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Abstract

Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established
pathway for intercellular communication is provided by gap junctions which connect adjacent cells
and can mediate electrical and chemical coupling. Several experimental studies report that cells
presenting only a transient increase when freshly dispersed may oscillate when they are coupled.
Such observations suggest that the role of gap junctions is not only to coordinate calcium oscillations
of adjacent cells. Gap junctions may also be important to generate oscillations. Here we illustrate
the emergent properties of electrically coupled smooth muscle cells using a model that we recently
proposed. A bifurcation analysis in the case of two cells reveals that synchronous and asynchronous
calcium oscillations can be inducedby electrical coupling. In a larger population of smooth muscle
cells, electrical coupling may result in the creation of groups of cells presenting synchronous calcium
oscillations. The elements of one group may be distant from each other. Moreover, our results
highlight a general mechanism by which gap junctional electrical coupling can give rise to out of
phase calcium oscillations in smooth muscle cells that are non-oscillating when uncoupled. All these
observations remain true in the case of non-identical cells, except that the solution corresponding
to synchronous calcium oscillationsdisappears and that the formation of groups is sensitive to the
degree of heterogeneity.
© 2005 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Intracellular calcium oscillations are very common. Apart from smooth muscle cells
(SMCs) (for a review, seeSavineau and Marthan (2000)), they have been observed in
neurons and in non-excitable cells like oocytes (Cuthbertson and Cobbold, 1985) and
hepatocytes (Woods et al., 1986). Cytosolic calcium rises may be evoked by inositol 1,4,5-
trisphosphate (IP3)-linked agonist stimulation: after interacting with cell-surface receptors,
agonists activate the phospholipase C (PLC) and induce the release of IP3. IP3 then releases
calcium from intracellular stores (Minneman, 1988).

In populations of cells, a coordination of the calcium transients has been observed.
Neighboring cells have been reported to present asynchronous or synchronous calcium
oscillations (Tordjmann et al., 1997; Zang et al., 2001; Lamboley et al., 2003). In the
case of arterial SMCs, synchronous calcium oscillations lead to vasomotion (Mauban
et al., 2001; Sell et al., 2002; Lamboley et al., 2003), a cyclic variation of the arterial
diameter. On the other hand,asynchronous calcium oscillations result in a tonic vessel
contraction (Ruehlmann et al., 2000). Fanchaouy et al. (2005)have studied more or less
dense preparations of freshly dispersed SMCs. Their results show that the probability of
adenosine 5′-triphosphate triggered asynchronous calcium oscillations increases with the
gap junctional coupling of SMCs. Moreover,Simpson and Ashley (1989)andMissiaen
et al. (1994)have obtained spontaneouscalcium oscillations in cultured aortic SMCs. The
oscillations were present for cells in the confluent condition, but not in single cells or in
cells in the subconfluent condition.

There have been several theoretical studiesdescribing intercellular calcium waves
(Sneyd et al., 1995; Höfer et al., 2001, 2002), and intercellular synchronization of
calcium oscillations has been studied by coupling calcium oscillators by calcium (Höfer,
1999; Bindschadler and Sneyd, 2001). In a previous publication (Koenigsberger et al.,
2004), we proposed a model describing a population of coupled SMCs. As SMCs are
connected by non-selective gap junctions (Christ et al., 1992), we assumed a gap junctional
communication by means of electrical coupling, IP3 diffusion, and calcium diffusion. Our
model reproduces well experimental observations like asynchronous calcium flashings,
recruitment of responding stimulated cells and vasomotion in absence of endothelium
(Hamada et al., 1997; Peng et al., 2001; Sell et al., 2002; Haddock et al., 2002; Lamboley
et al., 2003). With our particular set of parameter values, a weak calcium coupling is
required to obtain a synchronization of calcium oscillations. In contrast with IP3 diffusion
which did notplay a significant role, electrical coupling revealed a number of interesting
facts.

In the present article, we examine in more detail the properties of electrically coupled
calcium oscillators under agonist stimulation. We provide a detailed bifurcation analysis of
two electrically coupled SMCs. We show that isolated cells which are not oscillating at a
certain agonist concentration may begin to oscillate when they are electrically coupled. The
mechanism underlying this phenomenon of generation of oscillations is exposed. Moreover
we observe that electrical coupling can give rise to out of phase calcium oscillations. We
then extend our discussion to three electrically coupled cells and to larger populations of
cells. Finally, we consider non-identical cells to see how the introduction of heterogeneity
affects our conclusions.
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2. Mathematical model

2.1. Single cell model

Weadopt the approach ofKoenigsberger et al. (2004)to describe the calcium dynamics
of a single SMCi . Our model has five variables: the calcium concentration in the cytosol
ci , the calcium concentration in thesarcoplasmic reticulum (SR)si , the cell membrane
potentialvi , theopen state probability of calcium activated potassium channelswi , and the
IP3 concentrationIi . These variables enter a set of nonlinear differential equations that can
beconveniently written as follows:

dci

dt
= JIP3i − JVOCCi + JNa/Cai

− JSRuptakei + JCICRi − Jextrusioni + Jleaki , (1)

dsi

dt
= JSRuptakei − JCICRi − Jleaki , (2)

dvi

dt
= γ (−JNa/Ki − JCli − 2JVOCCi − JNa/Cai − JKi ), (3)

dwi

dt
= λ(Kactivationi − wi ), (4)

dIi

dt
= JPLCagonisti

+ JPLCδi − Jdegradi . (5)

The various terms appearing on the right-hand side of these equations are detailed
in Parthimos et al. (1999)and Höfer et al. (2002), and we briefly review them in
Appendix A. A rise in agonist concentration is simulated by an increase of the PLC rate
JPLCagonisti

.

2.2. Electrical intercellular communication

We consider a two-dimensional model in which SMCs communicate electrically via
gap junctions. As gap junctions connect adjacent cells, a cell is assumed to communicate
only with its first neighbors. Gap junctions between two neighboring cells are modeled
by a single global conductance or permeability, which is supposed to be the same in
every direction. Moreover, the intercellular couplings are assumed to be bidirectional and
symmetric as we study homocellular communications.

To model the electrical coupling between cells, a term

Vcouplingi
= −g

∑
j

(vi − v j ) (6)

is added to Eq. (3) for each celli . Thegap junctional electrical coupling coefficientg is
related to the gap junctional conductanceG by g = G/Cm, whereCm is the cell membrane
capacitance. The conductanceG reflects the composite junctional permeability to small
cytoplasmic ions (Verselis et al., 1986) between the celli and its first neighborsj . In the
present study,g is treated as a free parameter.
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Fig. 1. Bifurcation diagrams of an isolated SMC stimulated by an agonist (thick solid line: stable rest state, thick
dashed line: unstable rest state,thin solid line: minima and maxima of stable oscillations). We have represented
the cytosolic calcium concentrationci with respect to (a) the rate of PLCJPLCagonisti

and (b) the membrane

potentialvi (vi is treated here as a parameter andJPLCagonisti
is set to 0.05 µM/s). HB1, HB2, HB′

1 and HB′
2

denote Hopf bifurcations.

2.3. Numerical methods

Using a fourth order Runge–Kutta method implemented in C (with a time step in the
range [0.003–0.00003] s), the model equations were integrated on a two-dimensional grid
of cells. For intercellular communication, we have considered three possibilities: (i) A
cell is connected to its first neighbors in the “horizontal” and “vertical” directions. It
then communicates with four cells, or less if it is situated near the border. (ii) A cell is
connected to its first neighbors in the “horizontal”, “vertical” and “diagonal” directions.
It then communicates with eight cells, or less if it is situated near the border. (iii) A
cell is connected to its first neighbors in the “horizontal” and “vertical” directions, and
periodic conditions are imposed on the boundary. Every cell then communicates with four
cells. Within each cell, the calcium and membrane potential dynamics are described by
Eqs. (1)–(5) complemented with term (6). We also used the software XPP and AUTO, as
implemented in XPPAUT by B. Ermentrout (http://www.pitt.edu/~phase/) to complete our
analysis: the equations in the case of one and two coupled cells were solved with XPP, and
AUTO was used for bifurcation diagrams. All stable parts ofbranches indicated by AUTO
have been found in our numerical simulations.

3. Results

3.1. Single cell

3.1.1. Bifurcation analysis
The behavior of the cytosolic calcium concentrationci of an isolated SMC with respect

to the agonist activated PLC-rate,JPLCagonisti
, is shown inFig. 1(a). At low values of

JPLCagonisti
(i.e. at low agonist concentration), the cytosolic calcium level is in a stable

http://www.pitt.edu/~phase/
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Fig. 2. Numerical simulation for (a) the cytosolic calcium concentrationci and (b) membrane potentialvi of one
isolated cell atJPLCagonisti

= 0.1 µM/s.

steady state. Increasing the agonist concentration, a Hopf bifurcation, HB1, occurs: the
steady state becomes unstable and the calcium level begins to oscillate. There is a
single branch of periodic orbits. A numerical simulation showing calcium and membrane
potential oscillations is given inFig. 2. The membrane potential oscillates at the same
frequency as calcium. Numerical simulations show that the mean calcium level and the
frequency of theoscillations become higher with increasing values ofJPLCagonisti

. Finally,
the diagram ofFig. 1(a) has another Hopf bifurcation, HB2, from which the steady state
becomes stable again; the cytosolic calcium level is high and does not oscillate anymore.

3.1.2. Intracellular oscillator
The equations for cytosolic calcium concentration(ci ) and calcium concentration in

the SR(si ) constitute the intracellular oscillator.With the parameter values chosen (see
Table A.1in Appendix A), they are responsible for the oscillations. This is in agreement
with the experimental findings ofHamada et al. (1997),Lee et al. (2001)andHaddock et al.
(2002). The membrane potentialvi and the open state probability of potassium channels
wi follow only passively the calcium oscillations. This can be seen inFig. 1(b) which
represents the cytosoliccalcium concentrationci with respect to the membrane potentialvi .
In contrast with the rest of our study,vi is treated as a parameter in this bifurcation diagram.
At low values of the membrane potential, the calcium level is in a stable steady state.
Raisingvi increases the calcium level by triggering the influx of calcium through voltage
operated calcium channels, and a Hopf bifurcation, HB′

1, occurs. The steady state becomes
unstable and the calcium level begins to oscillate. Finally, a second Hopf bifurcation, HB′

2,
leads to a stable steady state with a high sustained cytosolic calcium level that does not
oscillate anymore.

3.2. Electrically coupled cells

3.2.1. Bifurcation analysis for two coupled cells
Three bifurcation diagrams for the cytosolic calcium concentrationci in the case of two

electrically coupled cells are given inFig. 3. In thesediagrams, the coupling parameter
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Fig. 3. Bifurcation diagrams for the cytosolic calcium concentrationci of two identical electrically coupled cells.
(a) g = 1 s−1. (b) g = 10 s−1. (c) g = 100 s−1. (d) Details not represented in panel (c) (thick solid line:
stable rest state,thick dashed line: unstable rest state,thin solid line: minima and maxima of stable oscillations,
thin dashed line: minima and maxima of unstable oscillations). HBh (h = 1, . . . , 4) denotes a Hopf bifurcation.
Single capital letters label branches of periodic orbits.

g is set to (a) 1 s−1, (b) 10 s−1 and (c) 100 s−1. There are four Hopf bifurcations
HBh (h = 1, . . . , 4), and two branches, denoted A and B, are emanating from them. For
two uncoupled cells(g = 0 s−1), branch B coincides with branch A (as inFig. 1(a)). At
g �= 0 s−1, thebranches are distinct. Increasingg moves branch B away from branch A.
It shifts HB3 to the left, HB4 to the right and the small stable domain on branch A away
from HB2. In panels (a)–(c) ofFig. 3, there is a region between HB3 and HB1 where no
attractor is visible. The periodic branches C–G existing in this region are detailed in panel
(d) of Fig. 3 in the caseg = 100 s−1.

It is worth noting that for large values ofg, the bifurcation diagramis not identical
to that of a single cell. Indeed the equation for membrane potential is not responsible
for oscillations and strong electrical coupling disrupts the intracellular oscillator. The
bifurcation diagram would correspond to that of an uncoupled cell if cells were strongly
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coupled by calcium diffusion (Bindschadler and Sneyd, 2001; Koenigsberger et al.,
2004), as the equations for calcium concentrations make up the oscillator. Strong calcium
coupling forces the calcium concentration to be the same for both cells and this calcium
concentration is the solution of the equations for an uncoupled cell.

Synchronous calcium oscillations (branch A). The two Hopf bifurcations HB1 and HB2
of the single cell bifurcation diagram (seeFig. 1(a)) are still present at the same positions.
The branch of periodic orbits emanating from them corresponds to synchronous calcium
oscillations, during which membrane potential and calcium concentration oscillate in phase
at the same frequency. This is necessarily thecase, as cells with identical initial conditions
must present the same oscillatory solution as an uncoupled cell. However with respect to
the single cell bifurcation diagram, the branch has becomeunstable, except for a small
domain.

Antiphase calcium oscillations (branch B). The presence of the two Hopf bifurcations
HB3 and HB4 results from the coupling of the two cells. The bifurcations HB3 and HB4
give rise to a branch of periodic orbits corresponding to antiphasecalcium oscillations
associated to synchronous membrane potentials: calcium oscillations are out of phase, but
each calcium oscillation induces a membrane potential oscillation in the other cell. Thus
membrane potential oscillates twice while calcium only once. This branch is stable for
most agonist concentrations.

Although electrical coupling tends to synchronize membranepotential oscillations, they
are never completely synchronous. Indeed, as membrane potential follows the calcium
concentration in each cell and electrical coupling tends to produce out of phase calcium
oscillations, the coupling term is always non-zero. In our study the term “synchronous” is
used even when the oscillations only tend to be synchronous and the coupling term is never
zero.

Examples of numerical simulations of two electrically coupled cells(g = 100 s−1) are
given inFig. 4. Fig. 4(a) shows two cells starting from an initial condition where they are
synchronous (branch A;JPLCagonisti

= 0.1 µM/s). Since the synchronous solution is not
stable, cells rapidly desynchronize and jump to a stable part of branch B where they are in
antiphase.

Oscillations between HB3 and HB1 (branches C–G). Between the Hopfbifurcations
HB3 and HB1, we have found five branches of periodic orbits containing many period-
doubling bifurcations. On branches D and F, we have represented the branches D′, D′′
and F′ emanating from period-doubling bifurcations. These sub-branches present further
period-doubling bifurcations. The numericalsolutions between the traced branches are
complex, so there seem to be cascades of period-doubling bifurcations leading to complex
behaviors. A numerical simulation corresponding to branch C is given inFig. 4(b) for
JPLCagonisti

= 0.066 µM/s. Fig. 4(c) presents a numerical simulation forJPLCagonisti
=

0.061µM/s corresponding to branch D. Note that inthis case the two cells oscillate with
different amplitudes. InFig. 4(b) and (c), the orbits wind three, respectively two, times
around the steady state before repeating. Finally,Fig. 4(d) is more complex and shows no
periodicity. It corresponds to an agonist concentration ofJPLCagonisti

= 0.055µM/s, i.e. to
a region where we have not found any branch of periodic orbits.
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Fig. 4. Numerical simulations of the cytosolic calcium concentrationsci of two identical electrically coupled
cells (g = 100 s−1, solid and dotted curves). (a)JPLCagonisti

= 0.1 µM/s. (b) JPLCagonisti
= 0.066 µM/s.

(c) JPLCagonisti
= 0.061µM/s. (d) JPLCagonisti

= 0.055µM/s.

3.2.2. Generation of oscillations in the two-cell case
As the additional Hopf bifurcations HB3 and HB4 of the asynchronous branch B are

occurring before HB1 and after HB2 (seeFig. 3), isolated cells which are not oscillating
at a certain agonist concentration may begin to oscillate when they are coupled. In other
words, electrical coupling generates out of phase calcium oscillations in SMCs.

The generation of oscillations can be explained in the following way: suppose that
the calcium concentration of one cell is moved awayfrom its steady state and presents a
calcium spike. Due to the electrical coupling, the second cell tends to prevent the membrane
potential of the first cell from following its calcium increase. During the calcium spike, this
results in different values of membrane potential for an electrically coupled cell than for an
isolated cell. These changes in membrane potential values alter the calcium dynamics and
may bring about oscillations. Thiscan be intuitively understood fromFig. 1(b): starting
from membrane potential values for which the calcium concentration is not oscillating,
changes of the membrane potential may modify the system in such a way that it encounters
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Fig. 5. Numerical simulations of three identical mutually electrically coupled cells(g = 100 s−1). In each panel,
the bottom curve represents the in phase membrane potential (MP) oscillations and the other curves give the
cytosolic calcium concentration for each celli . (a) JPLCagonisti

= 0.15 µM/s. (b) JPLCagonisti
= 0.15 µM/s. (c)

JPLCagonisti
= 0.09µM/s.

a Hopf bifurcation. At low agonist concentration (in the region between HB3 and HB1 in
Fig. 3) oscillations are generated because electricalcoupling results in higher values of the
membrane potential. Inthe region between HB2 and HB4, electrical coupling decreases the
values of the membrane potential, which also brings about oscillations.

Physiologically, in the region between HB3 and HB1, electrical coupling may entail for
example that the amplitude of the calcium induced membrane potential hyperpolarization
is smaller than for an isolated cell. The calcium influx through voltage operated calcium
channels (termJVOCCi in Eqs. (1) and (3)) is then less decreased during hyperpolarization,
and thus the cytosolic calcium level may become higher and begin to oscillate.

Fig. 4(b)–(d) illustrate this phenomenon of generation of oscillations. Cells start from
an initial condition between HB3 and HB1. The steady state has become unstable in this
region, which brings about oscillations.

3.2.3. Three coupled cells
The generation of oscillations is also present in the case of three cells which are

electrically coupled. Electrical coupling essentially gives rise to one third of a period out
of phase calcium oscillations and in phase membrane potential oscillations. An example
of numerical simulation forJPLCagonisti

= 0.15 µM/s is shown inFig. 5(a). As for the
two-cell case, this solution can be found on a wide range of agonist concentration. Note
that the membrane potentials are not perfectly synchronous. They are more synchronous
at lower agonist concentration, i.e. at lower frequencies. We also obtain a solution with
in phase calcium oscillations, but only for a limited range of agonist concentration (see
Fig. 5(b) for JPLCagonisti

= 0.15µM/s). Moreover, weobserve a solution with two in phase
and one in antiphase calcium concentrations (seeFig. 5(c) for JPLCagonisti

= 0.09µM/s). In
this case, membrane potential oscillations present two peaks corresponding to the calcium
oscillations of two cells in phase and one cell in antiphase respectively.
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3.2.4. Population of cells
If one increases the number of coupled SMCs, we still observe the generation of

oscillations, and simultaneous out of phase calcium oscillations and in phase membrane
potential oscillations of neighboring cells. As for the two-cell case, electrically coupled
neighboring cells tend to have out of phasecalcium oscillations. However we observe
that for larger numbers of cells, not all cells are out of phase: there are always groups of
cells consisting of neighboring and distant cellsthat present in phase calcium oscillations.
This phenomenon is due to the fact that ineach cell the membrane potential follows
passively the calcium oscillations (Fig. 2), while electrical coupling among cells tends
to synchronize the membrane potentials and to desynchronize the calcium concentrations.
Therefore cells organize themselves by becoming synchronous in groups to less perturb
membrane potential dynamics with respectto calcium dynamics in each single cell. So
there are two opposite effects, one tendingto create out of phase calcium oscillations
and the other tending to let membrane potential be in phase with calcium oscillations
in each cell. The result of these two effects is an interesting pattern of synchronous
and asynchronous oscillations in a population of electrically coupled cells. Implementing
the three different possibilities for intercellular communication (see above in the section
“Numerical methods”), we observe similar behaviors.

Examples of numerical simulations for 4, 6 and 25 cells coupled to their first neighbors
(g = 100 s−1) are given inFig. 6 (JPLCagonisti

= 0.07 µM/s). In this figure, in phase
oscillating cells are depicted by the same gray shade. Starting from the unstable steady
state, oscillations emerge and cells organize themselves in a regular way. InFig. 6(a),
the generated calcium oscillations are out of phase for the four cells. For each cell the
membranepotential oscillates then four times during one calcium oscillation. Considering
the three different possibilities for intercellular communication, we have not observed a
solution for which all cells oscillate out of phase for a population larger than four cells.
For instance, inFig. 6(b), not all oscillations of neighboring cells are out of phase. This
is due to the fact that membrane potential tends to oscillate in phase with the calcium
concentration in each of the six cells.Fig. 6(c) shows a simulation of 25 cells. There are
three groups of in phase calcium oscillating cells, and cells in each group can be adjacent as
well as being situated far away from each other. For each cell membrane potential oscillates
then three times during one calcium oscillation. Thus with this mechanism synchronous
oscillations can appear for cells disposed at a long distance from each other, and out of
phase oscillations can occur for adjacent cells.

For each population of cells different stable configurations exist. Therefore our
simulations showonly examples of them. For instance, in the four cell case we have also
found a stable pattern with two in phase calcium oscillating cells.Fig. 7shows two possible
configurations in the case of 100 cells. By further increasing the number of cells to a few
hundred, we still observe the formation of three or four groups of cells oscillating in phase.
The time required to reach a stable configuration increases with the number of cells.

3.2.5. Non-identical cells
In nature, perfectlyidentical cells do not exist. Individual SMCs may have slightly

different intrinsic frequencies, and it is therefore important to investigate how the
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Fig. 6. Numerical simulations of several identicalcells electrically coupled to their first neighbors in the
“horizontal” and “vertical” directions (g = 100 s−1, JPLCagonisti

= 0.07µM/s). Thegrid shows the arrangement

of the cells denoted by numbers. The calcium oscillationsof cells colored with the same gray shade are in phase.
In panels (a) and (b), the bottom curve represents the in phase membrane potential (MP) oscillations and the other
curves give the cytosolic calcium concentration for each celli . (a) 4cells. (b) 6 cells. (c) 25 cells.

introduction of heterogeneity among cells affects the above described behaviors. To model
non-identical cells, we choose to vary the amplitudeF of the quantityJIP3i (term (A.1) in
Appendix A) which represents the calcium release from the stores possessing IP3 receptors.
In other words, we consider cells with different densities of IP3 receptors, which is a
reasonable assumption (Tasker et al., 1999; Haberichter et al., 2002). For thefirst cell,
SMC 1, we keepF1 = 0.23µM/s, and for the second cell, SMC 2,F2 is varied in the range
[0.229–0.25] µM/s. According to the experiments ofHamada et al. (1997), theoscillation
frequencies of stimulated SMCs are narrowly distributed around a mean value. Therefore,
we donot consider values ofF2 higher than 0.25 µM/s, as the corresponding intrinsic
frequencies would be too different between SMC 1 and SMC 2.

Bifurcation diagrams for two electrically coupled cells(g = 100 s−1) with F1 =
0.23 µM/s andF2 = 0.234 µM/s are given inFig. 8, (a) and (b). This corresponds to
two cells with intrinsic frequenciesf1 = 0.065 Hz and f2 = 0.067 Hz atJPLCagonisti

=
0.1 µM/s. As in the case of twoidentical SMCs (seeFig. 3(c)), there are four Hopf
bifurcations. The Hopf bifurcations HB1 and HB2 give rise to a branch of periodic orbits
corresponding to in phase calcium oscillations and membrane potential oscillations (branch
A). With respect to the diagram of identical cells, the stable part of this branch has
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Fig. 7. Numerical simulations of a population of 100 identical cells electrically coupled to their first neighbors in
the “horizontal” and “vertical” directions (g = 100 s−1, JPLCagonisti

= 0.07µM/s). Thegrids show two possible

configurations of the numbered cells. The calcium oscillations of cells colored with the same gray shade are in
phase.

disappeared. The branch of periodic orbits emanating from the Hopf bifurcations HB3
and HB4 corresponds to antiphase calcium oscillations and in phase membrane potential
oscillations (branch B). With respect to the diagram of identical cells, this branch is still
largely stable. However, for agonist concentration between 0.1388µM/s and 0.1476µM/s,
it has become unstable. In this region the behavior of the two cells becomes more complex,
but the cells stay out of phase. By comparing the bifurcation diagram of the coupled cells
to those of isolated cells, we note that the phenomenon of generation of oscillations is still
present between HB3 and HB1, and HB2 and HB4.

IncreasingF2 extends the domain of complex behaviors and reduces the domain of
stability on branch B (seeFig. 8(c) and (d), forF2 = 0.25 µM/s). There isno domain
of stability on branch A. The amplitudes of oscillations of the cells differ more and more
from each other whenF2 is increased. At high values ofJPLCagonisti

, the isolated SMC 2
is in a stable steady state. When the cells are coupled, the antiphasecalcium oscillations
are drifted by SMC 1. Therefore SMC 1 has large amplitude oscillations, whereas SMC 2
presents small amplitude oscillations. At low values ofJPLCagonisti

, the situation is reversed:
the isolated SMC 1 would be in a stable steady state and presents therefore small amplitude
oscillations when coupled, whereas SMC 2 oscillates with a large amplitude. Numerical
simulations atJPLCagonisti

= 0.12 µM/s andJPLCagonisti
= 0.15 µM/s for the twocells are

given inFig. 9. Similar behaviors can be observed whenF2 is decreased below 0.23µM/s.
If we fix F2 = 0.234µM/s anddecrease the coupling coefficientg, we observe that

the domain of stable solutions in branch B decreasesand the range of complex behaviors
increases. We obtain similar behaviors for lower values ofg at F2 = 0.234µM/s, than for
g = 100 s−1 and higher values ofF2. In other words, introducing heterogeneity at lower
values ofg perturbs the system more than at high values ofg. This isdue to the fact that at
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Fig. 8. Bifurcation diagrams for the cytosolic calcium concentrationsci in the case of two non-identical
electrically coupled cells(g = 100 s−1). (a) and (b): F1 = 0.23 µM/s andF2 = 0.234 µM/s. (c) and (d):
F1 = 0.23 µM/s andF2 = 0.25 µM/s (thick solid line: stable rest state, thick dashed line: unstable rest state,
thin solid line: minima and maxima of stable oscillations,thin dashed line: minima and maxima of unstable
oscillations). HBh (h = 1, . . . , 4) denotes a Hopf bifurcation. A and B label branches of periodic orbits.

low values ofg, the stability of branch B is less strong, i.e. the eigenvalues of the Jacobian
matrix are less negative.

By varying other parameters thanF , we observe that the general behavior remains the
same: the in phase calcium oscillation solution rapidly becomes unstable, more complex
out of phase calcium oscillations are possible, and the phenomenon of generation of
oscillations is still present (data not shown).

We have also considered the effect of heterogeneity in a population of electrically
coupled SMCs. Increasing heterogeneity extends the domain of complex behaviors. The
probability ofgroup formation is then more and more reduced. For instance, with six non-
identical cells(Fi = 0.231± 0.002 µM/s) stimulated by an agonist concentration of
JPLCagonisti

= 0.14 µM/s and arranged as inFig. 6(b), we do not observe the formation
of any groups. Note that in the case of two cells, this value ofJPLCagonisti

corresponds to
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Fig. 9. Numerical simulations of the cytosolic calcium concentrationsci of two non-identical electrically coupled
cells (g = 100 s−1, F1 = 0.23 µM/s and F2 = 0.25 µM/s, dotted curve: SMC 1, solid curve: SMC 2).
(a) JPLCagonisti

= 0.12µM/s. (b) JPLCagonisti
= 0.15µM/s.

a region wherethe solutions are complex (new unstable part of branch B onFig. 8(a)
and (b)). At the lower valueJPLCagonisti

= 0.1 µM/s for the same variability(Fi =
0.231± 0.002 µM/s), most of the cells organize themselves in groups, but one or two
may oscillate independently. With more heterogeneity(Fi = 0.235± 0.009µM/s), all the
group patterns are lost.

4. Discussion

Wehave shown that two identical electrically coupled SMCs can present a wide variety
of behaviors when stimulatedby agonists. Their calcium oscillations can be in phase or out
of phase. However an unexpected fact is that the out of phase solution is dominant in our
study: in Fig. 3, thestability domain of branch B is much more extended than the one of
branch A. This is in contrast with calcium coupling for which synchronous solutions are
dominant (Koenigsberger et al., 2004). Other detailed bifurcation analysis of two calcium
oscillators coupled by calcium diffusion also reveal that in phase solutions are then the
most frequent (Höfer, 1999; Bindschadler and Sneyd, 2001). The major difference in our
work with respect to the one ofHöfer (1999)andBindschadler and Sneyd (2001)is that
we couple calcium oscillators with anequation (membrane potential Eq. (3) completed
with term (6)) that is not responsible for oscillations. In our model this brings about the
dominance of out of phase solutions and the phenomenon of generation of oscillations. In
apopulation of cells the out of phase effect of electrical coupling gives rise to synchronous
oscillations by groups. Cells that are inphase may as well be neighbors as be situated
at long distances from each other. Moreover in contrast to the study ofBindschadler and
Sneyd (2001), high values for the coupling coefficient do notlead to a bifurcation diagram
similar to the one of an uncoupled cell.

The patterns we have obtained in the case of three mutually coupled cells are predicted
by a mathematical classification developed byGolubitsky and Stewart (1985). This
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classification relies on geometrical symmetries of coupled oscillator systems, and is
independent of the oscillators’ internal dynamics. A more complete discussion in the case
of square networks of coupled oscillatorswith nearest neighbor coupling and periodic
boundary conditions can be found inStewart et al. (2003)andGolubitsky et al. (2004).
In our simulations, we have obtained extra patterns that are not described in these articles.

An interesting finding of our study is that for all values of electrical coupling oscillations
are generated at certain agonist concentrations for which the uncoupled cell is quiescent.
As cells are identical, this can only be possible for out of phase calcium oscillations: one
cell has to damp and change membrane potential oscillations of the other cell. Indeed,
in an uncoupled cell, membrane potential oscillates at the same frequency as the calcium
concentration. However when cells are electrically coupled, there are two opposite effects.
The first effect tends to let the membrane potential oscillate at the same frequency as
the calcium concentration in each cell. The second effect, which is due to electrical
coupling, tends to create out of phase calcium oscillations and in phase membrane potential
oscillations. It then perturbs membranepotential dynamics in each cell, as membrane
potential has to oscillate several times during one calcium oscillation. Therefore the
coupling term is non-zero all the time and changes membrane potential dynamics with
respect to an uncoupled cell. In contrast, if calcium oscillations are in phase, the coupling
term is zero and it cannot have any effect on calcium dynamics. The mechanism of
generation of oscillations exposed in our work is general and can be applied to other
theoretical models. Necessary conditions for this generation of oscillations are that the
model incorporates equations responsible for oscillatory behavior and that the intercellular
coupling takes place in another equation following passively the previous ones. Moreover
the coupling must change the dynamics of the variable of the equation following passively
the oscillator in such a way that a Hopf bifurcation can be reached to generate oscillations.
By setting the variableswi and Ii to a fixed value, we have verified that in our model the
three internal variablesci , si andvi are necessary and sufficient to generate oscillations.
An explicit example in which oscillations arise through coupling is given bySmale (1974).
This example involves at least four internal variables.

The fact that in our study electrical coupling does not synchronize the calcium
oscillations is dependent on our particular choice of parameters. In our model, the
intracellular oscillator is responsible for theoscillations as suggested by the experimental
observations ofHamada et al. (1997)andHaddock et al. (2002). This leads to asynchronous
calcium oscillations as a consequence of electrical coupling, which is not expected
intuitively. If the parameters are chosen in such a way that the membrane potential drives
the oscillations, the effects of electrical coupling could be different. However our aim here
was to present a possible way to generate calciumoscillations by electrical coupling, which
is possible when the intracellular oscillator is responsible for oscillations.

The introduction of heterogeneity among cellsdestroys the stability of the solution
corresponding to synchronous calcium oscillations. The antiphase solution remains largely
stable provided the cells are not too different. The phenomenon of generation of
oscillations is still present, but the group formation pattern in a population is sensitive
to the degree of variability.

Experimentally, asSavineau and Marthan (2000)reviewed, the behavior of isolated
SMCs in response to agonist stimulation is very variable: some types of SMCs are
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oscillating, whereas others present only a transient calcium increase. The same type of
SMCs that present only transient increases when freshly dispersed may oscillate when
they are coupled (Fanchaouy et al., 2005). Furthermore, spontaneous calcium oscillations
were observed in cultured aortic SMCs in the confluent condition, but not in single cells or
in cells in the subconfluent condition (Simpson and Ashley, 1989; Missiaen et al., 1994).
Our model may provide an explanation for such phenomena. For a population of cells,
we observe that the out of phasing effect of electrical coupling gives rise to synchronous
oscillations by groups. Cells that are in phasemay as well be neighbors as be situated at
long distances from each other. During the oscillations, the mean calcium level is elevated,
and asynchronous oscillations leading to atonic contraction have been reported (Iino
et al., 1994; Ruehlmann et al., 2000; Zang et al., 2001). It remains to be verified if these
oscillations could correspond to a patternof synchronous and asynchronous oscillations
modeled in the present study. Heterogeneity among cells and experimental noise (calcium
fluctuations due to stochastic opening and closing ofchannels) can perturb this pattern, and
the time necessary to converge to a stable configuration may be too long. Our simulations
also show that complex behaviors, such as multiply periodic orbits, can occur for a non
negligible range of agonist concentrations, and we could expect to observe these behaviors
experimentally.
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Appendix A. Details of the mathematical model

The quantityJIP3i in Eq. (1) represents the calcium release from the stores possessing
IP3-receptors. It is directly related to the IP3 concentration:

JIP3i = F
I 2
i

K 2
r + I 2

i

. (A.1)

The term

JVOCCi = GCa
vi − vCa1

1 + e−[(vi−vCa2)/RCa] (A.2)

models the calcium influx through voltage operated calcium channels (VOCCs),

JNa/Cai = GNa/Ca
ci

ci + cNa/Ca
(vi − vNa/Ca) (A.3)

the Na+/Ca2+ exchange,

JSRuptakei = B
c2

i

c2
i + c2

b

(A.4)
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the SR uptake,

JCICRi = C
s2

i

s2
c + s2

i

c4
i

c4
c + c4

i

(A.5)

the calcium induced calcium release (CICR),

Jextrusioni = Dci

(
1 + vi − vd

Rd

)
(A.6)

the calcium extrusion from the SMC by Ca2+–ATPasepumps,

Jleaki = Lsi (A.7)

the leak from the SR,

JNa/Ki = FNa/K (A.8)

the Na+–K+–ATPase,

JCli = GCl(vi − vCl) (A.9)

the chloride channels,

JKi = GKwi (vi − vK) (A.10)

the K+ efflux and

Kactivationi = (ci + cw)2

(ci + cw)2 + βe−[(vi−vCa3)/RK ] (A.11)

the calcium and voltage activation of K+ channels. The constantJPLCagonisti
is the rate of

the PLC activated by receptor-ligand agonists, while the term

JPLCδi = E
c2

i

K 2
Ca + c2

i

(A.12)

modelsthe PLC-δ. Finally, Jdegradi = k Ii expresses IP3 degradation.
The meaning of the parameters is given inTable A.1. The numerical values of the

parameters (exceptvNa/Ca) are taken from Koenigsberger et al. (2004).
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Table A.1
Parameter values for the single cell model (Koenigsberger et al., 2004)

Parameter Description Units and value

GCa Whole cell conductance for VOCCs 0.00129µM mV−1 s−1

vCa1 Reversal potential for VOCCs 100.0 mV
vCa2 Half-point of the VOCCactivation sigmoidal −24.0 mV
RCa Maximum slope of the VOCC activation

sigmoidal
8.5 mV

GNa/Ca Whole cell conductance for Na+/Ca2+ ex-
change

0.00316µM mV−1 s−1

cNa/Ca Half-point for activation of Na+/Ca2+ ex-
change by Ca2+

0.5 µM

vNa/Ca Reversal potential for the Na+/Ca2+ exchanger −30.0 mV
B SR uptake rate constant 2.025µM/s
cb Half-point of the SR ATPase activation sig-

moidal
1.0 µM

C CICR rate constant 55µM/s
sc Half-point of the CICR Ca2+ efflux sigmoidal 2.0 µM
cc Half-point of the CICRactivation sigmoidal 0.9 µM
D Rate constant for Ca2+ extrusion by the ATPase

pump
0.24 s−1

vd Intercept of voltage dependence of extrusion
ATPase

−100.0 mV

Rd Slope of voltage dependence of extrusion
ATPase

250.0 mV

L Leak from SR rate constant 0.025 s−1

γ Scaling factor relating net movement of ion
fluxes to the membrane potential

1970 mV/µM

(inversely related to cell capacitance)
FNa/K Net whole cell flux via the Na+–K+–ATPase 0.0432µM/s
GCl Whole cell conductance for Cl− current 0.00134µM mV−1 s−1

vCl Reversal potential for Cl− channels −25.0 mV
GK Whole cell conductance for K+ efflux 0.00446µM mV−1 s−1

vK Reversal potential for K+ −94.0 mV
λ Rate constant for net KCa channel opening 45.0
cw Translation factor for Ca2+ dependence of KCa

channel activation sigmoidal
0 µM

β Translation factor for membrane potential
dependence of KCa

0.13µM2

channel activation sigmoidal
vCa3 Half-point for the KCa channel activation

sigmoidal
−27.0 mV

RK Maximum slope of the KCa activation sigmoidal 12.0 mV
E Maximal rate of PLC-δ 0 µM/s
KCa Half-saturation constantfor calcium activation

of PLC-δ
0.3 µM

k Rate constant of IP3 degradation 0.1 s−1

Kr Half saturation constant for agonist-dependent
calcium entry

1 µM

F Maximal rate ofactivation dependent calcium
influx

0.23µM/s
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