
Testing Closed-Source Binary Device Drivers with DDT

Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
DDT is a system for testing closed-source binary de-

vice drivers against undesired behaviors, like race con-
ditions, memory errors, resource leaks, etc. One can
metaphorically think of it as a pesticide against device
driver bugs. DDT combines virtualization with a spe-
cialized form of symbolic execution to thoroughly ex-
ercise tested drivers; a set of modular dynamic check-
ers identify bug conditions and produce detailed, exe-
cutable traces for every path that leads to a failure. These
traces can be used to easily reproduce and understand
the bugs, thus both proving their existence and helping
debug them. We applied DDT to several closed-source
Microsoft-certified Windows device drivers and discov-
ered 14 serious new bugs. DDT is easy to use, as it re-
quires no access to source code and no assistance from
users. We therefore envision DDT being useful not only
to developers and testers, but also to consumers who
want to avoid running buggy drivers in their OS kernels.

1 Introduction
Device drivers are one of the least reliable parts of an
OS kernel. Drivers and other extensions—which com-
prise, for instance, 70% of the Linux operating system—
have a reported error rate that is 3-7 times higher than the
rest of the kernel code [11], making them substantially
more failure-prone. Not surprisingly, 85% of Windows
crashes are caused by driver failures [27]. Moreover,
some drivers are vulnerable to malformed input from un-
trusted user-space applications, allowing an attacker to
execute arbitrary code with kernel privilege [5].

It is therefore ironic that most computer users place
full trust in closed-source binary device drivers: they
run drivers (software that is often outsourced by hard-
ware vendors to offshore programmers) inside the ker-
nel at the highest privilege levels, yet enjoy a false sense
of safety by purchasing anti-virus software and personal
firewalls. Device driver flaws are more dangerous than
application vulnerabilities, because device drivers can
subvert the entire system and, by having direct memory
access, can be used to overwrite both kernel and applica-
tion memory. Recently, a zero-day vulnerability within
a driver shipped with all versions of Windows allowed

non-privileged users to elevate their privileges to Local
System, leading to complete system compromise [24].

Our goal is to empower users to thoroughly test
drivers before installing and loading them. We wish that
the Windows pop-up requesting confirmation to install
an uncertified driver also offered a “Test Now” button.
By clicking that button, the user would launch a thor-
ough test of the driver’s binary; this could run locally or
be automatically shipped to a trusted Internet service to
perform the testing on behalf of the user. Such function-
ality would benefit not only end users, but also the IT
staff charged with managing corporate networks, desk-
tops, and servers using proprietary device drivers.

Our work applies to all drivers, including those for
which source code is not available, thus complementing
the existing body of driver reliability techniques. There
exist several tools and techniques that can be used to
build more reliable drivers [14, 23, 1] or to protect the
kernel from misbehaving drivers [30], but these are pri-
marily aimed at developers who have the driver’s source
code. Therefore, these techniques cannot be used (or
even adapted) for the use of consumers on closed-source
binary drivers. Our goal is to fill this gap.

We believe that the availability of consumer-side test-
ing of device drivers is essential. As of 2004, there were
800,000 different kinds of PnP devices at customer sites,
with 1,500 devices being added every day [26]. There
were 31,000 unique drivers, and 9 new drivers were re-
leased every day. Each driver had∼3.5 versions in the
field, with 88 new driver versions being released every
day [26]. Faced with an increasing diversity of drivers,
consumers (end users and IT specialists alike) need a way
to perform end-to-end testing just before installation.

This paper describes DDT, a device driver testing sys-
tem aimed at addressing these needs. DDT uses selective
symbolic execution to explore the device driver’s exe-
cution paths, and checks whether these paths can cause
undesired behavior, such as crashing the kernel or over-
flowing a buffer. For each suspected case of bad behav-
ior, DDT produces a replayable trace of the execution
that led to the bug, providing the consumer irrefutable
evidence of the problem. The trace can be re-executed
on its own, or inside a debugger.

Appears in Proceedings of the USENIX Annual Technical Conference, Boston, MA, June 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147958129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DDT currently works for Windows device drivers. We
applied it to six popular binary drivers, finding 14 bugs
with relatively little effort. These include race condi-
tions, memory bugs, use of unchecked parameters, and
resource leaks, all leading to kernel crashes or hangs.
Since DDT found bugs in drivers that have successfully
passed Microsoft certification, we believe it could be
used to improve the driver certification process.

Our work makes two contributions: (1) The first sys-
tem that can thoroughly and automatically test closed-
source binary drivers, without access to the correspond-
ing hardware device; (2) The concept of fully symbolic
hardware—including symbolic interrupts—and demon-
stration of its use for testing kernel-mode binaries.

The rest of the paper is structured as follows: §2 pro-
vides a high-level overview of DDT, §3 describes the de-
sign in detail, §4 presents our current DDT prototype for
Windows drivers, §5 evaluates DDT on six closed-source
device drivers, §6 discusses limitations of our current
prototype, §7 reviews related work, and §8 concludes.

2 Overview
DDT takes as input a binary device driver and outputs
a report of found bugs, along with execution traces for
each bug. The input driver is loaded in its native, un-
modified environment, which consists of the OS kernel
and the rest of the software stack above it. DDT then ex-
ercises automatically the driver along as many code paths
as possible, and checks for undesired properties. When
an error or misbehavior is detected, DDT logs the details
of the path exploration along with an executable trace.
This can be used for debugging, or merely as evidence to
prove the presence of the bug.

DDT has two main components: a set of pluggable
bug checkers and a driver exerciser (Figure 1). The ex-
erciser is in charge of steering the driver down various
execution paths—just like a personal trainer, it forces the
driver to exercise all the various ways in which it can run.
The dynamic checkers watch the execution and flag un-
desired driver behaviors along the executed paths. When
they notice a bug, they ask the exerciser to produce in-
formation on how to reach that same situation again.

DDT provides a default set of checkers, and this set
can be extended with an arbitrary number of other check-
ers for both safety and liveness properties (see §3.1).
Currently, DDT detects the following types of bugs:
memory access errors, including buffer overflows; race
conditions and deadlocks; incorrectly handled interrupts;
accesses to pageable memory when page faults are not al-
lowed; memory leaks and other resource leaks; mishan-
dled I/O requests (e.g., setting various I/O completion
flags incorrectly); any action leading to kernel panic; and
incorrect uses of kernel APIs.

applications

libraries

OS kernel

driver

custom VM

Dynamic
Checkers

Bug x
Bug y

execution trace

execution trace
Report

DDT

Driver
Exerciser symbolic

hardware

010011010011
110101001010
010010000001
010111010011
110110010110
011011000011

Device
Driver
Binary

Figure 1: DDT’s VM-based architecture.

These default checkers catch the majority of defects in
the field. Ganapathi et al. found that the top driver prob-
lems causing crashes in Windows were 45% memory-
related (e.g., bad pointers), 15% poorly handled excep-
tions, 13% infinite loops, and 3% unexpected traps [15].
A Microsoft report [26] found that, often, drivers crash
the system due to not checking for error conditions fol-
lowing a call to the kernel. It is hypothesized that this is
due to programmers copy-pasting code from the device
driver development kit’s succinct examples.

Black-box testing of closed-source binary device
drivers is difficult and typically has low code coverage.
This has two main reasons: First, it is hard to exercise the
driver through the many layers of the software stack that
lie between the driver’s interface and the application in-
terface. Second, closed-source programs are notoriously
hard to test as a black box. The classic approach to test-
ing such drivers is to try to produce inputs that exercise
as many paths as possible and (perhaps) check for high-
level properties (e.g., absence of kernel crashes) during
those executions. Considering the wide range of possi-
ble inputs and system events that are hard to control (e.g.,
interrupts), this approach exercises relatively few paths,
thus offering few opportunities to find bugs.

DDT uses selective symbolic execution [10] of the
driver binary to automatically take the driver down as
many paths as possible; the checkers verify desired prop-
erties along these paths. Symbolic execution [20, 6, 7]
consists of providing a program with symbolic inputs
(e.g.,α or β) instead of concrete ones (e.g., 6 or “abc”),
and letting these values propagate as the program exe-
cutes, while tracking path constraints (e.g.,β = α + 5).
When a symbolic value is used to decide the direction
of a conditional branch, symbolic execution explores all
feasible alternatives. On each branch, a suitable path
constraint is added on the symbolic value to ensure its

2

set of possible values satisfies the branch condition (e.g.,
β < 0 andβ >= 0, respectively). Selective symbolic ex-
ecution enables the symbolic execution of one piece of
the software stack (the device driver, in our case) while
the rest of the software runs concretely.

A key challenge is keeping the symbolic and the con-
crete portions of the execution synchronized. DDT sup-
plies the driver with symbolic values on the calls from the
kernel to the driver (§3.2) as well as on the returns from
the hardware to the driver (§3.3), thus enabling an un-
derlying symbolic execution engine to steer the driver on
the various possible paths. When the driver returns val-
ues to a kernel-originated call, or when the driver calls
into the kernel, parameters and driver are converted so
that execution remains consistent, despite the alternation
of symbolic and concrete execution.

DDT’s fully symbolic hardware enables testing
drivers even when the corresponding hardware device is
not available. DDT never calls the actual hardware, but
instead replaces all hardware reads with symbolic val-
ues, and discards all writes to hardware. Being able to
test a driver without access to the hardware is useful, for
example, for certification companies that cannot buy all
the hardware variants for the drivers they test, or for con-
sumers who would rather defer purchasing the device un-
til they are convinced the driver is trustworthy.

Symbolic hardware also enables DDT to explore
paths that are hard to test without simulators or spe-
cialized hardware. For example, many devices rely on
interrupts to signal completion of operations to the de-
vice driver. DDT usessymbolic interruptsto inject such
events at the various crucial points during the execution
of the driver. Symbolic interrupts allow DDT to test dif-
ferent code interleavings and detect bugs like the race
conditions described in §5.1.

DDT provides evidence of the bug and the means to
debug it: a complete trace of the execution plus concrete
inputs and system events that make the driver re-execute
the buggy path in a regular, non-DDT environment.

3 Design
We now present DDT’s design, starting with the types of
bugs DDT looks for (§3.1), an overview of how drivers
are exercised (§3.2), a description of fully symbolic hard-
ware (§3.3), the use of annotations to extend DDT’s
capabilities (§3.4), and finally we show how generated
traces are used to replay bugs and fix them (§3.5).

3.1 Detecting Undesired Behaviors

DDT uses two methods to detect failures along exercised
paths: dynamic verification done by DDT’s virtual ma-
chine (§3.1.1) and failure detection inside the guest OS
(§3.1.2). VM-level checks are targeted at properties that

require either instrumentation of driver code instructions
or reasoning about multiple paths at a time. Guest OS-
level checks leverage existing stress-testing and verifica-
tion tools to catch bugs that require deeper knowledge
of the kernel APIs. Most guest OS-level checks can be
performed at the VM level as well, but it is often more
convenient to write and deploy OS-level checkers.

3.1.1 Virtual Machine-Level Checks

Memory access verification in DDT is done at the VM
level. On each memory access, DDT checks whether the
driver has sufficient permissions to access that memory.
For the purpose of access verification, DDT treats the
following memory regions as accessible to drivers:

• Dynamically allocated memory and buffers;
• Buffers passed to the driver, such as network pack-

ets or strings from the Windows registry;
• Global kernel variables that are implicitly accessi-

ble to drivers;
• Current driver stack (accesses to memory locations

below the stack pointer are prohibited, because
these locations could be overwritten by an interrupt
handler that saves context on the stack);

• Executable image area, i.e., loadable sections of the
driver binary with corresponding permissions;

• Hardware-related memory areas (memory-mapped
registers, DMA memory, or I/O ranges).

In order to track these memory regions, DDT hooks
the kernel API functions and driver entry points. Ev-
ery time the hooked functions are called, DDT analyzes
their arguments to determine which memory was granted
to (or revoked from) the driver. The required knowl-
edge about specific kernel APIs can be provided through
lightweight API annotations (see §3.4).

Beyond memory safety, DDT’s simultaneous access
to multiple execution paths (by virtue of employing sym-
bolic execution) enables the implementation of bug de-
tection techniques that reason about the code globally in
terms of paths, such as infinite loop detection [34].

3.1.2 Guest Operating System-Level Checks

In addition to VM-level checkers, DDT can also reuse
off-the-shelf runtime verification tools. These tools per-
form in-guest checking, oblivious to exactly how the
driver is being driven along the observed execution paths.
Since these tools are usually written by OS developers
(e.g., for driver certification programs, like Microsoft’s
WHQL [25]), they can detect errors that require deep
knowledge of the OS and its driver API.

When they find a bug, these dynamic tools typically
crash the system to produce an error report containing

3

a memory dump. DDT intercepts such premeditated
crashes and reports the bug information to the user. DDT
helps the runtime checkers find more bugs than they
would do under normal concrete execution, because it
symbolically execute the driver along many more paths.

DDT’s modular architecture (Figure 1) allows reusing
such tools without adaptation or porting. This means that
driver developers’ custom test suites can also be readily
employed. Moreover, given DDT’s design, such tools
can be inserted at any level in the software stack, either
in the form of device drivers or as software applications.

DDT can also automatically leverage kernel asser-
tion checks, when they are present. For example, the
checked build version of Windows contains many con-
sistency checks—with DDT, these assertions get a better
chance of being exercised along different paths.

3.2 Exercising the Driver: Kernel/Driver Interface

DDT implements selective symbolic execution [10], a
technique for seamless transfer of system state between
symbolic and concrete phases of execution. DDT ob-
taines similar properties to running the entire system
symbolically, while in fact only running the driver sym-
bolically. The transfer of state between phases is gov-
erned by a set of conversion hints (see §3.4). Using se-
lective symbolic execution enables DDT to execute the
driver within its actual environment, as opposed to re-
quiring potentially incomplete models thereof [1, 6].

A typical driver is composed of several entry points.
When the OS loads the driver, it calls its main entry
point, similarly to a shell invoking themain() function
of a program. This entry point registers with the kernel
the driver’s other entry points. For example, a typical
driver would registeropen, read, write, andclose
entry points, which are then called by the OS when a
user-mode application makes use of the driver.

When the kernel calls a driver’s entry point, DDT
transfers system state to a symbolic execution engine. It
converts entry point arguments, and possibly other parts
of concrete system state, to symbolic values, according to
the annotations described in §3.4. For example, when the
kernel calls theSendPacket function in a NIC driver,
DDT makes the content of the network packet symbolic,
to explore all the paths that depend on the packet’s type.

When a driver calls a kernel function, DDT selects
feasible values (at random) for its symbolic arguments.
For example, if the driver calls theAllocatePool func-
tion with a symbolic length argument, DDT selects some
concrete valuelen for the length that satisfies current
constraints. However, this concretization subjects all
subsequent paths to the constraint that length must equal
len, and this may disable otherwise-feasible paths. Thus,
DDT keeps track of all such concretization-related con-

straints and, if at some point in the future this constraint
limits a choice of paths, DDT backtracks to the point of
concretization, forks the entire machine state, and repeats
the kernel call with different feasible concrete values,
which could re-enable the presently unexplorable path.

To minimize overhead, DDT does concretization on-
demand, i.e., delays it as long as possible by tracking
symbolic values when executing in concrete mode and
concretizing them only when they are actually read. This
way, symbolic values that are not accessed by concretely
running code are never concretized. In particular, all pri-
vate driver state and buffers that are treated as opaque by
the kernel end up being preserved in their symbolic form.

3.3 Exercising the Driver: Symbolic Hardware

DDT requires neither real hardware nor hardware models
to test drivers—instead, DDT uses symbolic hardware.
A symbolic device in DDT ignores all writes to its regis-
ters and produces symbolic values in response to reads.
These symbolic values cause drivers to explore paths that
depend on the device output.

Symbolic hardware produces symbolic interrupts, i.e.,
interrupts with a symbolic arrival time. Reasoning about
interrupt arrival symbolically offers similar benefits to
reasoning about program inputs symbolically: the major-
ity of interrupt arrival times are equivalent to each other,
so only one arrival time in each equivalence class need
be produced. If a block of code does not read/write sys-
tem state that is also read/written by the interrupt handler,
then executing the interrupt handler at any point during
the execution of that block has the same end result.

Currently, DDT implements a simplified model of
symbolic interrupts. It symbolically delivers interrupts
on each crossing of the kernel/driver boundary (i.e., be-
fore and after each kernel API call, and before and after
each driver entry point execution). While not complete,
we found that this strategy produces good results, be-
cause many important changes in driver state are related
to crossing the kernel/driver interface.

Symbolic hardware with symbolic interrupts may
force the driver on paths that are not possible in reality
with correct hardware. For example, a symbolic inter-
rupt may be issued after the driver instructed the device
not to issue interrupts (e.g., by writing a control register).
A correctly functioning device will therefore not deliver
that interrupt. The natural solution would be to include
the enabled/disabled interrupts status in the path con-
straints, and prevent interrupts from occurring when this
is not possible. However, recent work [19] has shown
that hardware often malfunctions, and that drivers must
be sufficiently robust to handle such behavior anyway.

More generally, DDT’s ability to test drivers against
hardware failures is important, because chipsets often get

4

revised without the drivers being suitably updated. Con-
sider a device that returns a value used by the driver as
an array index. If the driver does not check the bounds (a
common bug [19]) and a revised version of the chipset
later returns a greater value, then the obsolete driver
could experience an out-of-bounds error.

3.4 Enabling Rich Driver/Environment Interactions

Device drivers run at the bottom of the software stack,
sandwiched between the kernel and hardware devices.
The layers surrounding a driver are complex, and the dif-
ferent classes of device drivers use many different kernel
subsystems. For instance, network, audio, and graphics
drivers each use different kernel services and interfaces.

One may be tempted to run drivers in isolation for
purposes of testing. Unfortunately, this requires an ab-
straction layer between the drivers and the rest of the
stack, and building this layer is non-trivial. For exam-
ple, testing a network driver would require the testbed to
provide well-formed data structures when returning from
a packet allocation function called by the driver.

DDT tests drivers by symbolically executing them in
conjunction with the real kernel binary. By using the ac-
tual software stack (and thus the real kernel) instead of a
simplified abstract model of it, DDT ensures that the de-
vice drivers get tested with the exact kernel behavior they
would experience in reality. To this end, DDT needs to
mediate the interactions with the layers around the driver
in a way that keeps the symbolic execution of the driver
consistent with the concrete execution of the kernel.

DDT performs various conversions between the sym-
bolic and concrete domains. In its default mode, in which
no annotations are used, DDT converts symbolic argu-
ments passed to kernel functions into legal random con-
crete values and uses symbolic hardware, including sym-
bolic interrupts. Driver entry point arguments are not
touched. These conversions, however, can be fine-tuned
by annotating API functions and driver entry points.

3.4.1 Extending DDT with Interface Annotations

DDT provides ways for developers to encode their
knowledge of the driver/kernel API in annotations that
improve DDT’s achievable code coverage and bug find-
ing abilities. Annotations allow DDT to detect not only
low-level errors, but also logical bugs. Annotations are a
one-time effort on the part of OS developers, testers, or a
broader developer community.

The idea of encoding API usage rules in annotations
is often used by model checking tools, with a recent no-
table example being SLAM [1]. However, DDT’s anno-
tations are lighter weight and substantially easier to write
and keep up-to-date than the API models used by pre-
vious tools: preparing DDT annotations for the whole

NDIS API, which consists of 277 exported functions,
took about two weeks of on-and-off effort; preparing an-
notations for those 54 functions in the WDM API that
were used by our sound drivers took one day.

DDT annotations are written in C and compiled to
LLVM bitcode [22], which is then loaded by DDT at run-
time and run in the context of QEMU-translated code,
when necessary. The annotation code has direct access
to, and control over, the guest system’s state. Addition-
ally, it can use a special API provided by DDT to create
symbolic values and/or manipulate execution state.

The following annotation introduces positive integer
symbolic values when the driver reads a configuration
parameter from the Windows registry:

1 void NdisReadConfiguration_return(CPU* cpu){
2 if(*((PNDIS_STATUS) ARG(cpu, 0)) == 0
3 && ARG(cpu, 4) == 1) {
4 int symb = ddt_new_symb_int();
5 if(symb >= 0)
6 ((PNDIS_CONFIGURATION_PARAMETER)
7 ARG(cpu, 1))->IntegerData = symb;
8 else ddt_discard_state();
9 }

10 }

This sample annotation function is invoked on the
return path fromNdisReadConfiguration (hence its
name—line 1). It checks whether the call returned suc-
cessfully (line 2) and whether the type of the value is
integer (line 3). It then creates an unconstrained sym-
bolic integer value using DDT’s special API (line 4), af-
ter which it checks the value (line 5) and discards the
path on whichsymbis not a positive integer (line 8).

DDT annotations fall into four categories:
Concrete-to-symbolic conversion hintsapply to

driver entry points’ arguments and to return values from
kernel functions called by the driver. They encode con-
tracts about what constitute reasonable arguments or re-
turn values. For example, a memory allocation function
can either return a valid pointer or a null pointer, so the
annotation would instruct DDT to try both the originally
returned concrete pointer, as well as the null-pointer al-
ternative. The absence of this kind of conversion hints
will cause DDT not to try all reasonable classes of val-
ues, which results solely in decreased coverage, i.e., false
negatives.

Symbolic-to-concrete conversion hintsspecify the
allowed set of values for arguments to kernel API func-
tions called by drivers. They include various API usage
rules that, if violated, may lead to crashes or data cor-
ruption. When a call to such an annotated function oc-
curs, DDT verifies that all incorrect argument values are
ruled out by the constraints on the current path; if not,
it flags a potential bug. The absence of such annotations
can lead DDT to concretize arguments into some values

5

that are consistent with the path constraints (thus feasi-
ble in a real execution) but not uncover potential bugs (if
the values happen to be OK according to the unspecified
API usage rules). In other words, they can lead to false
negatives, but not to false positives.

Resource allocation hintsspecify whether invoking
an entry point or calling a kernel function grants or re-
vokes the driver’s access to any memory or other re-
sources. This information is used to verify that the
driver accesses only resources that the kernel explicitly
allows it to access. It is also used to verify that all allo-
cated resources are freed on exit paths. The absence of
memory allocation hints can lead to false positives, but
can be avoided, if necessary, by switching to a coarse-
grained memory access verification scheme (as used, for
instance, in Microsoft’s Driver Verifier [25]).

Kernel crash handler hook: This annotation informs
DDT of the address of the guest kernel’s crash handler, as
well as how to extract the crash information from mem-
ory. This annotation enables DDT to intercept all crashes
when running the kernel concretely, such as the “blue
screen of death” (BSOD) on Windows. This annotation
is relied upon in our DDT prototype to cooperate with
the Microsoft Driver Verifier’s dynamic checkers.

3.4.2 Alternative Approaches

We have gone to great lengths to run the drivers in a real
environment and avoid abstract modeling. Is it worth it?

One classic approach to ensuring device driver qual-
ity is stress-testing, which is how Microsoft certifies its
third-party drivers [25]. However, this does not catch all
bugs. As we shall see in the evaluation, even Microsoft-
certified drivers shipped with Windows have bugs that
cause the kernel to crash. However, powerful static anal-
ysis tools [1] can reason about corner-case conditions by
abstracting the driver under test, without actually running
it. Since static analysis does not run any code per se, it
requires modeling the driver’s environment.

We believe environment modeling generally does not
scale, because kernels are large and evolve constantly.
Modeling the kernel/driver API requires manual effort
and is error prone. According to [1], developing around
60 API usage rules for testing Windows device drivers
took more than three years. It also required many itera-
tions of refinement based on false positives found during
evaluation. In the end, the resulting models are only an
approximation of the original kernel code, thus leading
to both false negatives and, more importantly, false pos-
itives. A test tool that produces frequent false positives
discourages developers from using it.

In contrast, we find DDT’s annotations to be straight-
forward and easy to maintain. Moreover, if they are per-
ceived by developers as too high of a burden, then DDT

can be used in its default mode, without annotations.
Testing device drivers often requires access to either

the physical device or a detailed model of it. For drivers
that support several physical devices, testing must be re-
peated for each such device. In contrast, symbolic hard-
ware enables not only testing drivers without a physical
device, but also testing them against hardware bugs or
corner cases that are hard to produce with a real device.

3.5 Verifying and Replaying Bugs

When DDT finishes testing a driver, it produces a de-
tailed report containing all the bugs it found. This re-
port consists of all faulty execution paths and contains
enough information to accurately replay the execution,
allowing the bug to be reproduced on the developer’s or
consumer’s machine.

DDT’s bug report is a collection of traces of the ex-
ecution paths leading to the bugs. These traces contain
the list of program counters of the executed instructions
up to the bug occurrence, all memory accesses done by
each instruction (address and value) and the type of the
access (read or write). Traces contain information about
creation and propagation of all symbolic values and con-
straints on branches taken. Each branch instruction has
a flag indicating whether it forked execution or not, thus
enabling DDT to subsequently reconstruct an execution
tree of the explored paths; each node in the tree cor-
responds to a machine state. Finally, DDT associates
with each failed path a set of concrete inputs and sys-
tem events (e.g., interrupts) that take the driver along that
path. The inputs are derived from the symbolic state by
solving the corresponding path constraints [16, 7].

A DDT trace has enough information to replay the
bug in the DDT VM. Each trace starts from an ini-
tial state (a “hibernated” snapshot of the system) and
contains the exact sequence of instructions and mem-
ory accesses leading to the crash or hang. The traces
are self-contained and directly executable. The size of
these traces rarely exceeds 1 MB per bug, and usu-
ally they are much smaller. We believe DDT traces
can easily be adapted to work with existing VM replay
tools [13, 29, 21].

DDT also post-processes these traces off-line, to pro-
duce a palatable error report. DDT reconstructs the tree
of execution paths and, for each leaf state that triggered
a bug, it unwinds the execution path by traversing the ex-
ecution tree to the root. Then it presents the correspond-
ing execution path to the developer. When driver source
code is available, DDT-produced execution paths can be
automatically mapped to source code lines and variables,
to help developers better visualize the buggy behavior.

For bugs leading to crashes, it is also possible to ex-
tract a Windows crash dump that can be analyzed with

6

WinDbg [25]—since each execution state maintained by
DDT is a complete snapshot of the system, this includes
the disk where the OS saved the crash dump. It is also
worth noting that DDT execution traces can help debug-
gers go backwards through the buggy execution.

In theory, DDT traces could be directly executed out-
side the VM (e.g., in a debugger) using a natively exe-
cuting OS, since the traces constitute slices through the
driver code. The problem, though, is that the physical
hardware would need to be coerced into providing the ex-
act same sequence of interrupts as in the trace—perhaps
this could be done with a PCI-based FPGA board that
plays back a trace of interrupts. Another challenge is
providing the same input and return values to kernel calls
made by the driver—here DDT could leverage existing
hooking techniques [4, 18] to intercept and modify these
calls during replay. Finally, replaying on a real machine
would involve triggering asynchronous events at points
equivalent to those saved in the traces [33].

3.6 Analyzing Bugs

Execution traces produced by DDT can also help under-
stand the cause of a bug. For example, if an assertion of
a symbolic condition failed, execution traces can identify
on what symbolic values the condition depended, when
during the execution were they created, why they were
created, and what concrete assignment of symbolic val-
ues would cause the assertion to fail. An assertion, bad
pointer access, or a call that crashes the kernel might de-
pend indirectly on symbolic values, due to control flow-
based dependencies; most such cases are also identifiable
in the execution traces.

Based on device specifications provided by hardware
vendors, one can decide whether a bug can only occur
when a device malfunctions. Say a DDT symbolic device
returned a value that eventually led to a bug; if the set of
possible concrete values implied by the constraints on
that symbolic read does not intersect the set of possible
values indicated by the specification, then one can safely
conclude that the observed behavior would not have oc-
curred unless the hardware malfunctioned.

One could write tools to automate the analysis and
classification of bugs found by DDT, even though do-
ing this manually is not hard. They could provide
both user-readable messages, like “driver crashes in low-
memory situations,” and detailed technical information,
like “AllocateMemory failed at locationpc1 caused a
null pointer dereference at some other locationpc2.

4 DDT Implementation
We now describe our implementation of a DDT proto-
type for Windows device drivers (§4.1), which can be
used by both developers and consumers to test binary

drivers before installing them. We also show how to
trick Windows into accepting DDT’s symbolic hardware
(§4.2) and how to identify and exercise the drivers’ entry
points (§4.3). Although Windows-specific, these tech-
niques can be ported to other platforms as well.

4.1 DDT for Microsoft Windows

DDT uses a modified QEMU [2] machine emulator to-
gether with a modified version of the Klee symbolic exe-
cution engine [6]. DDT can run a complete, unmodified,
binary software stack, comprising Windows, the drivers
to be tested, and all associated applications.

4.1.1 Doing VM-Based Symbolic Execution

QEMU is an open-source machine emulator that sup-
ports many different processor architectures, like x86,
SPARC, ARM, PowerPC, and MIPS. It emulates the
CPU, memory, and devices using dynamic binary trans-
lation. QEMU’s support of multiple architectures makes
DDT available to more than just x86-based platforms.

DDT embeds an adapted version of Klee. To symbol-
ically execute a program, one first compiles it to LLVM
bitcode [22], which Klee can then interpret. Klee em-
ploys various constraint solving optimizations and cov-
erage heuristics, which make it a good match for DDT.

To use Klee, we extended QEMU’s back-end to gener-
ate LLVM bitcode. QEMU translates basic blocks from
the guest CPU instruction set to a QEMU-specific inter-
mediate representation—we translate from this interme-
diate representation to LLVM on the fly. The generated
LLVM bitcode can be directly interpreted by Klee.

QEMU and Klee have different representations of
program state, which have to be kept separate yet syn-
chronized. In QEMU, the state is composed of the virtual
CPU, VM physical memory, and various virtual devices.
We encapsulate this data in Klee memory objects, and
modified QEMU to use Klee’s routines to manipulate the
VM’s physical memory. Thus, whenever the state of the
CPU is changed (e.g., register written) or a device is ac-
cessed (e.g., interrupt controller registers are set), both
QEMU and Klee see it, and Klee can perform symbolic
execution in a consistent environment.

Symbolic execution generates path constraints that
also have to be synchronized. Since QEMU and Klee
keep a synchronized CPU, device, and memory state, any
write to the state by one of them will be reflected in the
path constraints kept by Klee. For example, when sym-
bolically executing driver code accesses concrete kernel
memory, it sees data consistent with its own execution so
far. Conversely, when concrete code attempts to access a
symbolic memory location, that location is automatically
concretized, and a corresponding constraint is added to

7

the current path. Data written by concrete code is seen as
concrete by symbolically running driver code.

4.1.2 Symbolic Execution of Driver Code

QEMU runs in a loop, continuously fetching guest code
blocks, translating them, and running them on the host
CPU or in Klee. When a basic block is fetched, DDT
checks whether the program counter is inside the driver
of interest or not. If yes, QEMU generates a block
of LLVM code (or fetches the code from a translation
cache) and passes it to Klee; otherwise, it generates x86
machine code and sends it to the host processor.

DDT monitors kernel code execution and parses ker-
nel data structures to detect driver load attempts. DDT
catches the execution of the OS code responsible for in-
voking the load entry point of device drivers. For exam-
ple, on Windows XP SP3, DDT monitors attempts to ex-
ecute code at address0x805A3990, then parses the stack
to fetch the device object. If the name of the driver cor-
responds to the one being monitored, DDT further parses
the corresponding data structures to retrieve the code and
data segment locations of the driver. Parsing the data
structures is done transparently, by probing the virtual
address space, without causing any side effects (e.g., no
page faults are induced).

When the driver is executed with symbolic inputs,
DDT forks execution paths as it encounters conditional
branches. Forking consists primarily of making a copy of
the contents of the CPU, the memory, and the devices, to
make it possible to resume the execution from that state
at a later time. In other words, each execution state con-
sists conceptually of a complete system snapshot.

4.1.3 Optimizing Symbolic Execution

Since symbolic execution can produce large execution
trees (exponential in the number of branches), DDT im-
plements various optimizations to handle the large num-
ber of states generated by Klee. Moreover, each state is
big, consisting of the entire physical memory and of the
various devices (such as the contents of the virtual disk).

DDT uses chained copy-on-write: instead of copying
the entire state upon an execution fork, DDT creates an
empty memory object containing a pointer to the parent
object. All subsequent writes place their values in the
empty object, while reads that cannot be resolved locally
(i.e., do not “hit” in the object) are forwarded up to the
parent. Since quick forking can lead to deep state hierar-
chies, we cache each resolved read in the leaf state with
a pointer to the target memory object, in order to avoid
traversing long chains of pointers through parent objects.

4.1.4 Symbolic Hardware

For PCI devices, the OS allocates resources (memory,
I/O regions, and interrupt line) for the device, as required
the device descriptor, prior to loading the driver, and then
writes the addresses of allocated resources to the device’s
registers. From that point, the device continuously mon-
itors all memory accesses on the memory and I/O buses;
when an address matches its allocated address range, the
device handles the access. In QEMU, such accesses are
handled by read/write functions specific to a each virtual
device. For DDT symbolic devices, the write functions
discard their arguments, and the read functions always
returns an unconstrained symbolic value. When DDT
decides to inject a symbolic interrupt, it calls the cor-
responding QEMU function to assert the right interrupt
assigned to the symbolic device by the OS.

The execution of the driver also depends on certain
parts of the device descriptor, not just on the device mem-
ory and I/O registers. For example, the descriptor may
contain a hardware revision number that triggers slightly
different behavior in the driver. Unfortunately, the de-
vice descriptor is parsed by the OS when selecting the
driver and allocating device resources, so DDT cannot
just make it symbolic. Instead, as the device drivers al-
ways accesses the descriptor through kernel API func-
tions, we use annotations to insert appropriately con-
strained symbolic results when the driver reads the de-
scriptor.

4.2 Fooling the OS into Accepting Symbolic Devices

Hardware buses like PCI and USB support Plug-and-
Play, which is a set of mechanisms that modern operating
systems use to detect insertion and removal of devices.
The bus interface notifies the OS of such events. When
the OS detects the presence of a new device, it loads
the corresponding driver. The right driver is selected by
reading the vendor and device ID of the inserted device.
If the driver is for a PCI device, it will typically need to
read the rest of the descriptor, i.e., the size of the register
space and various I/O ranges.

DDT provides a PCI descriptor for afake deviceto
trick the OS into loading the driver to be tested. The fake
device is an empty “shell” consisting of a descriptor con-
taining the vendor and device IDs, as well as resource
information. The fake device itself does not implement
any logic other than producing symbolic values for read
requests. Support for USB is similar: a USB descriptor
pointing to a “shell” device is passed to the code imple-
menting the bus, causing the target driver to be loaded.

Hardware descriptors are simple and can be readily
obtained. If the actual hardware is available, the descrip-
tors can be read directly from it. If the hardware is not
present, it is possible to extract the information from pub-

8

Tested Driver
Size of Driver Size of Driver Number of Functions Number of Called Source Code
Binary File Code Segment in Driver Kernel Functions Available ?

Intel Pro/1000 168 KB 120 KB 525 84 No
Intel Pro/100 (DDK) 70 KB 61 KB 116 67 Yes
Intel 82801AA AC97 39 KB 26 KB 132 32 No
Ensoniq AudioPCI 37 KB 23 KB 216 54 No
AMD PCNet 35 KB 28 KB 78 51 No
RTL8029 18 KB 14 KB 48 37 No

Table 1: Characteristics of Windows drivers used to evaluate DDT.

lic databases of hardware supported on Linux. If this in-
formation is not available, it can be extracted from the
driver itself. For example, Windows drivers come with
a .inf file specifying the vendor and device IDs of the
supported devices. The device resources (e.g., memory
or interrupt lines) are not directly available in the.inf
files, but can be inferred after the driver is loaded, by
watching for attempts to register the I/O space using OS
APIs. We are working on a technique to automatically
determine this information directly from the driver.

4.3 Exercising Driver Entry Points

DDT must detect that the OS has loaded a driver, deter-
mine the driver’s entry points, coerce the OS into invok-
ing them, and then symbolically execute them.

DDT automatically detects a driver’s entry points by
monitoring attempts of the driver to register such entry
points with the kernel. Drivers usually export only one
entry point, specified in the driver binary’s file header.
Upon invocation by the kernel, this routine fills data
structures with entry point information and calls a reg-
istration function (e.g.,NdisMRegisterMiniport for
network drivers). In a similar way, DDT intercepts the
registration of interrupt handlers.

DDT uses Microsoft’s Device Path Exerciser as a con-
crete workload generator to invoke the entry points of
the drivers to be tested. Device Path Exerciser is shipped
with the Windows Driver Kit [25] and can be configured
to invoke the entry points of a driver in various ways,
testing both normal and error situations.

Each invoked entry point is symbolically executed by
DDT. To accomplish this, DDT returns symbolic values
on hardware register reads and, hooks various functions
to inject symbolic data. Since execution can fork on
branches within the driver, the execution can return to the
OS through many different paths. To save memory and
time, DDT terminates paths based on user-configurable
criteria (e.g., if the entry point returns with a failure).

DDT attempts to maximize driver coverage using
pluggable heuristics modules. The default heuristic at-
tempts to maximize basic block coverage, similar to the
one used in EXE [7]. It maintains a global counter for
each basic block, indicating how many times the block

was executed. The heuristic selects for the next execu-
tion step the basic block with the smallest value. This
avoids states that are stuck, for instance, in polling loops
(typical of device drivers). Depending on the driver, it is
possible to choose different heuristics dynamically.

DDT tests for concurrency bugs by injecting symbolic
interrupts before and after each kernel function called
by the driver. It asserts the virtual interrupt line, caus-
ing QEMU to interrupt the execution of the current code
and to invoke the OS’s interrupt handler. The injection
of symbolic interrupts is activated as soon as the target
driver registers an interrupt handler for the device.

Drivers may legitimately access the kernel’s data
structures, and this must be taken into account by DDT,
to avoid false reports of unauthorized memory accesses.
First, drivers access global kernel variables, which must
be explicitly imported by the driver; DDT scans the cor-
responding section of the loaded binary and grants the
driver access to them. Second, private kernel data may
be accessed via inlined functions (for example, NDIS
drivers use macros that access kernel-defined private data
fields in theNDIS_PACKET data structure). DDT pro-
vides annotations for identifying such data structures.

5 Evaluation
We applied DDT to six mature Microsoft-certified
drivers—DDT found 14 serious bugs (§5.1). We also
measured code coverage, and found that DDT achieves
good coverage within minutes (§5.2). All reported mea-
surements were done on an Intel 2 GHz Xeon CPU using
4 GB of RAM.

5.1 Effectiveness in Finding Bugs

We used DDT to test four network drivers and two sound
card drivers, which use different Windows kernel APIs
and are written in both C and C++ (Table 1). All drivers
are reasonably sized, using tens of API functions; DDT
scales well in this regard, mainly due to the fact that it
needs no kernel API models. Most of these drivers have
been tested by Microsoft as part of the WHQL certifica-
tion process [25] and have been in use for many years.

DDT found bugs in all drivers we tested: memory
leaks, memory corruptions, segmentation faults, and race

9

Tested Driver Bug Type Description

RTL8029 Resource leak Driver does not always callNdisCloseConfigurationwhen initialization fails
RTL8029 Memory corruption Driver does not check the range forMaximumMulticastList registry parameter
RTL8029 Race condition Interrupt arriving before timer initialization leads to BSOD
RTL8029 Segmentation fault Crash when getting an unexpected OID inQueryInformation
RTL8029 Segmentation fault Crash when getting an unexpected OID inSetInformation
AMD PCNet Resource leak Driver does not free memory allocated withNdisAllocateMemoryWithTag
AMD PCNet Resource leak Driver does not free packets and buffers on failed initialization
Ensoniq AudioPCI Segmentation fault Driver crashes whenExAllocatePoolWithTag returns NULL
Ensoniq AudioPCI Segmentation fault Driver crashes whenPcNewInterruptSync fails
Ensoniq AudioPCI Race condition Race condition in the initialization routine
Ensoniq AudioPCI Race condition Various race conditions with interrupts while playing audio
Intel Pro/1000 Memory leak Memory leak on failed initialization
Intel Pro/100 (DDK) Kernel crash KeReleaseSpinLock called from DPC routine
Intel 82801AA AC97 Race condition During playback, the interrupt handler can cause a BSOD

Table 2: Summary of previously unknown bugs discovered by DDT.

conditions. A summary of these findings is shown in Ta-
ble 2, which showsall bug warnings issued by DDT, not
just a subset. In particular, we encountered no false pos-
itives during testing.

The first two columns of the table are a direct output
from DDT. Additionally, DDT produced execution traces
that we manually analyzed (as per §3.6) in order to pro-
duce the last column of the table, explaining each bug.
The analyses took a maximum of 20 minutes per bug.
Testing each driver took a maximum of 4 hours, and this
time includes adding missing API annotations and occa-
sional debugging of the DDT prototype.

From among all bugs found by DDT, only one was re-
lated to improper hardware behavior: it was a subtle race
condition in the RTL8029 driver, occurring right after the
driver registered its interrupt handler, but before it initial-
ized the timer routine and enabled interrupts on the de-
vice. If the interrupt fires at this point, the interrupt han-
dler calls a kernel function to which it passes an uninitial-
ized timer descriptor, causing a kernel crash. From the
execution traces produced by DDT it was clear that the
bug occurred in the driver interrupt handler routine after
issuing a symbolic interrupt during driver initialization.
We checked the address of the interrupt control register
in the device documentation; since the execution traces
contained no writes to that register, we concluded that
the crash occurred before the driver enabled interrupts.

At the same time, if the device malfunctions and this
bug manifests in the field, it is hard to imagine a way in
which it could be fixed based on bug reports. It is hard
to find this kind of bugs using classic stress-testing tools,
even with malfunctioning hardware, because the inter-
rupt might not be triggered by the hardware at exactly
the right moment.

Another interesting bug involved memory corruption
after parsing parameters (obtained from the registry) in
the RTL8029 driver. The driver does not do any bounds
checking when reading theMaximumMulticastListpa-

rameter during initialization. Later, the value of this pa-
rameter is used as an index into a fixed-size array. If the
parameter has a large (or negative) value, memory cor-
ruption ensues and leads to a subsequent kernel panic.
This explanation was easily obtained by looking at the
execution traces: a faulty memory read was shown at an
address equal to the sum of the base address returned
by the memory allocator plus an unconstrained symbolic
value injected when reading the registry.

An example of a common kind of bug is the incor-
rect handling of out-of-memory conditions during driver
initialization. In the RTL8029, AMD PCNet, and In-
tel Pro/1000 drivers, such conditions lead to resource
leaks: when memory allocation fails, the drivers do not
release all the resources that were already allocated (heap
memory, packet buffers, configuration handlers, etc.). In
the Ensoniq AudioPCI driver, failed memory allocation
leads to a segmentation fault, because the driver checks
whether the memory allocation failed, but later uses the
returned null pointer on an error handling path, despite
the fact that the initial check failed.

An example of incorrectly used kernel API func-
tions is a bug in the Intel Pro/100 driver. In
its DPC (deferred procedure call) routine, the driver
uses theNdisReleaseSpinLock function instead of
NdisDprReleaseSpinLock (as it should for spinlocks
acquired usingNdisDprAcquireSpinLock). This is
specifically prohibited by Microsoft documentation and
in certain conditions can lead to setting the IRQ level to
the wrong value, resulting in a kernel hang or panic.

We tried to find these bugs with the Microsoft Driver
Verifier [25] running the driver concretely, but did not
find any of them. Furthermore, since Driver Verifier
crashes by default on the first bug found, looking for the
next bug would typically require first fixing the found
bug. In contrast, DDT finds multiple bugs in one run.

To assess the influence that annotations have on
DDT’s effectiveness, we re-tested these drivers with all

10

0 %

20 %

40 %

60 %

80 %

100 %

 0 1 2 3 4 5 6

B
as

ic
 B

lo
ck

 C
ov

er
ag

e
(%

)

Running Time (minutes)

RTL8029
Intel Pro/100

Intel 82801AA AC97

Figure 2: Relative coverage with time

annotations turned off. We managed to reproduce all the
race condition bugs, because their detection does not de-
pend on the annotations. We also found the hardware-
related bugs, cased by improper checks on hardware reg-
isters. However, removing the annotations resulted in de-
creased code coverage, so we did not find the memory
leaks and the segmentation faults.

We initially wanted to compare DDT to the Microsoft
SDV tool [1], a state-of-the-art static analysis tool for
drivers. Since SDV requires source code, we used the
Intel Pro/100 network card driver, whose source code ap-
pears in the Windows Drivers Development Kit. Unfor-
tunately, we were not able to test this driver out-of-the-
box using SDV, because the driver uses older versions of
the NDIS API, that SDV cannot exercise. SDV also re-
quires special entry point annotations in the source code,
which were not present in the Intel Pro/100 driver. We re-
sorted to comparing on the sample drivers shipped with
SDV itself: SDV found the 8 sample bugs in 12 minutes,
while DDT found all of them in 4 minutes.

We additionally injected several synthetic bugs in the
sample driver (most of these hang the kernel): a dead-
lock, an out-of-order spinlock release, an extra release of
a non-acquired spinlock, a “forgotten” unreleased spin-
lock, and a kernel call at the wrong IRQ level. SDV did
not find the first 3 bugs, it found the last 2, and produced
1 false positive. DDT found all 5 bugs and no false posi-
tives in less than a third of the time that SDV ran.

We conclude that DDT can test drivers that existing
tools cannot handle, and can find more subtle bugs in
mature device drivers. In the next section, we evaluate
the efficiency of DDT and assess its scalability.

5.2 Efficiency and Scalability

We evaluated DDT on drivers ranging in size from 18
KB to 168 KB. In Figure 2 we show how code coverage

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6

C
ov

er
ed

 B
as

ic
 B

lo
ck

s

Running Time (minutes)

RTL8029
Intel Pro/100

Intel 82801AA AC97

Figure 3: Absolute coverage with time

(as a fraction of total basic blocks) varied with time for
a representative subset of the six drivers we tested. In
Figure 3 we show absolute coverage in terms of number
of basic blocks. We ran DDT until no more basic blocks
were discovered for some amount of time. In all cases, a
small number of minutes were sufficient to find the bugs
we reported. For the network drivers, the workload con-
sisted of sending one packet. For the audio drivers, we
played a small sound file. DDT’s symbolic execution ex-
plored paths starting from the exercised entry points. For
more complex drivers, workload can be generated with
the Device Path Exerciser (described in §4).

DDT has reasonable memory requirements. While
testing the drivers in Table 1, DDT used at most 4 GB
of memory, which is the current prototype’s upper limit.

The coverage graphs show long flat periods of exe-
cution during which no new basic blocks are covered.
These periods are delimited by the invocation of new
entry points. The explanation is that the driver-loading
phase triggers the execution of many new basic blocks,
resulting in a first step. Then, more paths are exercised
in it, without covering new blocks. Finally, the execution
moves to another entry point, and so on. Eventually, no
new entry points are exercised, and the curves flatten.

Overall, the results show that high coverage of binary
drivers can be achieved automatically in just a few min-
utes. This suggests that DDT can be productively used
even by end users on their home machines.

6 Discussion

Having seen that DDT is able to automatically find bugs
in a reasonable amount of time, we now discuss some
of DDT’s limitations (§6.1) and the tradeoffs involved in
testing binary drivers instead of their source code (§6.2).

11

6.1 Limitations

DDT subsumes several powerful driver testing tools, but
still has limitations, which arise both from our design
choices, as well as from technical limitations of the
building blocks we use in the DDT prototype.

DDT uses symbolic execution, which is subject to
the path explosion problem [3]. In the worst case, the
number of states is exponential in the number of covered
branches, and this can lead to high memory consumption
and long running times for very large drivers. Moreover,
solving path constraints at each branch is CPU-intensive.
This limits DDT’s ability to achieve good coverage for
large drivers. We are exploring ways to mitigate this
problem by running symbolic execution in parallel [12],
and we are developing techniques for trimming the large
space of paths to be explored [10]. Any improvements in
the scalability of symbolic execution automatically im-
prove DDT’s coverage for very large drivers.

Like any bug finding tool, DDT might have false neg-
atives. There are two causes for this: not checking for
a specific kind of bug, or not covering a path leading
to the bug. Since DDT can reuse any existing dynamic
bug finding tool (by running it inside the virtual machine
along all explored paths) and can be extended with other
types of checkers, we expect that DDT can evolve over
time into a tool that achieves superior test completeness.

Since DDT does not use real hardware and knows lit-
tle about its expected behavior, DDT may find bugs that
can only be triggered by a malfunctioning device. Even
though it has been argued that such cases must be han-
dled in high-reliability drivers [19], for some domains
this may be too much overhead. In such cases, these false
positives can be weeded out by looking at the execution
traces, or by adding device-specific annotations.

Some driver entry points are triggered only when cer-
tain conditions hold deep within the execution tree. For
example, theTransferData entry point in an NDIS
driver is typically called when the driver receives a
packetand provides some look-ahead data from it to
the kerneland the kernel finds a driver that claims that
packet. Since the packet contains purely symbolic data,
and is concretized randomly when the kernel reads it, the
likelihood of invoking the required handler is low. An-
notating the function transmitting the look-ahead data to
the kernel can solve this problem.

While testing drivers with DDT can be completely au-
tomated, our current DDT prototype requires some man-
ual effort. A developer must provide DDT with PCI de-
vice information for the driver’s device, install the driver
inside a VM, and configure Microsoft Driver Verifier and
a concrete workload generator. Once DDT runs, its out-
put is a list of bugs and corresponding execution traces;
the developer can optionally analyze the execution traces
to find the cause of the encountered bugs. Even though

this limits DDT’s immediate usefulness to end users,
DDT can be used today by hardware vendors to test
drivers before releasing them, by OS vendors to certify
drivers, and by system integrators to test final products
before deployment.

DDT does not yet support USB, AGP, and PCI-
express devices, partly due to the lack of such support
in QEMU. This limitation prevents DDT from loading
the drivers, but can be overcome by extending QEMU.

Finally, DDT currently has only a 32-bit implemen-
tation. This prevents DDT from using more than 4
GB of memory, thus limiting the number of explored
paths. Although we implemented various optimizations,
like swapping out unnecessary states to disk, memory is
eventually exhausted. We ported Klee to 64-bit architec-
tures and contributed it to the Klee mainline; we intend
to port DDT as well.

6.2 Source-Level vs. Binary-Level Testing

DDT is a binary-level testing tool, and this has both ben-
efits and drawbacks.

A binary tool can test the end result of a complex build
tool chain. Device drivers are built with special com-
pilers and linked to specific libraries. A miscompilation
(e.g., a wrong field alignment in the data structures), or
linking problems (e.g., a wrong library version), can be
more easily detected by a binary testing tool.

Binary drivers, however, have meager typing informa-
tion. The only types used by binaries are integers and
pointers, and it may be possible to infer some types by
looking at the API functions for which we have param-
eter information. Nevertheless, it is hard to find type-
related bugs that do not result in abnormal operations.
For example, a cast of a color value from the framebuffer
to the wrong size could result in incorrect colors. Such
bugs are more easily detected by source code analyzers.

7 Related Work
Two main approaches have been taken to improve the
safety and reliability of device drivers. Offline ap-
proaches, like testing, concentrate on finding bugs be-
fore the driver is shipped. However, thoroughly testing
a driver to the point of guaranteeing the absence of bugs
is still economically infeasible, so bugs frequently make
their way to the field. Online approaches aim to pro-
tect systems from bugs that are missed during the testing
phase, but typically at the expense of runtime overhead
and/or modifications to the OS kernel.

Testing device drivers can be done statically or dy-
namically. For example, SLAM [1] statically checks the
source code of a device driver for correct Windows API
usage. It uses a form of model checking combined with
an abstract representation of the source code, suitable for

12

the properties to be checked. However, it is subject to
false positives and false negatives stemming from incom-
plete and/or imprecise API models.

Microsoft provides various tools for stress-testing de-
vice drivers running in their real environment. For ex-
ample, Driver Verifier [25] provides deep testing of run-
ning device drivers, but it can miss rarely executed code
paths. DDT combines the power of both static and dy-
namic tools: it runs drivers in a real environment, and
combines its own checks with those of the Driver Veri-
fier. Moreover, DDT employs fully symbolic hardware,
leading to a more thorough exploration.

When testing is not enough, it is possible to contin-
uously monitor the drivers at runtime and provide in-
formation on the cause of the crashes. For example,
Nooks [31] combines in-kernel wrapping and hardware-
enforced protection domains to trap common faults and
recover from them. Nooks works with existing drivers,
but requires source code and incurs runtime overhead.

SFI [32] and XFI [14] use faster software isola-
tion techniques and provide fine grained isolation of the
drivers to protect the kernel from references outside their
logical protection domain. However, it can only protect
against memory failures and incurs runtime overhead.
XFI can work on binary drivers but still requires debug-
ging information for the binaries in order to reliably dis-
assemble them. SafeDrive [35] uses developer provided
annotations to enforce type-safety constraints and system
invariants for kernel-mode drivers written in C. Finally,
BGI [8] provides byte-granularity memory protection to
sandbox kernel extensions. BGI was also able to find
driver bugs that manifest when running the drivers with
BGI isolation. However BGI also requires access to the
source code and incurs runtime overhead.

Minix [17] explicitly isolate drivers by running them
in distinct address spaces; this approach is suitable for
microkernels. Vino [28] introduces an alternative OS
design, which combines software fault isolation with a
lightweight transactional system to protect against large
classes of problems in kernel extensions.

The idea of replacing reads from hardware with sym-
bolic values has been mentioned before [3]. With DDT,
we introduce the new concept of fully symbolic hard-
ware, which can interact both with concretely running
OSes and with symbolically running device drivers.
Fully symbolic hardware can also issue symbolic inter-
rupts, enabling the testing of various interleavings of de-
vice driver code and interrupt handlers.

Selective symbolic execution was first introduced
in [10] and later reused in [9]. DDT shares common ideas
with these, but is also distinguished by several aspects.

First, reverse engineering of a driver with RevNIC
does not require execution to be sound. For example,
RevNIC overwrites with unconstrained symbolic values

the concrete parameters passed by the OS to the driver.
In contrast, since DDT is a testing tool, it requires the ex-
ecution to be sound to avoid false positives. This intro-
duces additional requirements on injection of symbolic
values and on concretization. For example, the concrete
packet size must be replaced by a symbolic value con-
strained not to be greater than the original value, to avoid
buffer overflows.

Second, DDT introduces the use of lightweight API
annotations to describe the interface between a driver
and a kernel. Annotations encode developers’ knowledge
about a specific kernel API, and help improve code cov-
erage as well as detect more logic bugs. Such annotations
were not present in RevNIC.

Third, DDT mixes in-VM instrumentation (bug
checking) with instrumentation from outside the VM.
DDT can reuse existing bug-finding tools that run in the
guest OS, extending these tools with symbolic execution
to work on multiple paths.

Finally, during symbolic execution, RevNIC only
gathers executed LLVM code and traces of device ac-
cesses. In contrast, DDT analyzes the execution in order
to track the origin of symbolic values and control flow
dependencies through the path leading to a bug. DDT
generates annotated execution traces and input values
that help developers reproduce and understand the bugs.

8 Conclusion
We presented DDT, a tool for testing closed-source bi-
nary device drivers against undesired behaviors, like race
conditions, memory errors, and resource leaks. We eval-
uated DDT on six mature Windows drivers and found 14
serious bugs that can cause a system to freeze or crash.

DDT combines virtualization with selective symbolic
execution to thoroughly exercise tested drivers. A set of
modular dynamic checkers identify bug conditions and
produce detailed, executable traces for every path that
leads to a failure. We showed how these traces can be
used to provide evidence of the found bugs, as well as
help understand and fix them.

DDT does not require access to source code and needs
no assistance from users, thus making it widely applica-
ble. We envision DDT being used by IT staff responsible
for the reliability and security of desktops and servers,
by OS vendors and system integrators, as well as by con-
sumers who wish to avoid running buggy drivers in their
operating system kernels.

Acknowledgments
We are indebted to our shepherd, Paul Barham, the
anonymous USENIX reviewers, and our EPFL col-
leagues for their great help in improving our paper.

13

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Us-
tuner. Thorough static analysis of device drivers. InACM
SIGOPS/EuroSys European Conf. on Computer Systems,
2006.

[2] F. Bellard. QEMU, a fast and portable dynamic translator.
In USENIX Annual Technical Conf., 2005.

[3] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: At-
tacking path explosion in constraint-based test generation.
In Intl. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems, 2008.

[4] P. P. Bungale and C.-K. Luk. PinOS: a programmable
framework for whole-system dynamic instrumentation. In
Intl. Conf. on Virtual Execution Environments, 2007.

[5] S. Butt, V. Ganapathy, M. M. Swift, and C.-C. Chang.
Protecting commodity operating system kernels from vul-
nerable device drivers. InAnnual Computer Security Ap-
plications Conf., 2009.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. InSymp. on Operating Systems
Design and Implementation, 2008.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: Automatically generating inputs of
death. InConf. on Computer and Communication Secu-
rity, 2006.

[8] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akri-
tidis, A. Donnelly, P. Barham, and R. Black. Fast byte-
granularity software fault isolation. InSymp. on Operat-
ing Systems Principles, 2009.

[9] V. Chipounov and G. Candea. Reverse engineer-
ing of binary device drivers with RevNIC. InACM
SIGOPS/EuroSys European Conf. on Computer Systems,
2010.

[10] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea.
Selective symbolic execution. InWorkshop on Hot Topics
in Dependable Systems, 2009.

[11] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. 2001.

[12] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and
G. Candea. Cloud9: A software testing service. InWork-
shop on Large Scale Distributed Systems and Middle-
ware, 2009.

[13] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fet-
terman. Execution replay on multiprocessor virtual ma-
chines. InIntl. Conf. on Virtual Execution Environments,
2008.

[14] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces.
In Symp. on Operating Systems Design and Implementa-
tion, 2006.

[15] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows
XP kernel crash analysis. InUSENIX Large Installation
System Administration Conf., 2006.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InConf. on Programming
Language Design and Implementation, 2005.

[17] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Fault isolation for device drivers. InIntl.
Conf. on Dependable Systems and Networks, 2009.

[18] G. Hoglund and J. Butler.Rootkits: subverting the Win-
dows Kernel. Campus Press, 2006.

[19] A. Kadav, M. J. Renzelmann, and M. M. Swift. Toler-
ating hardware device failures in software. InSymp. on
Operating Systems Principles, 2009.

[20] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 1976.

[21] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines.
In USENIX Annual Technical Conf., 2005.

[22] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis and transformation. In
Intl. Symp. on Code Generation and Optimization, 2004.

[23] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming.
In Symp. on Operating Systems Design and Implementa-
tion, 2000.

[24] Microsoft security advisory #944653:
Vulnerability in Macrovision driver.
http://www.microsoft.com/technet/security/
advisory/944653.mspx.

[25] Microsoft. Windows logo program.
http://www.microsoft.com/whdc.

[26] B. Murphy. Automating software failure reporting.ACM
Queue, 2(8), 2004.

[27] V. Orgovan and M. Tricker. An introduction to driver
quality. Microsoft Windows Hardware Engineering
Conf., 2003.

[28] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Symp. on Operating Systems Design and Implementation,
1996.

[29] S. M. Srinivasan, S. Kandula, C. R. Andrews, and
Y. Zhou. Flashback: a lightweight extension for roll-
back and deterministic replay for software debugging. In
USENIX Annual Technical Conf., 2004.

[30] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering device drivers.ACM Transactions on
Computer Systems, 24(4), 2006.

[31] M. M. Swift, B. N. Bershad, and H. M. Levy. Improv-
ing the reliability of commodity operating systems.ACM
Transactions on Computer Systems, 23(1), 2005.

[32] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. InSymp. on Op-
erating Systems Principles, 1993.

[33] B. Xin, W. N. Sumner, and X. Zhang. Efficient program
execution indexing. InConf. on Programming Language
Design and Implementation, 2008.

[34] J. Zhang. A path-based approach to the detection of in-
finite looping. InAsia-Pacific Conf. on Quality Software,
2001.

[35] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: safe and
recoverable extensions using language-based techniques.
In Symp. on Operating Systems Design and Implementa-
tion, 2006.

14

