functions, we relaxed equation
2 to the convex inequality of Equation 15. By doing this opera-
tion we changed the original minimization problem to the problem
described by the convex Equations 9-15. It can be shown that the
resulting relaxed convex problem is equivalent to the original prob-
lem with the equality constraint [18]. The reason is because in
the optimization problem, we are minimizing a function J that in-
cludes pt in a summation. This means that by minimizing J , we
are minimizing pt as well, and the inequality of Equation 15 will al-
ways converge to an equality and the two problems are equivalent
[18]. In the proposed problem formulation all equations are con-
vex models and they can be solved with polynomial (in the number
of variables and constraints) time complexity using interior point
methods [18]. Equation 10 allows a continuous range of frequency
settings but this does not prevent from adding in the optimization
problem a limitation on the number of allowed frequency values.

To solve the models, we use CVX [19], an efficient convex op-
timization solver. For our experimental set-up, the Matlab version
of the solver takes around 1 second to determine the optimal so-

lution. C++ optimized implementations of this software take few
microseconds to run on a state-of-the-art solver [16]-[17], which is
at least 3 orders of magnitude less than the interval between two
consequent application of the policy (from 10ms to 100ms). In ad-
dition, it has been also shown that in much more complex systems
that the one we are considering in our case study, with up to 100 op-
timization variables, the solver takes less than 0.5ms on a normal
PC platform [17].

3.4 Workload Prediction and its Reliability
To increase the performance of our proposed policy, history in-

formation about the task arrival process are exploited by the pro-
posed algorithm. These data are used to make prediction on future
workload requirements.

The fact of including these information in the optimization pro-
cess represents the key advantage of the proposed method versus
previous state-of-the-art policies. These inclusions in the problem
formulation play a key role in the the optimization process. The
policy can indeed forecast future trends of the workload and so the
design space of the controller increases. This will increase the op-
tions the controller has to achieve its goals. The fact of having such
a large design space with many parameters and variables makes this
approach unfeasible for explicit solvers such as the one presented
in [6]. However in this work we solved the problem by using an
embedded solver.

The prediction is done by using a linear model to perform a best
dth order polynomial fit. The reason for using a linear model is be-
cause, usually, the prediction length L, for this application is short
and ranges usually from 1 to 9 samples. The polynomial fit is per-
formed by minimizing the error within the observed window of
temperatures, by using the following function:

‖w − Ǎx‖2
2 (16)

where wt contains the frequency requirements ∀t = 1...N , where
N is the length of the observation window of historical data. Ma-
trix xt ε �d+1 and vector Ǎ ε �d+1 are used in the polynomial
interpolation process. Equation 16 can be solved as a least squares
minimization problem to derive vector Ǎ. The prediction on the fu-
ture workload requirement is performed by assuming that the linear
model just derived will hold for the next L data samples. Assuming
this assumption hold, the future workload requirement is given by
following equation:

wt = Ǎxt, ∀ N ≤ t ≤ N + L (17)

where wt ε �p for t > N is the predicted workload requirement
at time t. We tested the predictor on the benchmarks described in
the experimental setup section and we achieved good accuracies for
short-term forecasts (L ranging from 1 to 9).

The way we take into account the accuracy of this prediction is
embedded in the way the weighting vector γt is computed. It is
defined according to Equation 18:

γt = βt − ‖wt − ŵt‖ ∀ N − L ≤ t ≤ N (18)

where ŵt is the workload predicted by the aforementioned linear
predictor and wt is the actual value of it. The absolute value of dif-
ference between the two represents the prediction error. βt ε �p is
a vector that adds a different penalty for the workload that has been
predicted, but not executed yet, in a different and future time frame.
This penalty function can be chosen to be linear, quadratic, expo-
nential or in any other way, according to the impact that a delayed
execution of tasks has on performance. In fact, the more reliable the
prediction is, the smaller the prediction error is and so the bigger γt

is. This means that, since in our formulation the prediction is reli-
able, importance is given to the cost function corresponding to that
future time frame. Values of N and d providing the best prediction
depend on the workload requirement (task arrival process) statisti-
cal properties. These kind of processes are usually non-stationary
and depend on the interaction between the user and the MPSoC it-
self. For the aforementioned reasons, we have chosen these param-
eters to achieve a good prediction, according to empirical studies
performed on different benchmarks [14] for representative exam-
ples of the MPSoCs under study in this work.
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Figure 3: Run-time execution behavior of the prop. method

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
In our experimental setup, we consider an architecture resem-

bling the 8-core Niagara-1 (UltraSparc T1) architecture from Sun
Microsystems [1]. This architecture has a maximum operating fre-
quency of 1.2 GHz and the maximum power consumption of each
processor core at this frequency to be 4 W [1]. To implement the
voltage and frequency scaling techniques, we use working frequen-
cies from 0 to 1.2GHz. We used α = 2 [5]. The floorplan of the
Niagara-1 multicore architecture, is presented in [6]. The floorplan
has been modelled using blocks of 3mm side each, and values of
technological parameters and coefficients have been derived from
[9], and [1]. There is a large variation in switching activities char-
acteristics of different benchmarks. For this reason, to simulate the
system we use the execution characteristics of tasks from a mix of
different benchmarks, ranging from web-accessing to playing mul-
timedia [14], [15]. We verified our simulator using the Hotspot
simulator [2].

In all our experiments, the proposed convex-based thermal man-
agement policy is applied every 10ms, while the simulation step
for the discrete time integration of the RC thermal model has been
set to 200μs. The MPC policy has been targeted to track the re-
quired workload signal, minimizing power consumption while re-
specting the maximum temperature limit set to 370◦K. The linear
predictor has been designed using a 3rd order polynomial equation,
an observation window of 600ms and a prediction length equal to
50ms in the future. The constant Q has been set to 1 (i.e., 10ms)
and the matrix D has been chosen according to a linear range of
weight ranging from 1 to 5 (i.e., 10ms to 50ms).

We assumed to have two frequency inputs controlling the MP-
SoC. The first frequency input controls cores 1, 4, 5 and 8. The
second input sets the frequency value for cores 2, 3, 6 and 7. All the
other functional units consume a power that is related to the average
power consumption of the cores [1]. We suppose that the scheduler
tries to perform a workload balancing strategy on the cores in or-
der to have all the cores running with potentially the same (or very
similar) active frequency. By doing this we can assume that in this
case the power consumption of the cores depends mostly on their
frequency setting. Because of this fact, since in our case study we
run half of them with one frequency and the other half with another
one, given the symmetry of the structure, we can use only 2 thermal
sensors placed on core 1 and core 2 to determine the hottest points
in the temperature profile of the MPSoC.

4.2 Run-time Execution Behavior
In the first set of experiments we explore how our policy controls

temperature on the Niagara case study in the case of a potential
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Figure 4: Behavior of the prop. policy for different horizons

hotspot scenario. Simulation results are reported in Figure 3, where
the time domain plot of the normalized requested workload and the
temperature measurements for each of the two sensors are reported.
The normalized workload is proportional to the frequency setting
of the MPSoC; thus, a variations in its value corresponds a variation
in the voltage and frequency setting of the cores.

In Figure 3, the scheduler requires different workloads for any
of two inputs in a very unbalanced way. Temperature measure-
ments for sensor 1 and sensor 2 are reported in the upper plot of
Figure 3. In the graph of Figure 3, it can be noted how at 0.15s
the controller is not able any more to satisfy the requested work-
load without breaking temperature constraints. For this reason it
basically stops following the dynamics of the requested workload
but applies a smooth control law that never makes the maximum
chip temperature exceed the threshold set to 370◦K. To achieve
this, in case of potential overheating, the regulator decreases the
frequency of the hottest cores in a way that dynamically adapts the
system to achieve maximum performance while respecting temper-
ature constraints. Differently from most state-of-the-art methods,
the proposed algorithm uses prediction techniques based not only
on the system dynamics but also on past workload requirements
history. This can be noted at 0.14s where the proposed system
decreases the frequency of the cores even if the temperature con-
straint would have been satisfied by having the requested workload
request fulfilled.

4.3 Influence Of The Prediction Horizon
The top graph plots temperature measurements for the two sen-

sors. The second graph plots the overall workload requested to the
MPSoC and the workload offered by the system for different pre-
diction horizons L ranging from 1 to 9. Workload measurements
in the plot have been normalized to 1. The bottom graph plots the
difference between the requested workload and the one provided
by the system for the horizons analyzed in the central graph.

By looking at the top graph, in all the analyzed scenarios, the
maximum temperature of the MPSoC never exceeds the threshold
set to 370◦K. The control policy we are proposing is able to detect
this scenario at least 30ms in advance and also avoids it by limiting
the performance loss due to this constraint. It can be noted also that
the higher the prediction horizon, the lower the maximum recorded
temperature is. The highest temperature profile is recorded in the
case where the prediction horizon has been set to 1 (blue line). By
looking at the bottom graph, up to 0.03s the curve corresponding
to the shorter prediction horizon (L = 1) is able to track perfectly
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the requested workload, however, from 0.05 to the end of the sim-
ulation, it shows the worst performance by having the biggest gap
between the requested workload and the one provided by the MP-
SoC. On the some graph, the curve with L = 9, even if it does
not provide a complete fulfillment of the requirements during the
overall simulation, it is the one that provides the smallest undone
workload in almost all simulation steps. By analyzing the top and
the central graph of Figure 4, it can be noted also that the longer
the horizon, the smoother the control action is, and the smoother
the temperature profile is.

The reason of previously mentioned behaviors is that the shorter
the prediction horizon is, the less the policy can forecast future
trends of the workload and so the less powerful the technique is.
The longer the prediction horizon, the more the design space of the
controller increases and so the more options the controller has to
achieve its goals. Simulation results show that the average compu-
tational time normalized to L = 1 of the optimization algorithm
have the following values. In the case with L = 3, 5, 7, 9 we have
values equal to 1.28, 1.44, 1.47, 1.61 times the time required in the
case where L = 1. As it can be noted the longer the prediction
horizon, the higher the computational complexity and the time re-
quired to solve the optimization problem.

4.4 Comparisons With Existing Methods
In this final set of experiments, we compare the proposed ther-

mal management method with state-of-the-art convex-based ther-
mal management techniques, in the case of time varying workload
requirements. In particular, we have implemented for the compar-
isons the Pro-Temp technique described in [5], where we chose the
frequency to satisfy the maximum workload requirements, while
the maximum chip temperature is taken into account. We also im-
plemented the technique proposed in [6]. Here we used a time hori-
zon L equal to 9 samples(90ms). For comparison purposes, we also
implemented a threshold-based DVFS policy (TB-DVFS), where
the frequencies of the cores are matched to the application perfor-
mance levels. The temperature control is here activated when a
core reaches a threshold temperature level. In this case, the system
reduces the maximum frequency of the system to 50% for the time-
period until the next DVFS is applied. The proposed policy is im-
plemented using time horizon L ranging from 1(10ms) to 9(90ms).

Figure 5: Statistical comparison of state-of-the-art policies nor-
malized to the proposed method with L=9.

Figure 5, quantifies (from a statistical point of view) the improve-
ments of the proposed policy with respect to state-of-the-art ther-
mal management approaches. In this graph we first analyze the
smoothness in both temperature and frequency variations; then we
analyze the maximum value of the undone workload. To estimate
the smoothness we computed the mean of the absolute value of the
rate of change, with respect to the frequency settings and to the
temperature profile. It can be observed how our policy outperforms
previous approaches for all the previous optimality metrics for ther-
mal management. It can be also noted by looking at the results
that the proposed method outperforms also the MPC-based tech-
nique proposed in [6], even if its time horizon has been set equal

to 9. The reason is because the other policies perform an opti-
mization based on actual scheduler frequency requirements and the
current and future chip thermal profile. On the contrary, the pro-
posed policy performs an optimization also according to a predic-
tion made on both future dynamic behaviors and future workload
requirements of the system. In case of mean absolute frequency
rate of change, our approach outperforms the TB-DVFS policy by
a factor of 12×, the Pro-Temp approach by a factor of 3× and the
MPC-based approach by a factor of 2.5×. By looking at the mean
absolute temperature rate of change, the proposed method outper-
forms by respectively 3.5×, 2× and 1.5× previously mentioned
policies. Last graph compares the undone work for all the different
policies. The undone workload expresses the difference between
the requested workload and the workload that is actually executed
by the MPSoC (see Equation 8). Despite a 5.75% reduction in
the undone work of the proposed policy versus the MPC-based ap-
proach, results show respectively a 2.5× improvement versus TB-
DVFS and a 1.5× improvement versus Pro-Temp[5].

5. CONCLUSIONS
In this work, we propose a novel thermal management policy

yielding a smooth optimum control on working frequencies and
voltages of multicore systems, while satisfying max-temperature
and performance constraints, and minimizing power consumption.
The optimization process is done by taking into account both the
current thermal profile and time-varying workload requirements of
the multicore system. The prediction based on the past history of
the task arrival process and the online study on the reliability of
the prediction is also considered in the optimization process. We
compared the proposed approach with state-of-the-art thermal man-
agement techniques using as case study a commercial 8-core pro-
cessing system. Results show that the proposed method achieves
performance and thermal control improvements up to 12×.
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