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Abstract. The growth of motion capture systems have contributed to
the proliferation of human motion database, mainly because human mo-
tion is important in many applications, ranging from games entertain-
ment and films to sports and medicine. However, the captured motions
normally attend specific needs. As an effort for adapting and reusing cap-
tured human motions in new tasks and environments and improving the
animator’s work, we present and discuss a new data-driven constraint-
based animation system for interactive human motion editing. This me-
thod offers the compelling advantage that it provides faster deforma-
tions and more natural-looking motion results compared to goal-directed
constraint-based methods found in the literature.
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1 Introduction

Technological advances in motion capture (mocap) has allowed to provide high
quality motions for computer animation. However, the captured animations al-
most always meet specific needs. Therefore, modifying and reusing these motions
in new situations became an increasing area of research known as motion edit-
ing. In the past few years, there has been a lot of work in motion editing in
the graphics community. The proliferation of mocap database has enabled the
research and development of data-driven or model-based techniques [1,2,3,4,5,6].
Basically, these methods focus in constructing a model from mocap data - the
data are usually represented by a low-dimensional space known as the latent
space - to generate new motions from existing ones. Essentially because this
representation can be exploited to analyze and synthesize the human motion
within a low-dimensional space of physically balanced motions. Furthermore,
model-based approaches are capable to generate more natural-looking motions
compared to goal-directed ones, but the solutions are limited to the database. On
the contrary, goal-directed approaches, for example, the ones based on pseudoin-
verse techniques that performs optimizations in the joint space - which includes
the great majority of constraint-based methods - can achieve a wide range of
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user-defined tasks. However, their disadvantage is the frequent lack of natural-
ness when it comes to reproduce human activities.

As an effort of taking the advantages of model-based and goal-directed meth-
ods, we introduce a data-driven constraint-based motion editing technique, which
combines the particularities of model-based and the versatility of goal-oriented
approaches. Our method is based on the connection between linear motion mod-
els such as Principal Component Analysis (PCA), which is used to estimate
a set of Principal Components (PC) and Principal Coefficients (PCs) [7], and
Prioritized Inverse Kinematics (PIK), which is used to provide interactive mo-
tion editing. These links allowed us to construct a framework capable to solve
a constraint-based optimization problem within the latent space. As a result,
system performance is improved compared to pure goal-direct methods. Fur-
thermore, to make easier the animator’s work, we build a system to allow an-
imators to generate natural-looking motions from key-frame constraints (i.e.,
the constraint is specified at specific poses) and key-trajectory constraints (i.e.,
the constraints are specified over a set of frames representing the trajectory of
end-effectors). In order to enforce the spatio-temporal motion flow, continuity
is imposed through the PC of the underlying motion pattern. By making use
of the PC space, it becomes very efficient to enforce the fluidity of the motion
compared to joint space-based methods. Accordingly, the editing becomes more
intuitive.

To validate our framework, we have designed a number of experiments to
adapt walking jump, reaching and golf swing motions to different situations and
environment. The results are also compared against a constraint-based technique
that performs deformations in the joint space [8]. After reviewing related work,
we start describing the new approach for Data-Driven Constraint-Based Motion
Editing.

2 Related Work

Note that, because of the vastness of the subject, this review is not intended
to be exhaustive. Constraint-based techniques [9,8,10,11,12] provide a powerful
framework to adapt recorded motions to different characters or to new situ-
ations from a set of user-specified constraints, such as end-effectors positions
and end-effectors trajectories. To enforce a motion deformation an IK solver is
normally used to solve user-specified constraints. To preserve the continuity be-
tween frames some IK solvers refer to the previous frame in order to choose a
solution for the current one. When this is not the case other techniques such as
filtering, B-Splines curves, collision avoidance and displacement maps are used
to enforce the naturalness between frame. The main drawbacks of these con-
tinuity strategies are the time wasted traversing the character’s substructures
and computing convolution operations that degrade system performance. Data-
driven approaches rely on mocap data to restrict the solution space of natural-
looking motions. Motion graphs and motion interpolation are used to produce
new motions from a database [13,14,15]. These techniques are not able to handle
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end-effector constraints that are not represented in the motion database. These
techniques present limitations in handling constraints over multiple frames. A
number of researches have developed techniques to synthesize human motion in
a low-dimensional space [1,16,6,2,3], both linear and non-linear models are used.
Despite the fact that natural-looking motions can be produced, these techniques
present some limitations regarding the database size, handling user-specified con-
straints or computation performance. A data-driven constraint-based system was
proposed in [17], but the system was not capable to handle key-frame trajectory
constraints. Recently, Recently, Raunhardt and Boulic [5], have been combined
a data-driven and goal-oriented methods to construct a hybrid postural control
approach overcoming their limitations. The main focus of the work is to treat
the issue of controlling a full-body goal-directed motion (i.e. reach) where lo-
comotion is not necessary. The model is learned from pose variations rather
than motion data. The main difference between this work and ours is that, the
optimization is preformed in the joint space rather than the latent space of the
underlying motion pattern.

3 Motion Pattern Encapsulation

We refer to the process of learning the underlying motion pattern as motion
encapsulation. We define a character pose, as a state vector describing the 3D
global position, Proot and the 3D global orientation Qroot of the root node, and a
set of joint orientations θ, represented by three parameters of the corresponding
exponential map [18]:

Θ =
{
Proot,Qroot, θn

}
. (1)

As we use motion capture (mocap) data from real people, and as each person
tends to perform the same activity with some variability in speed, the database
contains motions that, in general, have different durations. So, a duration nor-
malization is necessary in our approach because the PCA’s parameters are esti-
mated from complete motions. The normalization is carried out by using quater-
nion spherical linear interpolation (Slerp) [19]. A motion is then represented as
a line vector of the form:

Ψi = {Θ1 . . .Θk . . .ΘN}. (2)

Θk is therefore a pose corresponding to a frame index k. Since a given motion
consists of N poses, the motion vector has dimension: D = (n ·N).

Once the mocap data are arranged in a matrix form, we use PCA to find
a low-dimensional data representation, which efficiently acquires the important
nuances of a specific motion pattern. By applying PCA, any normalized motion
Ψi can be approximated as:

Ψi � αiEΨ + Ψ◦ (3)

where Ψ◦ is the mean motion, EΨ are the Principal Components (PC) also
referred as the eigen-motions and αi are the so called Principal Coefficients
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(PCs) that characterize the motion (i.e., the latent space). And a pose, here also
referred as an eigen-pose, can be computed as a function of the scalar coefficients,
αi (i = 1, . . . ,m) and the frame index k:

ψ (k, α1, . . . , αm) � αiEΨ + Ψ◦. (4)

m represents the number of Principal Components that are required to recon-
struct a desired percentage of the database [17]. Note that, the PC and the PCs
are estimated off-line because the PC remain constant. We learn PCA motion
models from three motion patters: walking jumps, golf swings and reaching mo-
tions. In the next section, we show how to explore PCA by building a framework
to perform optimizations directly in the latent space.

4 Data-Driven Constraint-Based Optimization

4.1 Constraints

Providing interactive ways to manage constraints allow users to easily and rapidly
modify preexisting human animations. In particular, geometric constraints, such
as the position of an end-effector in the three-dimensional space [20] or the trajec-
tory of an end-effector [8], are more intuitive for interactive manipulation because
the user can specify a goal just by dragging an end-effector to a new position. We
equip animators with two types of constraints: key-frame and key-trajectory con-
straints as illustrated in Figure 1, both are firstly created in the joint space and
then mapped into the latent space.

Essentially, key-trajectory constraints are modeled as a Kochanek-Bartels
spline [21]. This type of constraints allow the animator to edit a motion by
specifying end-effectors across the whole motion as continuous trajectories. The

(a) (b)

Fig. 1. (a) key-frame constraints. (b) Key-trajectory constraints.
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aim of this formulation is to reduce the work of the animator of manually speci-
fying complete end-effector trajectories. On the other hand, with key-frame con-
straints end-effectors are attached directly on the character’s body and dragged
to knew positions. Key-frame constraints are pure positional constraints, that
is, the effector does not follow any specific trajectory. A key-frame constraint is
simply represented by a three-dimensional point x expressed in the so-called task
space. The animator can use this type of constraints to edit the whole motion
by constraining one key-frame on the motion.

4.2 Low-Dimensional Inverse Kinematics (LIK)

In this section, we demonstrate how standard IK techniques can be adapted to
our needs. If we consider the pose of a virtual character as a n-dimensional vector
(joint space, Eq. 1) and the position of the end-effector, x, as a p-dimensional
vector (task space), the IK function can be defined as:

Θ = f−1(x). (5)

To solve this equation by using the well-known resolved motion rate control
RMRC [22] technique, we need to compute the Jacobian matrix of the for-
ward kinematics function, x = f(Θ). For a redundant manipulator the damped
pseudo-inverse technique can be used [23]:

ΔΘ = J(Θ)†
ξ
Δx (6)

where, J(Θ)†ξ is the damped pseudo-inverse of the p×n-dimensional joint space
Jacobian matrix J(Θ) = ∂x/∂Θ. The damped factor, ξ, is added to prevent Ja-
cobian’s singularities and to stabilize IK solutions. For a redundant manipulator,
i.e., n > p, the problem is ill-posed (i.e., there is no unique solution). Hence, IK
algorithms should determine one solution to Eq. 6 given many possibilities.

As an effort to restrict solutions within the space of feasible motions (i.e.,
the latent space), we integrate the human behavior directly in the optimization
process to obtain more realistic natural-looking solutions. In practice, to compute
the pose increment in the latent space we need to solve following equation:

Δα = J(α)†
ξ
Δx (7)

where, J(α)†ξ is the pseudo-inverse of the PCs Jacobian J(α) = ∂x/∂α, which
relates a variation Δx in the Cartesian space with a variation Δα in the latent
space. The computation of J(α) can be easily carried out with the chain rule [24].
So, once we have the new increment Δα the new pose can be computed in
two steps. First, Δα is added with respect to α to obtain the final principal
coefficients,αυ:

αυ = α+Δα. (8)

Finally, by using Eq. 4, we compute the new state vector as follows:

ψ (k, αυ) ≈ αυEΨ + Ψ◦. (9)
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In the next section, we show how to extend the current approach to deal with
multiple tasks and to resolve their possible conflicts in the latent space.

4.3 Low-Dimensional Prioritized Inverse Kinematics (LPIK)

Let us define a set of p tasks, each one satisfying its goal gj : x(α)j = gj ,
j ∈ [1, . . . , p], and having its corresponding increment, Δx = (Δx1, . . . , Δxp).

In the case of multiple tasks occurring at the same key time k, the optimal
solution α∗ should satisfy all of them, i.e., x(α∗)j = gj , ∀j . However, this may
be difficult because some of the tasks may be in conflict. Tasks are said to be in
conflict when they are not achievable simultaneously.

To solve a conflict task, we use a technique based on a priority strategy. The
major strength of this technique is that prioritized constraints are sorted into
priority-layers. As a result, constraints belonging to the highest priority layer are
enforced first (e.g., feet on the ground). Then, those of the next priority-layer are
satisfied as much as possible without disturbing the previous constraints, and
so on. Based on a previous work done by [22,20], we reformulate the prioritized
strategy to work in the latent space as follows [17]:

Δα = J(α)†
ξ
Δx+ PN(J(α))z (10)

PN(J(α)) = Im − J†(α)J(α).

where J(α)† is the m× p pseudo-inverse of Jα, PN(J(α)) is the m×m projector
operator onto the null-space of Jα, Im is the m × m identity matrix and z is
the m-dimensional PCs variation vector. The algorithm that solves Eq. 10 is
presented in [17]. During the editing the animator has to setup the optimizer’s
parameters, that is, the number of iterations and the damping factor.

5 Imposing Continuity

We introduce two techniques for imposing motion continuity based on PCA.
First, the strategy elaborated for imposing continuity from key-trajectory con-
straints uses the eigen-motion space. As in standard per-frame constraint-based
motion editing techniques [9,8], the user needs to relax the motion by using ease-
in/ease-out time intervals to prevent discontinuities. Note that, the {α} vector
describes a complete motion belonging to the latent space. Therefore, solving
the problem in the latent space for many poses for determining a unique {αυ}
satisfying all the user-specified constraints across the motion, can easily over-
constraints the problem due to the small size of the latent space. In practice,
we ease the constraints by using a frame by frame approach, such that, from to
beginning to the ending of the motion sequence the LPIK optimizes the initial
{α} for each constrained frame obtaining a new set of principal coefficient vec-
tors, such as: {αυ

1 , ..., α
υ
k , ..., α

υ
N}. Therefore, each pose is computed using Eq. 4.

Figure 2 illustrates the process. Second, in our framework, impose continuity
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from key-frame constraints is a straightforward process using the Eq. 3. As the
principal coefficients are learned from complete motions, each vector {α} charac-
terizes a complete animation. Therefore, if the parameter vector is optimized for
a specific key, k, resulting from a constraint imposed on a pose Θk, the updated
set {αυ} defines one full motion belonging to the latent space. Once the solution
coefficients are computed, they are also used to define the other poses on the
motion by using Eq. 3. Figure 2(b) illustrates the process.

(a) (b)

Fig. 2. (a) Once the LPIK converges to a {αυ
k} satisfying all the constraints of a pose

k, the system uses Eq. 4 to recover the deformed pose: Θυ
k = αυ

kEΨ +Ψ◦. The process
is repeated frame by frame. (b) Motion editing from specific key-time constraints. The
complete animation {Ψυ} is computed as: Ψυ = αυEΨ + Ψ◦.

6 Overview of the System

6.1 Implementation

The motion editing system that we use as a basis for all experiments has been
implemented in three languages: C++, C and Matlab. The system is subdivided
in off-line and on-line computations. We used Matlab to construct the PCA
motion model. We chose Matlab because it allows easy matrix manipulation, it
is stable and it is well adopted in the scientific community. The PCA parameters
are stored as text files, which are loaded in the system’s data structure when it
is started. The computationally expensive calculations, such as the optimization
and the motion generation strategy, and the PCA synthesis are all done in C
and C++. In all the experiments reported in this chapter are run on a 3.2GHz
Pentium Xeon(TM) with 1GB memory.

6.2 System Interface and Functionalities

The data-driven constraint-based motion editing system proposed in this work
was integrated into the Autodesk/Maya software as plug-in and MEL scripts.
The character model can be loaded from description files, and interactively edited
in the application. The deformed animation can be saved for future use, either
as a full-body motion or as a set of latent variables. The window devoted to the
management of end-effectors and other objects in the scene is shown in left side
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Fig. 3. Data-driven constraint-based motion editing system interface. The green and
white cubes represent the reaching positing in the database.

of Figure 3. End-effector can be created by selecting among a list of predefined
joints available in the window (left side of Figure 3). Another alternative and
more direct solution is to pick a point on the surface of a character body with
the mouse pointer, in the application window. This allows to control any visible
part of the character body just by clicking on it.

7 Experiments

In this section, we have designed three case studies to evaluate the usability
and the performance of the proposed data-driven constraint-based motion edit-
ing system. To validate our framework, we perform experiments to compare our
approach against a prioritized constraint-based technique that performs defor-
mations in the joint space [8], regarding performance, robustness, simplicity,
continuity and realism, by synthesizing golf swing, walking jump and reaching
motions. For a fair comparison between both techniques, in the joint constraint-
based system, we set the parameters of the optimizer as suggested by the authors.
We made the same with our system.

In the first case study, we have retarget a golf swing, with 132 frames, executed
on a flat ground to a up slope ground with 7◦ anti-clockwise, by adjusting the
feet position and by shifting the hit position of the golf club head, Figure 4.
We used a motion model learned from 16 normalized golf swings played on up
slopes, for angles ranging from 0.5◦ to 5.0◦ (anti-clockwise), by increments of
0.5◦, each motion has 132 frames. We used a database percentage of 98%, which
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(a) (b)

Fig. 4. The initial hit position is illustrated by a transparent ball. In both methods
the golfer hits the ball (a,b), but with the PIK the club head hit the ground (b).

(a) PIK (b) LPIK

Fig. 5. Pink arrow shows the current foot position and the red shows the sliding gap

gave m = 15 dimensions, and we set the optimizer’s parameters to: 100 number
of iterations and ξ = 0.8. The adjusted posture, at frame 94, and the position of
the golf club with respect to the hands were the same in both cases. A key-frame
constraint were used for the data-driven approach and key-trajectory constraints
were used instead for the the joint approach, as it cannot handle key-frame
constraints. It is important to mention that, the 7◦ slope was not learned by the
model. The motion editing system based on the joint optimization generated
a less realistic swing motion compared to one based on the latent space. We
observed that, the character’s left hand lost the contact with the golf club and
the club head hit the ground. On the contrary, with the proposed approach, only
one key-frame constraint was necessary - on the hit pose - to achieve a globally
continuous motion. The computing performance needed to generate the up slope
motion for the joint and latent approaches were 102 and 3 seconds, respectively.

In the second case study, we considered a simple task: the character has to
reach an object. We then attached one constraint on the character’s hand, at
frame 50, to drive the reach in the direction of the goal. The constraint was
activated over all frames because the character had to follow the path from
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Fig. 6. Fist row shows the input and the generated motion by the PIK-based system.
Second row the same for the LPIK-based system. The pink arrow shows the current
foot position, the red the sliding gap and the blue the anticipation.

start to end. This constraint configuration was used in both systems. We used
a motion model learned from 16 normalized reaching motions, such that each
motion has 50 frames. We considered a database percentage of 98%, which gave
m = 15 dimensions, and we set the optimizer’s parameters in both systems to:
100 number of iterations and ξ = 10. We observed in Figure 5 that the PIK-based
system generated a motion in which the character slides to reach the green bar.
On the other hand, the latent space generated an animation without introducing
motion artifacts foot slides.

In the last case study, we took a walking jump sequence of 0.8m and we mod-
ify it to produce a higher jump. By attaching one constraint on the character
root node, at frame 15, which is the time of the apex of the jump, and moving
the constraint to a higher location. We used key-trajectory constraint for the
joint approach and key-frame constraints for the latent one. We have used a
motion model learned from 89 normalized motions of five men and one woman
performing walking jumps of 3 lengths ranging from 0.4m to 1.2m, by increments
of 0.4m, such that each motions has 26 poses. We used a database percentage
of 95%, which gave m = 30 dimensions, and we set the optimizer’s parameters
in both systems to: 100 number of iterations and ξ = 10. The end-effector’s
final goal was the same in both systems. Figure 6 shows the generated motions
from key-trajectory and key-frame constraints. The PIK-based system produced
a higher jump motion, but by moving the constraint to a higher position made
the character lose ground contact, which is not desired because its not natural.
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On the other hand, LPIK-based system not only generated a higher jump, but
also the resulted animation kept ground contact.

8 Conclusions

In this work, we have proposed a new approach for data-driven constraint-
based motion editing. Our technique is based on the link between linear motion
models such as Principal Component Analysis (PCA) and Prioritized Inverse
Kinematics (PIK). The connection of both techniques allowed us to construct a
Low-dimensional Prioritized Inverse Kinematics (LPIK) framework. The solver
handles deformation problems within the latent space of some underlying mo-
tion pattern. By making use of the pattern space, we increased the possibilities
of performing IK in the space of feasible poses.

We have demonstrated that our method achieves a degree of generality be-
yond the motion capture data. For example, we have retarget a golf swing motion
to a 7◦ up slope using constraints that cannot be satisfied directly by any mo-
tion in the database, and have found that the quality of the generated motion
was believable. We have seen that our approach is well-suited to deal with de-
formations and retargeting problems. We have demonstrated the robustness of
our approach, deforming three types of movements and comparing the results
against a goal-directed constraint-based technique that perform optimizations
in the joint space. The system behaves well and robustly, as long as the model
has sufficient information to handle the user-specified constraints.
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