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Abstract

Asynchronous and synchronousaiam oscillations occur in a varigbf cells. A well-established
pathway for intercellular communication is provided by gap junctions which connect adjacent cells
and can mediate electrical and chemical coupling. Several experimental studies report that cells
presenting only a transient increase when fieslispersed may oscillate when they are coupled.
Suwch observations suggest that tloéerof gap junctions is not only taordinate calcium oscillations
of adjacent cells. Gap junctions may also be impurta generate oscillations. Here we illustrate
the eanergent properties of electrically coupled smooth muscle cells using a model that we recently
proposed. A bifurcation analysis in the case of two cells reveals that synchronous and asynchronous
calcium oscillations can be inducég electrical coupling. In a larggopulation of smooth muscle
cells, electrical coupling may result in the creation of groups of cells presenting synchronous calcium
o<illations. The elements of one group may be distant from each other. Moreover, our results
highlight a general mechanism by which gap junctional electrical coupling can give rise to out of
phase calcium oscillations in smooth muscle celtg #re non-oscillating when uncoupled. All these
observations remain true in the case of non-identical cells, except that the solution corresponding
to synchronous calcium oscillatiomsappears and that the formatiof groups is sensitive to the
degree of heterogeneity.
© 2005 Saociety for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Intracellular calcium oscillations are very common. Apart from smooth muscle cells
(SMCs) (for a review, seS@avineau and Marthan (200Q)they have been observed in
neurons and in non-excitable cells like oocyt€sthbertson and Cobbold, 198%nd
hepatocytes/oods et al., 1986 Cytosolic calcium rises may be evoked by inositol 1,4,5-
trisphosphate (1B)-linked agonist stimulation: after iatacting with cell-surface receptors,
agonists activate the phospholipase C (PLC) and induce the releasel®lthen releases
calcium from intracellular storedMinneman, 1988

In populations of cells, a coordination of the calcium transients has been observed.
Neighboring cells have been reported to present asynchronous or synchronous calcium
o<cillations (Tordjmann et al., 1997Zang et al., 2001Lamboley et al., 2003 In the
case of arterial SMCs, synchronous calui oscillations lead to vasomotioMéuban
et al., 2001 Sdl et al., 2002 Lamboley et al., 2003 a cydic variation of the arterial
diameter. On the other handsynchronous calcium oscillatis result in a tonic vessel
contraction Ruehlmann et al., 20Q0Fanchaouy et al. (200%)ave studied more or less
dense preparations of freshly dispersed SMCs. Their results show that the probability of
adenosine striphosphate triggeredsgnchronous calcium oscillations increases with the
gap junctional coupling of SMCs. Moreove3impson and Ashley (1989nd Missiaen
et al. (1994have obtained spontaneazecium oscillations in cultured aortic SMCs. The
oscillations were present for cells in the caomfiht condition, but not in single cells or in
cells in the subconfluent condition.

There have been several theoretical studiescribing interdéular calcium waves
(Sreyd et a., 1995 Hofer et al.,, 2001 2002, and intercellular synchronization of
calcium oscillations has been studied lmupling calcium oscillators by calciuntfer,

1999 Bindschadler and Sneyd, 2001n a previous publicationKoenigskerger et al.,
2009, we proposed a model describing a population of coupled SMCs. As SMCs are
connected by non-selective gap junctio@$ir(st et al., 1992, we assumed a gap junctional
communication by means ofegtrical coupling, IR diffusion, and calcium diffusion. Our
model reproduces well experimental observations like asynchronous calcium flashings,
recruitment of responding stimulated cells and vasomotion in absence of endothelium
(Hamada et al., 199Peng et al., 2001Sdl et al., 2002Haddock et al., 2002Lamboley

et al., 2003. With our particular set of parameter values, a weak calcium coupling is
required to obtain a synchronization of calcium oscillations. In contrast with difusion

which did notplay a significant role, ektrical coupling revealed a number of interesting
facts.

In the present article, we examine in more detail the properties of electrically coupled
calcium oscillators under agonigiraulation. We provide a detailed bifurcation analysis of
two electrically coupled SMCs. We show that isolated cells which are not oscillating at a
certain agonist concentration may begin toikst®e when they are electrically coupled. The
mechanism underlying this phenomenon of gatien of oscillations is exposed. Moreover
we observe that electrical coupling can give rise to out of phase calcium oscillations. We
then extend our discussion to three electrically coupled cells and to larger populations of
cells. Finally, we consider non-identical cells to see how the introduction of heterogeneity
affects our conclusions.
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2. Mathematical model
2.1. Singlecell model

We adopt the approach #foenigsberger et al. (2004) describe the calcium dynamics
of a single SMA . Our nmodel has five variables: the calcium concentration in the cytosol
¢i, the calcium concentration in thearoplasmic reticulum (SR}, the cell membrane
potentialvi, theopen gate probability of calcium activated potassium channg|sand the
IP3 concentratiorij. These variabkeenter ast of nonlinear differential equations that can
be conveniently written as follows:

dc;
d_tl = Jipg — JvocG + INag/ca — Isruptake + JeICR — Jextruson, + Jieak » (1)
ds
o = JSRuptake — JCICR — Jeak (2)
dvj
d_tl =y (=Inak;, — Joi — 2voce — INg/cg — Iki)» (3)
dw;
— = )»(Kactivatiom — wj), (4)
dt
dl;
E = ‘]PLColgonis; + JpLcs — JdeQra‘#' (5)

The various terms appearing on the right-hand side of these equations are detailed
in Pathimos et al. (1999)&and Hofer et al. (2002) and we briefly review them in
Appendix A A rise in agonist concentration is simulated by an increase of the PLC rate

‘]PLCagonisf'
2.2. Electrical intercellular communication

We wmnsider a two-dimensional model in vehi SMCs communicate electrically via
gap junctions. As gap junctions connectajnt cells, a cell is assumed to communicate
only with its first neighbors. Gap junctions between two neighboring cells are modeled
by a single global conductance or permeability, which is supposed to be the same in
every diection. Moreover, the intercellular couplings are assumed to be bidirectional and
symmetric as we stly homocellular communications.

To model the electrical coupling between cells, a term

Veoupling = —9 Z(Ui —vj) (6)
j

is added to Eq. 8) for each celi. Thegap junctional electrical coupling coefficiegtis
related to the gap junctional conducta&by g = G/Cr,, whereCy, is the cell membrane
capacitance. The conductan@ereflects the composite junctional permeability to small
cytoplasmic ions Verselis et al., 198pbetween the cell and its first neighbors. In the
present studyg is treated as a free parameter.



1256 M. Koenigsberger et al. / Bulletin of Mathematical Biology 67 (2005) 1253-1272

00 1M | G M)
) (a) (b) |

0.8 - 1 09r

0.8
0.7r
0.6
0.5r
0.4 r
03r

\
02 /

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 -60 =50 -40 =30 -20 -10 0

JPLCagonisl,- (1M/s) v; (mV)

0.1

Fig. 1. Bifurcation diagrams of an ilded SMC stimulated by an agonishitk solid line: stable resstae, thick
dashed line: unstable rest statéhin solid line: minima and maxima of stable oscillations). We have represented
the cytosolic calcium concentratian with respect to (a) the rate of PL(l‘p._cclg onist and (b) the membrane
potentialv; (v is treated here as a parameter a]f"@Cagonis; is set to 005 uM/s). HBy, HB;, HB; and HB,
denote Hopf bifurcations.

2.3. Numerical methods

Using afourth order Runge—Kutta method implemented in C (with a time step in the
range [0.003-0.00003] s), the model equations were integrated on a two-dimensional grid
of cells. For intercellular communication, we have considered three possibilities: (i) A
cell is connected to its first neighbors in the “horizontal” and “vertical” directions. It
then communicates with four cells, or lesstifis stuated near the border. (ii) A cell is
connected to its first neighbors in the “horizontal”, “vertical” and “diagonal” directions.

It then communicates with eight cells, or less if it is situated near the border. (iii) A
cell is connected to its first neighbors in the “horizontal” and “vertical” directions, and
periodic conditions are imposed on the boundary. Every cell then communicates with four
cells. Within each cell, the calcium and merabe potential dynamics are described by
Egs. )—(5) complemented vith term ). We also used the software XPP and AUTO, as
implemented in XPPAUT by B. Ermentrouit{p://www.pitt.edu/~phasgto conplete our
analysis: the equations in the case of one and two coupled cells were solved with XPP, and
AUTO was useddr bifurcation diagrams. All stablparts obranches indicated by AUTO

have been found in our numerical simulations.

3. Results

3.1. Singlecdll

3.1.1. Bifurcation analysis

The behavior of the cytodic calcium concentration; of an isolated SMC with respect
to the agonist activated PLC-rateJpic,g,,y . IS shown inFig. 1(a). At low values of
JPLCagonist (i.e. at low agonist concentration), the cytosolic calcium level is in a stable
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Fig. 2. Numerical simulation for (ape cytosolic calcium concentratian and (b) membrane potentigl of one
isolated cell aUPLCagonis; =0.1uM/s.

steady state. Increasing the agonist concentration, a Hopf bifurcation, é¢Burs: the
steady state becomes unstable and the calcium level begins to oscillate. There is a
single branch of periodic orbits. A numerical simulation showing calcium and membrane
potential oscillations is given irFig. 2 The membrane potential oscillates at the same
frequency as calcium. Numerical simutais show that the mean calcium level and the
frequency of the ostillations become higher with increasing valuesJpf c, gy - Findly,

the diagram ofig. 1(a) has another Hopf bifurcation, HBfrom which the geady state
becomes stable again; the cytosolic calcium level is high and does not oscillate anymore.

3.1.2. Intracellular oscillator

The equations for cytosolic calcium concentrati@n and calcium concentration in
the SR(s) constitute the intracellular oscillatdwith the parameter values chosen (see
Table A.lin Appendix A, they are responsible for the oscillations. This is in agreement
with the experimatal findings oHamada et al. (1997) ee et al. (2001andHaddock et al.
(2002) The menbrane potentiad; and the open state probability of potassium channels
wj follow only passively the calcium oscillations. This can be seeRig 1(b) which
represents the cytosobalcium concentratioq with respect to the membrane potential
In contrast with the rest of our study, is treated as a parameter inghifurcation diagram.
At low values of the membrane potential, the calcium level is in a stable steady state.
Raisingu; increases the calcium level by triggering the influx of calcium through voltage
operated calcium channels, and a Hopf bifurcation; HBcurs. The steady state becomes
undable and the calcium level begins to oscillate. Finally, a second Hopf bifurcatidp, HB
leads to a stable steady state with a high sustained cytosolic calcium level that does not
o<cillate anymore.

3.2. Electrically coupled cells

3.2.1. Bifurcation analysisfor two coupled cells
Three bifurcation diagrams for the cytosolic calcium concentragigmthe case of two
electrically coupled cells are given Fig. 3. In thesediagrams, the coupling parameter
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Fig. 3. Bifurcation diagrams for thcybsolic calcium concentratio) of two identical electrically coupled cells.
(@g=1s1(b)g=10s1 (c)g = 100 sL. (d) Detdls not represented in panel (dhick solid line:
stable rest statehick dashed line: unstable rest statéhin solid line: minima and maxima of stable oscillations,
thin dashed line: minima and maxima of unstable oscillations). flh = 1, ..., 4) denotes a Hopf bifurcation.
Single capital étters label branches of periodic orbits.

gissetb (a) 1s? (b)10 st and (c) 100 st. There are dur Hopf bifurcations
HBh (h =1, ...,4), and two braches, denoted A and B, are emanating from them. For
two uncoupled cell§g = 0 s™1), branch B coicides with branch A (as ifig. 1(a)). At
g # 0 s, thebranches are distinct. Increasiggnoves branch B away from branch A.
It shifts HBg to the left, HB, to the right and the small dt&e domain on branch A away
from HBy. In parels (a)—(c) ofFig. 3, there is a reipn between HB and HB, where no
attractor is visible. The periodic branches C—G existing in this region are detailed in panel
(d) of Fig. 3in the casey = 100 s°L.

It is worth noting that for large values o, the bifurcation diagramis not identical
to that of a single cell. Indeed the equation for membrane potential is not responsible
for oscillations and strong electrical couplingsiipts the intracelliar oscillator. The
bifurcation diagram would correspond to that of an uncoupled cell if cells were strongly
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coupled by calcium diffusionRindschadler and Sneyd, 2Q0Koenigslerger et al.,
2009, as the equations for calcium concentrations make up the oscillator. Strong calcium
coupling forces the calciumonicentration to be the same for both cells and this calcium
concentration is the solution of the equations for an uncoupled cell.

Synchronous calcium oscillations (branch A). The two Hopf bifurcations HBand HB

of the single cell bifircation diagram (seleig. 1(a)) are still present at the same positions.
The branch of periodic orbits emanating from them corresponds to synchronous calcium
ogillations, during which membrane potential and calcium concentration oscillate in phase
at the same frequency. This is necessarigdhse, as cells with identical initial conditions
must present the same oscillatory solution as an uncoupled cell. However with respect to
the single cell bifurcationidgram, the branch has becomestable, except for a small
domain.

Antiphase calcium oscillations (branch B). The presence of the two Hopf bifurcations
HB3 and HB; results from the coupling of the two cells. The bifurcationszsHid HB;
give rise to a branch of periodic orbitsrcesponding to antiphasmalcium oscillations
associated to synchronous membrane potentialsium oscillations are out of phase, but
each calcium oscillation induces a membranesptiél oscillation in the other cell. Thus
membrane potential oscillates twice while calcium only once. This branch is stable for
most agonist concentrations.

Although electrical coupling tals to synchronize membrapetential oscillations, they
are never completely synchronous. Indeed, as membrane potential follows the calcium
concentration in each cell and electricalupling tends to produce out of phase calcium
oscillations, the coupling term is always non-zero. In our study the term “synchronous” is
used even when the oscillations only tend to be synchronous and the coupling term is never
zero.

Examples of numerical simulations of two electrically coupled aglls= 100 s'1) are
given inFig. 4. Fig. 4(a) shows two cells starting frormanitial condition where they are
synchronous (branch AlpiLc,gong = 0.1 utM/s). Since the synchronous solution is not
stable, cells rapidly esynchronize and jump to a stable part of branch B where they are in
antiphase.

Oscillations between HB3 and HB; (branches C—G). Between the Hopbifurcations

HB3 and HB;, we have found five branches of periodic orbits containing many period-
doubling bifurcations. On branches D and F, we have represented the braricli®s D
and F emanating from period-doubling bifurcations. These sub-branches present further
period-doubling bifurcations. The numericsdiutions between the traced branches are
complex, so there seem to be cascades of period-doubling bifurcations leading to complex
behaviors. A numerical simulation corresponding to branch C is givefign4(b) for
JPLCagoniy = 0.066 uM/s. Fig. 4(c) presents a numerical simulation fdpLc,gony =
0.061uM/s morresponding to branch D. Note thattims case the two cells oscillate with
different amplitudes. IrFig. 4(b) and (c), the orbits wind three, respectively two, times
around the steady state before repeating. FinBity, 4(d) is more complex and shows no
periodicity. It corresponds to an agonist concentratiodpq)_t«,ﬂlgonisi = 0.055uM/s, ie. to

a regon where we have not found any branch of periodic orbits.
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Fig. 4. Numerical simulations of theytsolic calcium concentrationg of two identical electrically coupled
cells @ = 100 s, sdid and dotted curves). (a.)chagoniS‘ = 0.1 uM/s. (b) JPLCagonis; = 0.066 uM/s.

(c) JPLCagonis; =0.061uM/s. (d) ‘]PLCagonisf = 0.055uM/s.

3.2.2. Generation of oscillationsin the two-cell case

As the additbnal Hopf bifurcations HB and HB; of the asynchronous branch B are
occurring before HB and after HB (seeFig. 3), isolated cells which are not oscillating
at a certain agonist concentration may Ioeigi osdllate when they are coupled. In other
words, electrical coupling generates out of phase calcium oscillations in SMCs.

The generation of oscillations can be epkd in the following way: suppose that
the calcium concentration of one cell is movawayfrom its steagt stae and presents a
calcium spike. Due to the eleital coupling, the second cell tends to prevent the membrane
potential of the first cell from following its calam increase. During the calcium spike, this
results in different values of membrane potential for an electrically coupled cell than for an
isolated cell. These changes in membrane potential values alter the calcium dynamics and
may bring about oscillations. Thisan be intuitively understood frofaig. 1(b): starting
from membrane potential values for which the calcium concentration is not oscillating,
changes of the membrane potential may modify the system in such a way that it encounters
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Fig. 5. Numerical simulations of three idical mutually electrically coupled cellg = 100 s1). Ineach panel,
the bottom curve represents the in phase membrane potential (MP) oscillations and the other curves give the
cytosolic calcium concentration for each cell(a) JP'—Cagonis; = 0.15uM/s. (b) ‘]PLCagonis; = 0.15uM/s. (c)

JPLCﬁgonisi = 0.09uM/s.

a Hopf bifurcation. At low agonist concentration (in the region between di&d HB; in
Fig. 3) osdllations are generated because electramalpling results in higher values of the
membrane potential. lthe region between HBand HBy, electrical coupling decreases the
values of the membrane potential, which also brings about oscillations.

Physiologically, in the region between HBnd HBy, electrical coupling may entail for
example that the amplitude of the calcium induced membrane potential hyperpolarization
is smaller than for an isolated cell. The calcium influx through voltage operated calcium
channels (termdvocg in Egs. () and @)) is then less decreased during hyperpolarization,
and thus the cytosolic calcium level may become higher and begin to oscillate.

Fig. 4(b)—(d) illustrate this phenomenon of generation of oscillations. Cells start from
an initial condition between HBand HB;. The seady state has become unstable in this
region, which brings about oscillations.

3.2.3. Three coupled cells

The generation of oscillations is also present in the case of three cells which are
electrically coupled. Electrical coupling essentially gives rise to one third of a period out
of phase calcium oscillations and in phase membrane potential oscillations. An example
of numerical simulation foldpLc,g,g = 0.15 uM/s is shown inFig. Xa). As for the
two-cell case, this solution can be found on a wide range of agonist concentration. Note
that the membrane potentials are not perfectly synchronous. They are more synchronous
at lower agonist concentration, i.e. at lower frequencies. We also obtain a solution with
in phase calcium oscillations, but only for a lted range of agonist concentration (see
Fig. 5b) for JPLCagonisy = 0-15uM /S). Moreover, webserve a solution with two in phase
and one in antiphase calcium concentrations 8ge5(c) for JPLCagonisg = 0.09uM /s). In
this case, membrane potential oscillations pré$wo peaks corresponding to the calcium
ogcillations of two cells in phase and one cell in antiphase respectively.
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3.2.4. Population of cells

If one increases the number of coupled G§ we dill observe the generation of
o<cillations, and simultaneous out of phase calcium oscillations and in phase membrane
potential oscillations of neighboring cells. Asrfthe two-cell case, electrically coupled
neighboring cells tend to have out of phasscium oscillations. However we observe
that for larger numbers of cells, not all cells are out of phase: there are always groups of
cells consisting of neighboring and distant céfiat present in phase calcium oscillations.
This phenomenon is due to the fact thateach cell the membrane potential follows
passively the calcium oscillationd={g. 2), while electrical coupling among cells tends
to synchronize the membrane potentials and to desynchronize the calcium concentrations.
Therefore cells organize themselves by becoming synchronous in groups to less perturb
membrane potential dynamics with respaxtcalcium dynamics in each single cell. So
there are two opposite effects, one tendtngcreate out of phase calcium oscillations
and the other tending to let membrane potential be in phase with calcium oscillations
in each cell. The result of these two effects is an interesting pattern of synchronous
and asynchronous oscillations in a populationletgically coupled cells. Implementing
the three different possibilities for intercellular communication (see above in the section
“Numerical methods”), we observe similar behaviors.

Examples of numerical simulations for 4, 6 and 25 cells coupled to their first neighbors
(g = 100 s'Y) are given inFig. 6 (JPLCagonisg = 0.07 uM/s). In this figure, in phase
o<cillating cells are depicted by the same gray shade. Starting from the unstable steady
state, oscillations emerge and cells organize themselves in a regular weaig. 1&a),
the generated calcium oscillations are out of phase for the four cells. For each cell the
membrane potential oscillates then four times during one calcium oscillation. Considering
the three different possibilities for intercellular communication, we have not observed a
sdution for which all cells oscillate out of phase for a population larger than four cells.
For instance, inFig. 6(b), not all oscillations of neighborg cells are out of phase. This
is due to the fact that membrane potential tends to oscillate in phase with the calcium
concentration in each of the six cellsig. 6(c) shows a simaition of 25 cells. There are
three groups of in phase calcium oscillating cells, and cells in each group can be adjacent as
well as being situated far away from each other. For each cell membrane potential oscillates
then three times during one calcium osditba. Thus with this mechanism synchronous
o<cillations can appear for cells disposed at a long distance from each other, and out of
phase oscillations can occur for adjacent cells.

For each population of cells different stable configurations exist. Therefore our
simulations shovonly examples of them. For instance, in the four cell case we have also
found a stable pattern with two in phase calcium oscillating deits.7 shows two possible
configurations in the case of 100 cells. By further increasing the number of cells to a few
hundred, we still observe the formation of three or four groups of cells oscillating in phase.
The time required to reach a stable configuration increases with the number of cells.

3.2.5. Non-identical cells
In nature, perfecthidentical cells do not exist. Indidual SMCs may have slightly
different intrinsic frequencies, and it is therefore important to investigate how the



M. Koenigsberger et al. / Bulletin of Mathematical Biology 67 (2005) 1253-1272 1263

DN s

—

MP

Fig. 6. Numerical simulations of several identiczlls electrically coupled to their first neighbors in the
“horizontal” and “vertical” directionsq = 100 s1, Jp._cag onist = 0.07 uM/s). Thegrid shows the arrangement

of the cells denoted by numbers. The calcium oscillatimitells colored with the same gray shade are in phase.

In panels (a) and (b), the bottom curve represents the in phase membrane potential (MP) oscillations and the other
curves give the cytosolic calcium concentration for eachicédl) 4cells. (b) 6 cells. (c) 25 cells.

introduction of heterogeneity among cells affects the above described behaviors. To model
non-identical cells, we choose to vary the amplitédef the quantityJipz (term (A.1) in
Appendix A which represents the calcium release from the stores possessinecéptors.
In other words we mndder cells with different densities of gPreceptors, which is a
reasonable assumptiofagker et al., 1999Haberichter et al., 2002 For thefirst cell,
SMC 1, we keep1 = 0.23uM/s, and for tle seond cell, SMC 2 is varied in the range
[0.229-025] uM/s. According to the experiments bfamada et al. (1997}heoscillation
frequencies of stimulated SMCs are narrowly distributed around a mean value. Therefore,
we donot consider values of, higher than ®5 uM/s, as the corresponding intrinsic
frequencies would be too different between SMC 1 and SMC 2.

Bifurcation diagrams for two electrically coupled cells = 100 s'1) with F; =
0.23uM/s andF; = 0.234uM/s are given inFig. 8 (a) and (b). This corresponds to
two cells with intrinsic frequencie$; = 0.065 Hz andfz = 0.067 Hz atJpic,gy =
0.1 uM/s. As in the case of twadentical SMCs (seéig. 3(c)), there are four Hopf
bifurcations. The Hopf bifurcations HBand HB give rise to a branch of periodic orbits
correspondingto in phase calcium oscillationd eembrane potential oscillations (branch
A). With respect to the diagram of identical cells, the stable part of this branch has
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Fig. 7. Numerical simulations of a population of 100 iteal cells electrically coupled to their first neighbors in
the “horizontal” and “vertical” directionsg(= 100 s, Jp._cag onist = 0.07 uM/s). Thegrids show two possible
configurations of the numbered cells. The calciumilzgions of cells colored with the same gray shade are in
phase.

disappeared. The branch of periodic orbits emanating from the Hopf bifurcatiops HB
and HB, corresponds to antiphase calcium ostitias and in phase membrane potential
o<cillations (branch B). With respect to the diagram of identical cells, this branch is still
largely stable. However, for agonist concentration betwe&B88uM /s and 01476uM /s,
it has become unstable. In thigien the behavior of the two cells becomes more complex,
but the cells stay out of phase. By comparing the bifurcation diagram of the coupled cells
to those of isolated cells, we note that the phenomenon of generation of oscillations is still
present between HBand HB;, and HB and HB,.

IncreasingF, extends the domain of complex behaviors and reduces the domain of
stability on branch B (sefig. 8c) and (d), forF, = 0.25uM/s). There isno domain
of stability on branch A. The amplitudes of oscillations of the cells differ more and more
from each other wheif; is increased. At high values @by ¢,y - the iDlated SMC 2
is in a stable steady state. When the celks @upled, the antiphasealcium oscillations
are drifted by SMC 1. Therefore SMC 1 has large amplitude oscillations, whereas SMC 2
presents small amplitude oscillations. At low valueslfc, s » the stuation is reversed:
the isolated SMC 1 would be in a stable steady state and presents therefore small amplitude
oscillations when coupled, whereas SMC 2 oscillates with a large amplitude. Numerical
simulations atlpi C,gonig = 0.12uM/s andJpic,gqngq = 0.151uM/s for the twocells are
given inFig. 9. Similar behaviors can be observed whenis decreased below23uM/s.

If we fix F, = 0.234uM/s anddecrease the coupling coefficiegtwe observe that
the domain of stiale solutions in branch B decreasaw the range of complex behaviors
increases. We obtain similaebaviors for lower values af at F, = 0.234uM /s, than for
g = 100 s and higher values of,. In other words, introducing heterogeneity at lower
values ofg perturbs the system more than at high valueg.dthis isdue to the fact that at
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Fig. 8. Bifurcation diagrams for h cybsolic calcium concentrations; in the case of two non-identical
electrically coupled cell§g = 100 s, (a) and (b):F1 = 0.23uM/s andF> = 0.234uM/s. (c) and (d):
F1 = 0.23uM/s andF, = 0.25uM/s (thick solid line: stable resstae, thick dashed line: unstable rest state,
thin solid line: minima and maxima of stable oscillationthin dashed line: minima and maxima of unstable
oscillations). HB, (h =1, ..., 4) denotes a Hopf bifurcation. A and B label branches of periodic orbits.

low values ofg, the stability of branch B is less strongg.ithe eigenvalues of the Jacobian
matrix are less negative.

By varying other parameters thé&n we observe that the general behavior remains the
same: the in phase calcium oscillation solution rapidly becomes unstable, more complex
out of phase calcium oscillations are possible, and the phenomenon of generation of
oxillations is still present (data not shown).

We have also considered the effect of heterogeneity in a population of electrically
coupled SMCs. Increasing heterogeneity extends the domain of complex behaviors. The
probability ofgroup formation is then more and more reduced. For instance, with six non-
identical cells(F; = 0.2314+ 0.002 uM/s) stimulated by an agonist concentration of
JPLCagoniy = 0-14 uM/s and aranged as irFig. 6(b), we do not observe the formation
of any groups. Note that in the case of two cells, this Va|Ué|iD_E;agoniS' corresponds to
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Fig. 9. Numerical simulations of thgrosolic calcium concentratiorg of two non-identical electrically coupled
cells @ = 100 st F1 = 0.23 uM/s andF, = 0.25 uM/s, ddted curve: SMC 1, solid curve: SMC 2).
(a) JPLC’::Igonisi =0.12uM/s. (b) JPLC’::Igonisi =0.15uM/s.

a region whereahe solutons are complex (new unstable part of branch BFign 8(a)

and (b)). At the lower Va|Ue]PLCdgoms; = 0.1 uM/s for the same variability i =
0.231+ 0.002 uM/s), most of the cells organize themselves in groups, but one or two
may oscillate independently. With more heterogenéfy = 0.235+ 0.009uM/s), all the
group patterns are lost.

4, Discussion

We have shown that two identical electrically coupled SMCs can present a wide variety
of behaviors when stimulatday agonists. Their calcium oslations can be in phase or out
of phase. However an unexpected fact is that the out of phase solution is dominant in our
study: in Fig. 3, the stability domain of branch B is much more extended than the one of
branch A. This is in contrast with calcium coupling for which synchronous solutions are
dominant Koenigsberger et al., 20D40ther detailed turcation analysis of two calcium
oscillators coupled by calcium diffusion alseveal that in phase solutions are then the
most frequentiiofer, 1999 Bindschadler and Sneyd, 200The major difference in our
work with respect to the one dfidfer (1999)andBindschadler and Sneyd (20G%)that
we couple calcium oscillators with aguation (membrane potential E@) conpleted
with term )) that is not responsible for oscillations. In our model this brings about the
dominance of out of phase solutions and the phenomenon of generation of oscillations. In
apopulation of cells the out of phase effect of electrical coupling gives rise to synchronous
oscillations by groups. Cells that are jfnase may as well be neighbors as be situated
at long distances from each other. Mover in contrast to the study Bindschadler and
Sreyd (2001) high valuesér the coupling coefficient do négad to a bifurcation diagram
similar to the one of an uncoupled cell.

The patterns we have obtained in the case of three mutually coupled cells are predicted
by a mathematical classification developed @Gglubitsky and Stewart (1985)This
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classification relies on geometrical symmetries of coupled oscillator systems, and is
independent of the oscillators’ internal dynashiA more complete discussion in the case

of square networks of coupled oscillatoséth nearest neighbor coupling and periodic
boundary conditions can be found Stewart et al. (2003)and Golubitsky et al. (2004)

In our simulations, we have obtained extra patterns that are not described in these articles.
An interesting finding of our study is that for all values of electrical coupling oscillations
are generated at certain agonist concentrations for which the uncoupled cell is quiescent.
As cells are identical, this can only be possible for out of phase calcium oscillations: one
cell has to damp and change membrane potential oscillations of the other cell. Indeed,

in an uncoupled cell, membrane potentialibates at the same frequency as the calcium
concentration. However when cells are electrically coupled, there are two opposite effects.
The first effect tends to let the membrane potential oscillate at the same frequency as
the calcium concentration in each cell. &leecond effect, which is due to electrical
coupling, tends to create out of phase calcium oscillations and in phase membrane potential
oscillations. It then perturbs membrapetential dynamics in each cell, as membrane
potential has to oscillate several times during one calcium oscillation. Therefore the
coupling term is non-zero all the time and changes membrane potential dynamics with
respect to an uncoupled cell. In contrast, ifadain oscillations are in phase, the coupling
term is zero and it cannot have any effect on calcium dynamics. The mechanism of
generation of oscillations exposed in our work is general and can be applied to other
theoretical models. Necessary conditions for this generation of oscillations are that the
model incorporates equations responsible foilladory behavior and that the intercellular
coupling takes place in another equation following passively the previous ones. Moreover
the coupling must change the dynamics of the variable of the equation following passively
the oscillator in such a way that a Hopf bifurcation can be reached to generate oscillations.
By setting the variables; andl; to a fixed value, w have verified tht in our model the

three inernal variables, 5 andv; are necessary and sufficient to generate oscillations.
An explicit example in which oscillations arise through coupling is givesbyle (1974)

This example involves at least four internal variables.

The fact that in our study electrical coupling does not synchronize the calcium
ocillations is dependent on our particular choice of parameters. In our model, the
intracellular oscillator is responsible for thscillations as suggested by the experimental
observations dflamada et al. (199@ndHaddock et al. (2002)This leads to asynchronous
calcium oscillations as a consequence ddctiical coupling, which is not expected
intuitively. If the parameters are chosen in such a way that the membrane potential drives
the oscillations, the effects of electrical cding could be different. However our aim here
was to present a possible way to generate calcasuillations by electdal coupling, which
is possible when the intracellular déator is responsible for oscillations.

The introduction of heterogeneity among callsstroys the stability of the solution
corresponding to synchronous caii oscillations. The antiphase solution remains largely
stable provided the cells are not too fdient. The phenomenon of generation of
oscillations is still present, but the grouprfimation pattern in a population is sensitive
to the degree of variability.

Experimentally, asSavineau and Marthan (2000kviewed, the behavior of isolated
SMCs in response to agonist stimulation is very variable: some types of SMCs are
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o<cillating, whereas others present only a transient calcium increase. The same type of
SMCs that present only transient increases when freshly dispersed may oscillate when
they are coupledRanchaouy et al., 20Q5Furthermore, spontaous calcium oscillations

were observed in cultured aortic SMCs in tlenfluent condition, but not in single cells or

in cells in the subconfluent conditioSimpson and Ashley, 198Missiaen et al., 1994

Our model may provide an explanation for such phenomena. For a population of cells,
we observe that the out of phasing effect of electrical coupling gives rise to synchronous
oscillations by groups. Cells that are in gkanay as well be neighbors as be situated at
long distances from each other. During the oscillations, the mean calcium level is elevated,
and asynchronous oscillations leading tdoaic contraction have been reportdeh@

et al., 1994 Ruehimann et al., 20Qang et al., 200} It remains to be &rified if these
oscillations could correspond to a patterinsynchronous and gschronous oscillations
modeled in the present study. Heterogeneity among cells and experimental noise (calcium
fluctuations due to stochastic opening and closingttdnnels) can perturb this pattern, and

the time necessary to converge to a stable configuration may be too long. Our simulations
also show that complex behaviors, such as multiply periodic orbits, can occur for a non
negligible range of agonist concentrations, and we could expect to observe these behaviors
experimentally.
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Appendix A. Details of the mathematical model

The quantityJipz in Eq. (1) representshie calcium release from the stores possessing
IP3-receptors. It is directly related to theglPoncentration:

| 2

Jpy = F—tt . (A1)
K2+ 12
The term
_ Vi — UCqy
‘JVOCG - GCal + e*[(vi 7UC32)/RC3] (A2)

models the calcium influx through voltage operated calcium channels (VOCCs),

Ci
J =G —(vj — A.3
Na/Ca Na/Ca: +CNa/Ca(v| UNa/Ca) (A.3)

the Na /C&* exchange,

2
i
2 2
c+ ¢

C.

JSRthake =B (A-4)
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the SR uptake,

2 o

¢
J  =C—— A.5
CRT TR "o

the calcium induced calum release (CICR),

Vi — ug
Jextruson, = DG <1+ : R ) (A.6)

the calcium extrusion from the SMC by €a-ATPasegumps,

Jieak = LS (A.7)
the leak from the SR,

INa/k; = Fnayk (A.8)
the Na —K*—ATPase,

Joi; = Gei(vi — ver) (A.9)
the chbride channels,

Jk; = Gkwi (vi — vk) (A.10)
the K* efflux and

(€ +ow)?
(G +CW)2—|-,3€_[(vi_vC33)/RK]

(A.11)

Kactivatiom =

the calcium and voltage activation of'kchannels. The constadbLc,goniy 1S the rate of
the PLC activated by recepttigand agonists, while the term

c?

J =—E— A.12
PLCs; KZ.+ & (A.12)

modelsthe PLCS$. Findly, Jiegrag = Kli expresses IPdegradation.
The meaning of the parameters is givenTable A.1 The numerical values of the
parameters (excephia/ca) are take from Koenigsberger et al. (2004)
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Table A.1

Parameter vales for the single cell modeKoenigsberger et al., 2004

M. Koenigsberger et al. / Bulletin of Mathematical Biology 67 (2005) 1253-1272

Parameter Desiption Units and value
Gca Whole cell conductance for VOCCs .aD129uM mv—1s-1
vCy Reversal potential for VOCCs 100.0 mV
VCa Half-point of the VOCCactivation sigmoidal —24.0 mV
Rca Maximum slope of the VOCC activation 8.5 mVv
sigmoidal
GNa/Ca Whole cell conductance for NgCet ex- 0.00316uM mv—1s1
change
CNa/Ca Half-point for activation of N&/Ca&" ex- 0.5uM
change by C&"
UNa/Ca Reversal potential for the NgCa+ excranger —-30.0mV
B SR uptake rate constant .025uM/s
Cp Half-point of the SR ATRse activation sig- 1.0uM
moidal
C CICR rate constant 56M /s
S Half-point of the CICR C&" efflux sigmoidal 20 uM
Cc Half-point of the CICRactivation sigmoidal uM
D Rate constant for G4 extruson by the ATPase 024s1
pump
v Intercept of voltage dependence of extrusion —100.0 mV
ATPase
Ry Slope of voltage depelence of extrusion 250.0 mV
ATPase
L Leak from SR rate constant @m5st
y Scaling factor relating net movement of ion 1970 mV/uM
fluxes to the membrane potential
(inversely réated to cell capacitance)
FNa/K Net whole cell flux via the N&—K+—ATPase ®432uM/s
Ge Whole cell conductance for Clcurrent 000134uM mv—1s-1
vel Reversal potential for Cl channels —-25.0mVv
Gk Whole cell conductance for K efflux 0.00446pM mv—1s-1
VK Reversal potential for K —94.0 mV
A Rate constant for net &g channel opening 45.0
Cw Transhtion factor for C&™ dependence of Kg ouM
channel activation sigmoidal
B Transhtion factor for membrane potential 0.13 MMZ
dependence of Ky
channel activation sigmoidal
VCag Half-point for the Kcg channel activation —27.0mVvV
sigmoidal
Rk Maximum slope of the I§5 activation sigmoidal 12.0mVv
E Maximal rate of PLCS OuM/s
Kca Half-saturation constarfor calcium activation 0.3uM
of PLC
k Rate constant of Bdegradation ast?
Ky Half saturation constant for agonist-dependent 1uM
calcium entry
F Maximal rate ofactivation dependent calcium 0.23uM/s

influx
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