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Abstract—A generalized version of the weighted-averages method
is presented for the acceleration of convergence of sequences and
series over a wide range of test problems, including linearly and
logarithmically convergent series as well as monotone and alternating
series. This method was originally developed in a partition-
extrapolation procedure for accelerating the convergence of semi-
infinite range integrals with Bessel function kernels (Sommerfeld-type
integrals), which arise in computational electromagnetics problems
involving scattering/radiation in planar stratified media. In this paper,
the generalized weighted-averages method is obtained by incorporating
the optimal remainder estimates already available in the literature.
Numerical results certify its comparable and in many cases superior
performance against not only the traditional weighted-averages method
but also against the most proven extrapolation methods often used to
speed up the computation of slowly convergent series.

1. INTRODUCTION

Almost every practical numerical method can be viewed as providing
an approximation to the limit of an infinite sequence. This sequence is
frequently formed by the partial sums of a series, involving a finite
number of its elements. Unfortunately, it often happens that the
resulting sequence either converges too slowly to be practically useful,
or even appears as divergent, hence requesting the use of generalized
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convergence concepts. Indeed, problems with slow convergence or
divergence were of course already encountered in the early days
of calculus. The idea of applying suitable transformations for the
acceleration of the convergence of a series or for the summation of
a divergent series is almost as old as calculus itself [1, 2]. These
transformations accomplish this deed by converting a slowly converging
or diverging input sequence into another sequence with hopefully better
numerical properties.

Sequence transformations can mainly be categorized into linear
and nonlinear ones. As typical examples of linear transformations,
we mention Euler method [3, 4], which is applicable only to alternating
series, and the more general-purpose weighted-averages (or generalized
Euler) method [5–8]. On the other hand, Shanks transformation [9]
and the generalized Levin transformation [10] stand as two of the
most representative members of the nonlinear methods. In practical
problems, Shanks transformation is efficiently implemented via a
recursive scheme, i.e., Wynn’s ε algorithm [11], while in Levin
transformation, structural information of the sequence is explicitly
incorporated in the overall procedure, resulting in some of the most
powerful and most versatile sequence acceleration methods that are
currently known [12]. Interested readers should consult the excellent
monograph [13] for a complete history of previous work relevant to the
extrapolation methods.

Although nonlinear transformations stand nowadays as the
dominant solution both for mathematical research and practical
applications, it is believed that linear transformations could be
further improved in order to retain a prominent place in standard
mathematical subroutine libraries. Moving towards that direction,
a generalized version of the weighted-averages method for the
acceleration of slowly convergent series and sequences is presented
herein. The basic philosophy of the method was originally introduced
in [14–16] for accelerating the converge of Sommerfeld integral tails.
This method used the analytic form of the remainder estimates (since
the knowledge of the asymptotic behavior of the Sommerfeld-type
integrands is usually available), leading to a simple and efficient
implementation of the weighted-averages method. According to a
recent review paper [17], the resulting algorithm has proven to
perform in a comparable or even a better way than the most popular
extrapolation methods used for Sommerfeld tails. Often, numerical
integration of Sommerfeld integral tails is used as reference for
the evaluation of multilayered Green’s functions by various other
methods [18, 19]. But the usefulness of this method may go well beyond
Sommerfeld integrals as already hinted in the exhaustive monograph
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by Homeier [20].
In this manuscript, focusing on the acceleration of convergence and

the summation of series, we present a generalized weighted-averages
method together with some simple remainder estimates already
available in the literature. The proposed algorithm is of paramount
importance for the electromagnetics community, since problems like
the efficient computation of Z-parameters for the rectangular planar
circuit analysis [21] and the MoM solution of the Hallen’s equation [22],
among many others, call for efficient extrapolation methods without
a priori information of the exact remainder estimates. At last,
the proposed scheme is compared with some proven extrapolation
methods, like λ-transformation, Levin’s transformation with all its
variants and ε algorithm of Shanks transformation and the comparison
is performed for various series with different types of convergence.

2. EXTRAPOLATION TECHNIQUES

The computation of an infinite series

S =
∞∑

i=0

ui (1)

with partial sums

Sn =
n∑

i=0

ui, (2)

consists in finding the limit of the sequence of those partial sums as
n →∞, i.e.,

lim
n→∞Sn = S. (3)

In the case of slowly convergent sequences, though, the remainders
rn = Sn − S (4)

do not decay rapidly with increasing n, hence, the efficiency of
the direct sum is dramatically limited. One way to tackle the
aforementioned deficiency and accelerate the convergence of the
sequence {Sn} is by the means of a transformation (linear or nonlinear)
from the original sequence {Sn} to a new sequence {S′n} with rapidly
decaying remainders r′n.

Numerous series acceleration methods are based on the optimal
extraction of the information contained in the sequence of partial sums.
The efficiency of the extrapolation method may depend on the type of
the convergence of (2) and (4), based on the behavior of the ratio

λn =
Sn+1 − Sn

Sn − Sn−1
=

un+1

un
. (5)
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More specifically, in the case of convergent series for which the limit of
λn exists as n →∞,

λ = lim
n→∞λn, (6)

the convergence is said to be:

• Linear, if |λ| ∈ (0, 1)
• Sublinear or logarithmic, if λ = 1
• Superlinear or of higher order, if λ = 0

Moreover, the series is asymptotically monotone if λ > 0 and
alternating if λ < 0.

Most of the proven extrapolation methods are based on the
construction of acceleration algorithms that are exact for the model
sequence [23–25]

Sn = S +
k−1∑

i=0

aiψi(n), n ≥ 0, k ≥ 1, (7)

where ψi(n) are known but otherwise arbitrary functions.
For instance, the choice ψi(n) = Sn+i+1 − Sn+i leads to the

(nonlinear) Shanks transformation. The linear system of equations,
obtained by writing (7) for the indexes n, . . . , n + k can be solved in
terms of determinants using Cramer’s rule:

ek(Sn) =
Dk[Sn;4Sn+i]
Dk[1;4Sn+i]

, (8)

where

Dk[Sn;∆Sn+i] =

∣∣∣∣∣∣∣∣∣∣∣

Sn . . . Sn+k

∆Sn . . . ∆Sn+k

...
. . .

...

∆Sn+k−1 . . . ∆Sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣

. (9)

Although efficient methods for solving determinants in (8) exist [13],
the most convenient way of computing the Shank’s transformation is
a recursive scheme of ε algorithm given by:

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

∆ε
(n)
k

, n, k ≥ 0 (10)

with ε
(n)
−1 = 0, ε

(n)
0 = Sn, and ∆ being the forward difference operator

defined by ∆ε
(n)
k = ε

(n)
k+1− ε

(n)
k . If S0, . . . S2k are known, ε

(0)
2k is the best
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approximation of S, while if S0, . . . , S2k+1 are known ε
(1)
2k would be the

best approximation of S.
On the other hand, by choosing ψi(n) = ωnn−i in (7), we get

the generalized (nonlinear) Levin transformation. In this case, the
remainders for the model sequence are given by

rn = ωn

k−1∑

i=0

ain
−i, n ≥ 0, k ≥ 1, (11)

where ωn are the associated remainder estimates, which can
accommodate explicitly structural information on the n-dependence of
rn, i.e., the behavior of the dominant term of the remainder for large
values of n. If the remainders of the model sequence (7) are capable
of producing sufficiently accurate approximations to the remainders of
the sequence {Sn}, then the application of the sequence transformation
to k + 1 sequence elements should produce a sufficiently accurate
approximation to the (generalized) limit {S} of the input sequence.
Among various options, in cases where the information about the
asymptotic behavior of the terms is not available or is difficult to
extract, the following four choices of the numerically derived remainder
estimates have been suggested as optimal in the literature [10, 26, 27]:

ωn = un+1, (12)
ωn = un, (13)
ωn = nun, (14)

ωn =
unun+1

un+1 − un
. (15)

The above choices yield, respectively, the t′ transformation of Smith
and Ford [7] and the t, u and v transformations of Levin [10]. Although
these simple remainder estimates were suggested on the basis of
heuristic and asymptotic arguments, they often work remarkably well.
More specifically, t′ and t transformations are capable of accelerating
linear convergence and they are particularly efficient in the case
of alternating series, but fail to accelerate logarithmic convergence.
Levin’s u and v transformations, on the other hand, are more versatile
since they do not only accelerate linear convergence but also many
logarithmically convergent sequences and series [1].

3. GENERALIZED WEIGHTED-AVERAGES METHOD

The weighted-averages method [8], or generalized Euler transforma-
tion [6, 7], or λ-transformation [5], could be considered as a more so-



238 Polimeridis, Golubović Nićiforović, and Mosig

phisticated version of the Euler’s transformation, i.e., the simple aver-
aging procedure

S′n =
1
2
[Sn + Sn+1]. (16)

More specifically, the use of weights for the consecutive partial sums
leads to the following formula:

S′n =
WnSn + Wn+1Sn+1

Wn + Wn+1
. (17)

Since S′n = S + r′n, the above formula may be written as

S′n = S +
Wnrn + Wn+1rn+1

Wn + Wn+1︸ ︷︷ ︸
r′n

. (18)

Obviously, the optimal solution would come from the annihilation of
the remainders r′n of the linearly transformed sequence by imposing an
appropriate ratio of the weights,

η =
Wn+1

Wn
= − rn

rn+1
. (19)

Hence, the weighted-averages method could be considered complete if
the remainders were explicitly known, which is hardly the case for the
sequences of our interest. Next, adopting again the model sequence

Sn ∼ S + ωn

∞∑

i=0

ain
−i

︸ ︷︷ ︸
rn

, n →∞, (20)

the ratio of the remainders is given by
rn

rn+1
=

ωn

ωn+1

[
1 + O(n−2)

]
, n →∞, (21)

which also suggests that we choose

η = − ωn

ωn+1
. (22)

Then, if
1 + η = O(n−σ), (23)

the ratio of the remainders for the original and transformed sequence
becomes

|r′n|
|rn| ∼ O(n−p), (24)
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where p = 2 − σ, manifesting the acceleration property of the
aforementioned transformation, when σ < 2. The remainders of the
sequence after the transformation have the same form as the original
ones together with a scaling factor n−p. Finally, the incorporation of
the above weights to the weighted-averages transformation (17) leads
to the following recursive scheme:

S(k+1)
n =

S
(k)
n + η

(k)
n S

(k)
n+1

1 + η
(k)
n

, n, k ≥ 0, (25)

with

η(k)
n = − ωn

ωn+1

(
n + 1

n

)pk

, (26)

or the asymptotic form

η(k)
n ≈ − ωn

ωn+1

(
1 +

pk

n

)
. (27)

The recursion (25) represents a triangular scheme,

S
(0)
0 S

(1)
0 . . . . . . . . . . . . . . S

(k)
0

S
(0)
1 S

(1)
1 . . . S

(k−1)
1

S
(0)
2 . . . S

(k−2)
2

... . .
.

S
(0)
k

(28)

where in the first column S
(0)
n = Sn and S

(k)
0 is the best approximation

of S, given the partial sums S0, · · · , Sk. This generalized version of
the weighted-averages method was introduced in [14–16] with a further
elaboration in [17], basically for the computation of the Sommerfeld
integral tails, as already mentioned in the introduction. It is also
referred in the literature as the Mosig-Michalski algorithm, arising as
a special case of J transformation [20].

Since the generalized weighted-averages method was first
developed for speeding-up the convergence of oscillatory slowly
converging integrals, special attention was paid to efficiently use
information about the asymptotic behavior of the integrand for
that type of problems. In the case where information about the
asymptotic behavior is not available or is extremely difficult to extract,
simple remainder estimates can be alternatively calculated. In this
manuscript, we utilize the remainder estimates (9)–(12) depending on
the type of the convergence. The specific choice gives rise to four
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different variants of the generalized weighted-averages method, which
will be referred to as WAI, WAII, WAIII and WAIV, respectively.
Moreover, the two different options for η

(k)
n , (26) and (27), lead

respectively to the “exact” and “asymptotic” form of the algorithm.
It is easy to prove that for series with associated remainders as in (20)
and the aforementioned remainder estimates, σ = 0 → p = 2 for
all cases, except for the logarithmically (monotone) converging series,
where σ = 1 → p = 1 only for WAIII and WAIV. Finally, note that
Euler and λ-transformation (or simple weighted-averages method) are
special cases of (25) when η = 1 and η = −λ, respectively.

4. NUMERICAL RESULTS

In this section, a selection of numerical results, including both
alternating and monotone infinite series, will be presented for the
comparison of the generalized weighted-averages method with some of
the most popular and powerful linear and nonlinear transformations.

4.1. Alternating Series

More specifically, in the case of the following alternating series:
∞∑

n=0

(−1)n

√
n + 1

= (1−
√

2)ζ(0.5) (29)

and ∞∑

n=0

(−1)n

2n + 1
=

π

4
, (30)

where ζ(·) is the Riemann zeta function, the proposed algorithm is
compared with λ-transformation, ε algorithm of Shanks transformation
and generalized Levin transformation. Note, that for all the numerical
results reported herein, we keep the best candidates among all
the possible variants of generalized weighted-averages method and
generalized Levin transformation. Based on the behavior, i.e.,
significant digits of the answer versus number of iterations (k),
as depicted in both Figs. 1(a) and 1(b), we could say that the
method proposed in this manuscript seems to outperform even the
u transformation of Levin, which is considered to be among the most
versatile and powerful convergence accelerators currently known [7].
It is important to mention also that for reasons unknown, using the
asymptotic form of the coefficients η

(k)
n given by (27) results in a faster

convergence than using the exact form (26).
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Figure 1. Performance of various extrapolation methods in computing
alternating series.

4.2. Monotone Series

Moving to monotone series, we report some representative numerical
results, often used for testing the efficiency of extrapolation methods.
For the sake of clarity, we choose to split the test problems in two
groups according to the type of convergence, i.e., logarithmic and
linear.

4.2.1. Logarithmically Convergent Series

The first group of test problems consists of the monotone
logarithmically convergent series. More specifically, we consider the
following two series:

∞∑

n=0

1
(n + 1)2

=
π2

6
(31)

and ∞∑

n=0

ln
(

n + 2
n + 1

)
· ln

(
n + 3
n + 2

)
= ln(2) ln(K), (32)

where K is the Khinchin’s constant. As shown in Fig. 2, where
we discarded both λ-transformation and ε algorithm of Shanks
transformation since the fail on accelerating logarithmic monotone
series, the behavior of generalized weighted-averages method and
generalized Levin transformation is comparable.
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(b) Test example (32)

Figure 2. Performance of extrapolation methods in computing
logarithmically convergent (monotone) series.
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ε

Figure 3. Performance of various extrapolation methods in computing
linearly convergent (monotone) series.

4.3. Linearly Convergent Series

The second group of test problems consists of the monotone linearly
convergent series,

∞∑

n=0

(0.8)n+1

n + 1
= ln (5) (33)

and ∞∑

n=0

[(0.4)n + (0.8)n] =
20
3

. (34)
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Again, by a simple inspection of Fig. 3, it is easy to come to the
conclusion that generalized weighted-averages method and generalized
Levin transformation are behaving comparable, while outperforming
the ε algorithm of Shanks transformation.

5. CONCLUSION

In this paper, we present a generalized version of the weighted-averages
method for accelerating slowly convergent (alternating and monotone)
sequences and series. The proposed algorithms utilize the remainder
estimates that have been already incorporated in the different variants
of the generalized Levin transformation. A series of representative
numerical results reported in this study comes to verify the noteworthy
behavior of the generalized weighted-averages method. In fact, this
novel linear transformation is capable of outperforming even the most
powerful and versatile nonlinear transformations, that are widely used
in various numerical problems.
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