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Abstract—An alternative analytical approach to calculate the weakly
singular free-space static potential integral associated to uniform
sources is presented. Arbitrary oriented flat polygons are considered
as integration domains. The technique stands out by its mathematical
simplicity and it is based on a novel integral transformation. The
presented formula is equivalent to others existing in literature, being
also concise and suitable within a singularity subtraction framework.
Generalized Cartesian product rules built on the double exponential
formula are utilized to integrate numerically the resulting analytical
2D potential integral. As a consequence, drawbacks associated to
endpoint singularities in the derivative of the potential are tempered.
Numerical examples within a surface integral equation-Method of
Moments framework are finally provided.

1. INTRODUCTION

Surface integral equation (SIE) formulations are commonly used to
solve a wide range of electromagnetic problems [1-5]. The SIE can
be set either in terms of fields or in terms of potentials, calling
typically in both cases for the accurate evaluation of multidimensional
singular integrals. A formulation through fields magnifies this issue,
since the computation of strongly singular and hypersingular integrals
is required. Nevertheless, the problem is mitigated if potential
formulations are utilized, since the integration of weakly singular
functions is only needed.

According to the specific problem, the above-mentioned multi-
dimensional weakly singular integrals can be generically tackled by
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direct evaluation [6], singularity cancellation [7-9] or singularity sub-
traction [10-16] techniques. The last approach splits the integral into
regular and weakly singular parts, which are treated separately. Nu-
merical and analytical integration strategies are respectively employed
for regular and singular terms. Interested readers could consult [6] for
a more detailed survey of relevant previous work.

Static potential Green functions (GF) are inherent to the cited
singular part, being the only functions to integrate in various practical
situations. This is the case required when using the Method of
Moments (MoM) [17] with low order basis functions to discretize
the Mixed Potential Integral Equations (MPIE) [18], or when SIE-
MoM strategies are utilized to tackle static problems [16]. Within a
MoM framework, a Galerkin procedure invokes the static potential GF
multidimensional integrals over source and observer domains, which
are typically polygonal flat patches employed to mesh the surface
of the objects under study. In general, a more accurate geometrical
modeling of composite structures and a more efficient corresponding
analysis requires different building elements, commonly triangles and
quadrilaterals [19]. It is also reported that using solely quadrilateral
meshing instead of triangular one could lead to a substantial reduction
of the necessary number of degrees of freedom [20].

For the self-case (identical source and observer domains),
the analytical expressions of the aforementioned integrals are
available in literature for the most popular mesh schemes, namely
triangular [12, 13] and rectangular patches [16]. More specifically, the
last paper provides also the full analytical solution for several cases
of interest, where source and observer rectangular domains do not
intercept. Nonetheless, this is not the situation in the general case
and even less for other shapes of obvious interest like quadrangles [21-
23], or arbitrary polygons. Here the problem is solved by applying
numerical integration techniques on the observer patch to the resulting
analytical potential integral on the source patch. This strategy keeps
its validity and accuracy for all the possible arrangements of source
and observer domains. Of course, singularities of higher order (e.g.,
gradient of Green’s function) call for a more elaborate treatment, as
illustrated in [24].

This manuscript is devoted to the deep analysis of the prior
approach. Analytical formulas to evaluate the potential integral on
generic polygons have been derived in [10] through Gauss integral
theorems. Basically, the surface integral is transformed into an
integral over the boundary of the polygon plus a residue calculated
in the neighborhood of the singularity. A related procedure is
used in [11] for the specific case of the triangle, whereas the same
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case is solved in [7] by utilizing some relations in [25]. Here, an
alternative technique, which stands out by its mathematical simplicity,
is proposed to calculate the analytical expression of the potential
integral. Just like in [7, 10, 11], the technique is based on a subdomain
decomposition strategy. But on the contrary, the contribution of each
subdomain is analytically calculated through an, to the best of our
knowledge, original transformation. It can be easily proved that the
final expression presented in this paper is equivalent to those in [10, 11],
being also concise and suitable for numerical integration.

In Galerkin schemes (undoubtedly the most popular version of
MoM) the potential must be integrated again over the observation
domain.  Therefore, when source and observation domains are
coincident or adjacent we are confronted with the problem of
integrating a continuous function with infinite derivatives at the
integration domain’s boundaries. This explains why the standard (e.g.,
Gauss-Legendre) 2D quadratures currently available in the literature
fail to produce accurate results. This drawback can be alleviated
via the usage of numerical rules tailored to integrate functions with
endpoint singularities, as indicated in [26,27]. Here, these rules are
applied to the previous analytical potential integral within a SIE-MoM
context, and this is the second relevant contribution of this paper.

2. GEOMETRICAL CONSIDERATIONS AND
ALTERNATIVE ANALYTICAL APPROACH TO
EVALUATE THE POTENTIAL INTEGRAL

2.1. Statement of the Problem

The targeted 4D integral, which can appear when MoM-Galerkin
schemas together with low order basis functions are utilized within
singularity subtraction framework, is of the form

I:/S/I;dS’dS. (1)

In (1), S is the outer integration domain, which embraces all the
observation points r = (z,y,z). On its turn, the source points
v = (2/,y,2") are enclosed by the inner integration domain S’.
Both domains are considered to be arbitrarily oriented flat polygonal
patches, as depicted in Fig. 1. Also in (1), 1/R is a static potential GF
(except the constant 1/47ep) with R = |r — 1’| the distance between

observation and source points. Therefore, the inner integral in (1)

V://;dS’ (2)
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X

Figure 1. Arbitrarily oriented flat polygonal patches in the Cartesian
frame (x,y, z), where I is performed.

physically represents the scalar potential V' bounded to a uniform unit
charge density distributed over a arbitrarily located flat polygonal
surface S’ The boundary 0S’ enclosing S’ contains the N
polygon’s nodes rj, (n = 1...N), which are assumed to be ordered
counterclockwise with regard to the polygon surface unitary vector f.
The value of this vector is easily generated from the nodes as i = n/|n]|,
being n = (r}, ; —rp) X (X o — ryyq) with n a value between 1 and
N — 2. An alternative analytical approach to solve (2) is presented in
this manuscript and described in the next subsections.

2.2. Auxiliary Local Cartesian Frame

Commonly, the mathematical complexity of this problem is reduced
by solving the problem in an auxiliary local Cartesian frame (u, v, w).
Here, this frame is located at rg = (r — i - ¢), with ¢ = (r — ) - i
(for any n), so that w = f and the vectors @ and v are within the
plane 7 containing the polygon. Therefore, as exemplarily shown for
a generic quadrangle in Fig. 2, within the new local frame, the point
represented by r is confined in the w axis with coordinates (0, 0, ¢) and

any point r’ can be expressed as (u,v,0). Consequently, the resolution
of

V= / S as’ (3)
VE TR E
in this frame is equivalent to solving (2) in the original coordinate
system (x,y, z). Also in Fig. 2, the vectors p!, = r,, — rg, lying in
Z and representing the position in the original Cartesian frame of
the node r}, from the origin rg of the new local coordinate system, are
shown.
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Figure 2. Main features linked to the auxiliary local Cartesian frame
(u,v,w) within which the potential integral is solved.

u

Figure 3. Geometrical description of a generic triangle T, which
is associated to the analytical resolution of V through a domain
decomposition technique and a polar coordinate transformation.

2.3. Domain Decomposition Strategy

The required analytical effort to solve (3) is usually tempered through
the usage of a domain decomposition technique. Namely, the
integral (3) over S’ is expanded as a sum of N integrals over simpler

domains as
N 1
V= s / - d9'. 4
;" W V20T 4 2 W

These domains, denoted in (4) as T}, and described in Fig. 3, result to

a set of N triangles which are enclosed by &7, whereas in [10, 11] are
the edges of the polygon. It is appreciated in Fig. 3, that 7T;, is built
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by means of the vectors h,, = ph, — p!™, being p™* and p}, respectively
either pj, and pj,; forn = 1...N — 1 or pfy and pj for n = N.
Also in (4), s, = sgn(n- (p™ x ph)) is the sign of the contribution
to V of each subintegral. Among the domain decomposition schemes
described in the literature, this choice permits a more intuitive, simple
and robust computation of the sign associated to each contribution
from orthogonal vectors to the polygon. Also note, that if r is in a
polygon edge or its extension, which is the situation where p™||ph,
then the contribution linked to this edge vanishes.

2.4. Polar Coordinate Transformation

A close expression for (4) is only possible if its associated integrals
are solved analytically. In this work, this has been done by starting
with the employment of a common polar coordinate transformation,
typically used in a singularity cancellation context [7]. Therefore,

N oP _dn__
n cos (a) p
V= g s / / ———— dpda (5)
ot " Jag Jo VP2t

where all the involved geometric quantities can be inferred from
Fig. 3 as d, = |p™ - (h, x )|, o™ = tan™! (p™ - h,/d,), of =

n

tan~! (p& - b, /d,) and h, = hy/|hy]|.

2.5. Preliminary Analytical Processing

The first steps to solve (5) analytically are straightforward if the
integral transformation ¢ = p2 + ¢? is employed in the inner integral.
Therefore, (5) becomes

N of a 2
V:an|c\ /m \/1+ <c0s7ga)> do — Aay, (6)
n=1 Qn

with Aa,, = abh — o and a,, = d,,/|c|.

2.6. Novel Integral Transformation and Close Form of V'

This subsection is devoted to describe the analytical procedure
associated to the resolution of the integral in (6). This procedure
stands out by its mathematical simplicity and is based on, to the
authors’ knowledge, a novel integral transformation, which is of the
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form '
Y= sin () . 7)

14 (cosia)>2

Expression (7) has been obtained after combining three simpler
changes of variable, which allow recursively solving the integral
associated to (6) in three steps. These changes are 3° = 1 +
(an/cos(a))?, n = p%+band v = \/n/(n—>), with b = —(1 + a2).
The transformation (7) can be directly utilized in (6), so that the
integrand becomes a rational function. Therefore, after a classical
fraction decomposition process, (6) becomes

'Yn d 'Yg d
V= an\cl an/ fy2+/ %—Aan (8)
L=n W ap <1+ L%)

with y,ﬁm’p) = sin (agm’p))/\/l + (cos (aglm’p))/an)? The solution of the
integrals appearing in (8) is really well known (2.143 in [25]) and lead
to the final analytical expression for V', which is also the solution of (2),

Z sn{ tanh (v2) — tanh ™! (’y,T))

+c| [tan_l <’Cc‘l;%> —tan~! <’Cilf‘n> — Aan] } (9)

As it has been mentioned, different analytical formulas exist in the
literature for (2). The present approach, summarized in (6), (7)
and (9), uses only elementary mathematics and is very well suited
for being employed in numerical codes, since it is concise and easily
programmable in functions of clearly identifiable geometric quantities.

2.7. Formula Validation

Here, (9) will be verified through a simple numerical experiment. This
experiment is addressed to ascertain that this expression fulfils the
physical properties bounded to the potential produced by a uniform
charge distribution over a flat polygon. The selected source polygon
is a rectangle lying on the XY plane, whose center is located at
the coordinate origin. The rectangle edges, which are parallel to the
coordinate axes x and y, measure respectively 0.01 along z and 1 along
y. A total charge of 1 C is assumed to be distributed over the polygon
surface. The observation points are r, = (0,0,%) and ry = (0,¢,0),
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Figure 4. Resulting potentials after utilizing V' for a rectangle lying
on the XY plane, whose edges measure 0.01 m along « and 1 m along
y. The observation points are r, = (0,0,v) and ry = (0,,0) with
= (—1.5:1.5).

being ¢ = —1.5 : 1.5. The behavior of V' on the polygon’s surface
S’ and its boundary 95’ is checked by computing (9) on the z and
y axes. The resulting potentials are represented in Fig. 4, where it
can be appraised that the basic classical potential theory predictions
are verified. Firstly, the potential is symmetric and continuous in
both S” and 9S’. Secondly, the potential’s directional derivative in
a direction crossing S’ and parallel to n will be discontinuous on S’,
since V' exhibits an angle point at (0,0,0) in this case. Thirdly, this
derivative will be singular on 95’ in a direction lying on the plane .Z°
enclosing the polygon. This fact, which will be of relevance in the next
section, can be inferred from Fig. 4, where the infinite value of the
slope’s tangents to V' at (0, —1/2,0) and (0,1/2,0) is easily intuited.

3. ON THE NUMERICAL INTEGRATION OF THE
POTENTIAL DUE TO A UNIFORM CHARGE
DISTRIBUTION OVER AN ARBITRARILY ORIENTED
FLAT POLYGON

Doubtlessly, the Galerkin method is the most popular technique to
discretize potential SIEs through the MoM. Within this framework, the
use of low order basis functions together with mesh schemas compound
by arbitrarily shaped polygonal patches invokes the integration of
the expression (9) on the observer patch. Provided that, singularity
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subtraction techniques are utilized or static problems are tackled.
Typically, this integral on the observer patch is numerically performed
through the employ of standard Gaussian quadratures, as for example
Gauss-Legendre (GL) rules. It has to be pointed out that the abscissas
of theses rules represent physically the observer points r enclosed by S
in (1). In this section, we demonstrate a new approach for overcoming
the inaccuracy linked to the usage of GL quadratures, after analyzing
by analytical means the source of the problem.

As empirically inferred from Fig. 4, the derivatives of expres-
sion (9) will exhibit endpoint singularities on 95’ in a direction lying
on the plane .27 housing the polygon. As aforementioned, this fact is
totally coherent with classical potential theory, considering that these
derivatives are connected to the electric field in .27, which is produced
by a uniform surface charge distribution confined within a polygon,
being this field singular in the polygon boundary. In the enhance-
ment of the numerical integration of (9), it is crucial to have a good
knowledge of the analytical features inherent to the singularity which
is being faced. This objective can be easily attained through the study
of the potential in the plane confining the polygon, which results to
the expression (9) for ¢ = 0. In this case, the employ of the identity

sin (tan~! (1)) = 7/v/1 + 72 leads to 7™ | = p™P) - h, /| o)),

with ]pn ’p)| \/d2 ime) n)?, easily deduced from Fig. 3. Con-

sequently, after some basm algebraic manipulations, (9) for ¢ = 0 can
be now expressed as

N
Z [d, In (A2 A™) — 2d,, In (d},)] (10)

where AL = (|ph] + pb - hy) and A7 = (|p?*| — p™ - hy,). Direct
inspection of (10) clearly reveals that, for any extension, an endpoint
singular behavior is produced by d,, In (d,,) in the directional derivative
dVo/dd, when d,, — 0 (i.e., for r in &7 and tending to 8S’). This
endpoint logarithmic singularity can be explicitly appraised in the
expression of the electric field Eg produced by a polygonal uniform
charge distribution when ¢ = 0, which invokes the calculation of the
gradient of (10). The analytical expression of this field is

zé {2D [m(d )—1n<\/M)+1] dn B;jtiﬂ} (11)

(b + pb/IohD), DI = (b — p1/lpl)) and DY =
nx0))(h, x n). In Flg. 5, the singular behavior of

where DB

—sgn(py’ - (

=
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Figure 5. Computed electric field magnitude in the XY plane for a
charge density uniformly distributed on a 1m edge square, which lies
in the XY plane and is centered at the origin.

(11) is illustrated through the representation of |Eg| produced by a
o = 1C/m? surface charge density, which is uniformly distributed over
a 1m edge square, which lies in the XY plane and is centered at
the origin. It has to be pointed the irrelevance of the shape of these
boundaries. Namely, the same sort of singular behavior is expected
for a polygonal contour, whose number of edges is either finite or,
in the limiting case, infinite, as for instance a circumference or a
curved patch. This fact is obvious when the singular behavior obtained
in (11) is compared with the classical analytical solution giving the
electrostatic field created by a uniformly charged disk on its edge [28].
Therefore, it can be concluded that mesh schemas based on curved
contour patches [29] are not devoid of the inconveniences caused by
these endpoint singularities.

As aforesaid and illustrated in (1), a Galerkin schema within a
MoM framework can invoke the computation of the integral of (9) over
the observer domain. According to the relative position of this domain
with regard to the source patch, the integration scenarios of interest,
in which the singular behavior in the derivatives of (9) is enhanced,
can be classified as weakly singular or near singular. On the one hand,
weakly singular situations appear when source and observer domains
are the same or share an edge or a vertex. On the other hand, near
singular cases arise when source and observer cells are very close but
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their boundaries are totally separated.

Gaussian quadratures are tailored to numerically integrate smooth
functions, namely, continuous functions with continuous derivatives.
This is not the case in the above-mentioned situations, where the
terms d,, In(dy,) of the integrand magnify the logarithmic endpoint
singular behavior of the integrand’s derivatives in the patch boundary.
Functions exhibiting this type of singularity are accurately integrated
by means of the double exponential (DE) quadrature formula, as
demonstrated in [26]. On its turn, [27] evinces that generalized
Cartesian product rules, based on this formula, outperform Gaussian
rules for some situations of interest. These situations are, weakly
singular scenarios related either to coincident or to adjacent orthogonal
domains and the near singular case associated to very close parallel
cells.

In this manuscript, the weakly singular cases related to coplanar
domains sharing an edge or a vertex are presented. These situations
appear in most of the mesh schemas linked to planar of faceted
structures. This study is performed, without loss of generality, through
the employ of square source and observer patches. The source patch’s
nodes are rj = (1/2,-1/2,0), vy = (1/2,1/2,0), ry = (—1/2,1/2,0)
and rj, = (—1/2,-1/2,0), whereas the observer patches are set by
ri = (1/2,1/2,0), r2 = (1/2,3/2,0), r3 = (-1/2,3/2,0), r4 =
(—1/2,1/2,0), for the adjacent case, and r1 = (—1/2,1/2,0), ra =
(—1/2,3/2,0), r3 = (—3/2,3/2,0), r4 = (—3/2,1/2,0) for the common
vertex situation. Fig. 6 and Fig. 7 show respectively for adjacent and
common vertex cases, the relative error when calculating the source
integral through (9) and the observer integral by means of generalized
2D Cartesian product rules based either on the DE formula or on the
Gauss-Legendre rules. The reference solutions of the 4D integrals are
computed by utilizing the analytical expressions in [16]. The cubature
levels for the numerical integration are defined as in [27], corresponding
levels 0, 1, 2, 3, and 4 respectively to 7, 13, 25, 51 and 101 integration
points per dimension. It can be appreciated in Fig. 6, that DE based
rules outperform the Gaussian schemes for the adjacent case, whereas
Fig. 7 exhibit that both numerical integration strategies are equivalent
for the common vertex situation. This occurs because, in the last
case, most of the observer domain is located in a smooth variation
region of the fields, so that the potential can be accurately integrated
through Gaussian rules. On the contrary, in the adjacent situation,
the observation patch includes a substantial part of the singular region
of the fields. Consequently, Gaussian rules lose their accuracy in favor
of DE based rules, which are tailored to work in this endpoint singular
region of the potential derivatives.
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Figure 6. Relative error in calculating the 4D adjacent case weakly
singular integral utilizing V' together with a 2D generalized Cartesian
product rule based on the DE formula and Gauss-Legendre quadrature
rules. Source cell nodes are rj = (1/2,-1/2,0), ry = (1/2,1/2,0),
ry = (—1/2,1/2,0) and v, = (—1/2,—1/2,0), whereas observer cell
vertices are r1 = (1/2,1/2,0), ro = (1/2,3/2,0), rg = (—1/2,3/2,0)
and rq = (—1/2,1/2,0).

Significant Digits of Relative Error

-—GL
oL’ ‘ ‘ ‘ = mDE

2
Level of Cubature

Figure 7. Relative error in calculating the 4D adjacent case weakly
singular integral utilizing V' together with a 2D generalized Cartesian
product rule based on the DE formula and Gauss-Legendre quadrature
rules. Source cell nodes are r} = (1/2,-1/2,0), ry = (1/2,1/2,0),
rs = (—=1/2,1/2,0) and v, = (-1/2,—1/2,0), whereas observer
cell vertices are r1 = (—1/2,1/2,0), ra = (-1/2,3/2,0), rzg =
(—=3/2,3/2,0) and rqy = (—3/2,1/2,0).



Progress In Electromagnetics Research, Vol. 117, 2011 351

4. NUMERICAL EXAMPLE

As aforementioned, the formulation presented here is useful to compute
the MoM matrix elements through a singularity subtraction strategy.
Basically, this strategy consists of extracting a static problem from
a complete full-wave problem. Namely, the GF static part, which
includes the GF spatial singular behavior, is separated from the GF
dynamic part and processed severally. Consequently, the computation
of a static MoM impedance matrix is invoked. Therefore, it can be
concluded that a good knowledge of the static interactions in the
structures under study is mandatory, since they are not only relevant
for the zero frequency case; otherwise they play a very important role
in the whole spectrum.

This section is devoted to show the worthiness of using 2D
Cartesian product rules based on DE formula to integrate potentials
as (9) to compute the Galerkin-MoM matrix static interactions within
a SIE-MoM framework. The resolution of a very simple static problem
is only required to achieve the objective. This problem consists of
computing the total charge of a trapezohedron at 1V from the induced
charge on its surface. The inset in Fig. 8 shows the 3D trapezohedron,

Significant Digits of Relative Error

2
Level of Cubature

Figure 8. Relative error in calculating the total charge in a
trapezohedron at 1V. Trapezohedron’s bottom and top sides are
parallel squares separated by 0.5 m and centered at z axis. The squares’
edges measure respectively 1m for the bottom side and 0.5m for
the top one. The SIE (12) is discretized through the MoM, whose
associated matrix is computed by means of V together with a 2D
generalized Cartesian product rule based either on the DE formula
or on the Gauss-Legendre quadrature rule.
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whose bottom and top sides are parallel squares, which separated by
0.5m and centered at z axis. The lengths of the squares’ edges are
respectively 1m for the bottom side and 0.5m for the top one. The

SIE to solve is is’
US/
=1 12
/ "R (12)

where S’ is the surface of the trapezohedron and og/ the surface charge
density, which is expanded by means of uniform basis functions on
each cell. All the needed MoM matrix integrals are related to the
weakly and near singular interactions previously described. It has
to be pointed out that the static MoM matrix, which is associated
to the MPIE full-wave analysis of the same structure, can be built
from the MoM matrix required here, if low order basis functions are
used [18]. These matrix elements are computed by integrating (9)
through 2D generalized Cartesian product rules based on the DE and
Gauss-Legendre rules, for levels 0, 1, 2, 3 and 4 in both cases. The
relative errors in the resulting total charge are shown in Fig. 8. The
reference solution for this error is also computed though 2D generalized
Cartesian product rules based on the DE quadrature with level 6 (405
points per dimension). It can be clearly appraised in Fig. 8, that the
joint use of (9) and DE-based rules outperform Gaussian rules within
a complete SITE-MoM framework.

5. CONCLUSION

A novel integral transformation is presented for the analytical
calculation of the weakly singular free space static potential integrals
associated to uniform sources distributed over arbitrarily shaped
flat polygons. = When compared with other existing techniques,
this transformation eases considerably the mathematical effort and
provides a concise, operative and accurate framework to the singularity
subtraction procedures.  The equivalency between the obtained
expression with this alternative strategy and other existing formulas
can be proven. Numerical integration drawbacks, bounded to the
endpoints singularities in the derivatives of the analytical potential
integral, are alleviated through the usage of generalized Cartesian
product rules based on the DE formula. Numerical examples
showing these aspects are presented within a SIE-MoM framework,
demonstrating the interest of using the global approach presented
in this paper for the double surface integrals appearing in Galerkin
formulations.
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