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The engineering of cells for the production of fuels and
chemicals involves simultaneous optimization of
multiple objectives, such as specific productivity,
extended substrate range and improved tolerance – all
under a great degree of uncertainty. The achievement of
these objectives under physiological and process con-
straints will be impossible without the use of mathemat-
ical modeling. However, the limited information and the
uncertainty in the available information require new
methods for modeling and simulation that will charac-
terize the uncertainty and will quantify, in a statistical
sense, the expectations of success of alternative meta-
bolic engineering strategies. We discuss these consider-
ations toward developing a framework for the
Optimization and Risk Analysis of Complex Living Enti-
ties (ORACLE) – a computational method that integrates
available information into a mathematical structure to
calculate control coefficients.

Biofuels and biochemicals: a multi-objective
optimization problem
Nearly 20 years ago, Tong and Cameron classified the
applications of metabolic engineering into five main areas:
(i) improved production and utilization of chemicals
already produced/used by the host; (ii) extended substrate
range for growth and production; (iii) addition of new
catabolic activities for the degradation of toxic chemicals;
(iv) production of chemicals new to the host; and (v) modi-
fication of the cell [1]. In the development of microorgan-
isms for fuels and chemicals, one must consider and
optimize almost all of these objectives simultaneously.
For example, the economics of the fuels and commodity
chemicals will require a host that is able to overproduce a
fuel or chemical (native or new to the organism) from a
broad range of carbon substrates, some of them not used
previously by this organism, with high specific rates and
with near-theoretical yields [2]. All of these issues become
more challenging whenwe consider the use of new hosts for
engineering [3,4], where there is not enough genomic
information, the genetic tools for metabolic engineering
are limited, and extensive knowledge about their physi-
ology is lacking.

The development of microorganisms for fuels and
chemicals will also require the fine-tuning of carbon flows
and redox balance. All of the biofuels currently considered
require delicate manipulation of the carbon flows in the
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central metabolism, and any intervention in these path-
ways can have significant implications for the cellular
physiology. Redox balance, energy charge and cofactor
levels are also important because they are involved in
many of the pathways for the production of biofuels and
acids. For example, these pathways involve reactions that
produce and consume redox potential, and their direction-
ality is determined by the NAD+/NADH ratio. Metabolic
engineering of these pathways could alter the balance of
redox and coenzyme cofactors, thereby reducing the pro-
ductivity and the yield, leading to the production of bypro-
ducts that could increase the cost of downstream
processing [2,5–7].

Guidance for metabolic engineering
Metabolic engineering design requires identification of
rate-limiting steps in metabolic pathways. A large amount
of effort has been invested in the quantification of the
metabolic fluxes within cells, using methods such as meta-
bolic flux analysis [8–10]. However, one of the limitations of
these methods is that they provide only a snapshot of the
fluxes and do not quantify the responses of metabolic net-
works to the changes in the metabolic parameters or the
process parameters, such as oxygen and carbon substrate
limitation, or stress agents, such as organic acids and pH.
Similar to flux analysis, metabolite profiling, although
provides information about the redox state of the cells, it
is only a quantitative snapshot of the metabolite levels
and, currently, only represents a partial set of the metab-
olites in pathways of interest [11–14].

Mathematical modeling and computational analyses
have been used successfully for metabolic engineering
[15–20]. Constrained-based flux balance analysis has been
one of the most widely used approaches. Sophisticated
computational methods, such as OptKnock and OptStrain,
have been developed for the analysis of constrained-based
genome-scale models and they been very successful in iden-
tifying targets formetabolic engineering [16,17,21,22].How-
ever, methods and approaches that use constrained-based
flux balance analysis can be used only for the optimization
through gene addition and deletion.

Identification of the rate limiting steps requires either a
series of a large number of experiments or a mathematical
description of the metabolic networks that takes kinetic
properties into account [23]. One of the unparalleled
advantages in the use of mathematical models that
account for enzyme kinetics is that they allow us to esti-
mate how we can manipulate the metabolite levels and,
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Box 1. Elements of MCA

Within MCA, two important quantities are defined: flux control

coefficients (FCC) and concentration control coefficients (CCC). In

turn, these quantities are determined by the elasticities, which

quantify the strength of interactions of the enzymes with their

corresponding substrates, products, inhibitors and activators. Control

coefficients capture the sensitivity of the metabolic networks to

metabolic parameters, and although they are based on mathematical

theories of local sensitivity (i.e. they account for small changes in

parameters and responses around a reference state), they are useful

for understanding the properties of the metabolic pathways toward

metabolic engineering. The prediction of cellular responses to more

realistic ranges of manipulation of metabolic and process parameters

can be improved through the application of methods that extend MCA

to large changes in parameters and responses [31].

The control coefficients are defined as:

� Flux control coefficient (FCC)

Cv
p ¼

d ln v

d ln p
¼

dv
v

dp
p

�
Dv
v

Dp
p

� Concentration control coefficient (CCC)

Cx
p ¼

d ln x

d ln p
¼

dx
x

dp
p

�
Dx
x

Dp
p

Sensitivity of reactions to the variation of metabolite concentration

or a parameter is quantified by:

� Metabolite elasticity

ev
x ¼

@ ln v

@ ln x
¼

@v
v
@x
x

� Parameter elasticity

pv
p ¼

@ ln v

@ ln p
¼

@v
v
@p
p

Metabolite elasticities quantify also the strength of interaction

between metabolites and enzymes. For a simple three-step

reaction:

Eþ S@
k1 f

k1b

ES@
k2 f

k2b

EP@
k3 f

k3b

Eþ P

the common rate equation is:

¼ V f
mS̄� V b

mP̄

1þ S̄þ P̄

with: V f
m ¼

k2f k3f ET
k2f þk3f þk3b

, V b
m ¼

k1bk2bET
k2f þk1bþk2b

, S̄ ¼ S
Km1

, and P̄ ¼ P
Km1

,

where: K m1 ¼ k2f k3f þk1bk3f þk1bk2b

k1f k2f þk3f þk2bð Þ , K m2 ¼ k2f k3f þk1bk3f þk1bk2b

k3b k2f þk1bþk2bð Þ ,

and ET=E+ES+EP.

From the rate expression, the elasticities are expressed as:

ev
S̄
¼ vf

v

1þ P̄

1þ S̄þ P̄
þ vb

v

S̄

1þ S̄þ P̄

ev
P̄
¼ �vf

v

1þ P̄

1þ S̄þ P̄
� vb

v

S̄

1þ S̄þ P̄

These elasticities can also be expressed as functions of the enzyme

states and the displacements from the equilibrium of individual

reaction steps {g1, g2, g3}:

ev
S ¼

E
ET
þ g2g3

ES
ET
þ g3

EP
ET

1� g1g2g3

and

ev
P ¼

g1g2g3
E

ET
þ g2g3

ES
ET
þ g3

EP
ET

1� g1g2g3

The displacements from the equilibrium of individual reaction steps

relate to the displacement of the overall reaction, G, through the

product G=g1g2g3.
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consequently, the redox and energetic states of the cell (i.e.
energy charge) using metabolic engineering.

Metabolic control analysis (MCA) has been proposed as
a methodology for quantifying the response of metabolic
systems to changes in cellular and process parameters,
such as enzyme activities, pH and oxygen availability (Box
1) [24–30]. However, for MCA to be a predictive, guiding
methodology, it requires a kinetic model; otherwise, the
number of experiments required to identify the rate-limit-
ing steps might be even larger than the number of the
experiments required for solving the problem at hand.

Uncertainty in biological systems
A predominant issue in the development of kinetic models
of metabolic networks is the lack of available information
Table 1. Information source and uncertainty characterization

Uncertainty

Type

Stoichiometry N Structural

Metabolic fluxes n Quantitative

Thermodynamics DG00 Quantitative

Metabolite ranges S, P Quantitative

Elasticities e Structural/quantitat

2

and the uncertainty associated with such information,
such as metabolic fluxes and kinetic properties of enzymes.
The uncertainty in the study of metabolic pathways can be
classified in two types: structural and quantitative
(Table 1). ‘Structural uncertainty’ deals with the lack of
knowledge concerning the stoichiometry and the kinetic
laws of the enzymes in the pathways. For most of the
common organisms, such as Escherichia coli, Bacillus
subtilis and Saccharomyces cerevisiae, the stoichiometry
of the pathways is well-characterized; however, gaps exist
in the pathways of many newly sequenced organisms (a list
of more than 2000 completed or ongoing sequencing pro-
jects is available at: www.jgi.doe.gov/genome-projects/),
and the kinetics of their enzymes are completely unknown
[32–35]. Furthermore, the kinetic parameters of the
Source

Degree

Low - Genomics

- Biochemistry

- Hypotheses

Low/high - NMR

- Hypotheses

Low/medium - Biophysics

- Experiments

- Estimation methods

Medium/high - Experiments

ive High - Biochemistry

- Hypotheses

http://www.jgi.doe.gov/genome-projects/
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enzymes are usually known as ‘apparent Km values’, but
not as detailed kinetic mechanisms. In addition, enzyme
kinetics are usually characterized in vitro, and it is possible
that the kinetics will differ in a crowded intracellular (in
vivo) environment [36,37].

‘Quantitative uncertainty’ is associated with the infor-
mation about flux distributions, thermodynamic infor-
mation, metabolite concentration and elasticities
(Table 1). Despite advances in methods for the quantifi-
cation of metabolic fluxes, there are still significant errors
in their measurements. The thermodynamic properties of
many reactions are also unknown and are based on group
contribution methods, which themselves contain both
experimental and estimation uncertainty [38]. Metabolite
measurements carry the most uncertain information with
respect to both their concentration levels and the number
of metabolites we can measure.

Uncertainty is a common problem in the physical and
chemical sciences and engineering [39]. Several methods
and approaches exist within these fields that allow uncer-
tainty modeling and quantification. Some of these
methods have been used in the analysis of metabolic
and signaling networks and, as a result, have provided
some insight into the properties of the networks as well as
guidance for metabolic engineering [40–47]. The chal-
lenges in the development of uncertainty analysis are
in the modeling and simulation of uncertainty. With
respect to kinetic models of chemical and biochemical
systems, one must sample the kinetic parameters
multiple times, calculate the properties of a population
of the system, solve large systems of nonlinear equations,
and perform a statistical analysis to characterize the
properties of the system population [48–54]. This can
be computationally infeasible because: (i) the ranges of
the parameter values are not known or they are very
large; (ii) the size and nonlinearities introduce compu-
tational difficulties; and (iii) reliable statistics will require
a computationally prohibiting number of samples. There-
fore, we need to develop methods for modeling and
analysis of uncertainty in biological systems that will
address these issues by integrating biological data from
different levels and maximizing the extraction of infor-
mation from these data. These modeling and analysis
methods will provide guidance and alternatives for meta-
bolic engineering, as discussed herein.

Optimization and Risk Analysis of Complex Living
Entities (ORACLE)
Wang and Hatzimanikatis [40–42] have proposed an
approach based on MCA frameworks that uses uncer-
tainty analysis methods for the study of metabolic path-
ways andaddressmost of thepreviouslymentioned issues.
The method, called ORACLE (optimization and risk
analysis of complex living entities), is based on a sampling
computational procedure and involves several steps
where the available information is integrated into amath-
ematical structure and the control coefficients are calcu-
lated. Whenever this information is missing, a Monte
Carlo sampling method is used. The main advantage of
ORACLE stems from the finding that enzyme elasticities
can be estimated if the distribution of the enzyme between
the different mechanistic states is known. For example, in
the simplest enzyme mechanism of a reversible unimole-
cular reaction, the elasticity depends on the displacement
of the enzyme from equilibrium and on the distribution of
the enzyme between three states: free enzyme, enzyme–

substrate complex and enzyme–product complex. This
observation led to the reconsideration of the uncertainties
in the enzyme state space instead of the kinetic parameter
space. This reformulation gives the advantage that one
can derive the elasticity values by sampling the enzyme
state space, which, unlike the parameter space, is very
well bounded between 0 and 1. In this way, the distri-
butions of the elasticities for a given displacement from
the thermodynamic equilibrium can be derived in an
efficient manner.

The application of ORACLE and any similar methods
must follow several steps that integrate biological infor-
mation from different levels and sources; in doing so, these
approaches guarantee that the analysis is consistent with
biological and physical constraints, such as metabolite
ranges and reactions thermodynamics. Within ORACLE
the following procedure is considered:

Step 1. Definition of the stoichiometry, which can be
obtained from biochemical data or genome reconstruc-
tion analysis [32–35]. It can also be hypothesized in the
form of possible pathways when starting pathways are
missing, or if a comparison between alternative
chemical routes is desired.
Step 2. Estimation of the flux profiles using information
from metabolomics analysis. Estimation can also be
based on hypotheses about desirable flux distributions
in an engineered pathway [8,9,19].
Step 3. Estimation of the standard free energy of
reactions. This is based on the available experimental
information, or it can be estimated using group
contribution methods [38,55,56].
Step 4. Sampling of metabolite levels. For some
metabolites in the system, measurements specific to
the experimental system or estimates from experiments
under similar physiological conditions might be avail-
able [11–14]; these estimates can provide the bounds for
the computational sampling of the metabolites. In
addition, the information fromStep 2will determine the
direction that reversible reactions will operate and,
combined with the information from Step 3, will be used
for sampling the metabolite levels without violating
thermodynamic and directionality constraints [57–59].
Step 5. Computation of the elasticities will be performed
through the sampling of the enzyme states (Box 1). In
general, elasticities depend on the displacement of the
enzymes from the thermodynamic equilibrium. There-
fore, for a given sample of displacement derived from
Step 4, a distribution of elasticities through the
sampling of the enzyme states is calculated.
Step 6. Consistency checks and pruning are tests that
consider the stability of the system and the consistency
with experimental information. For example, it might
be known that the response of a metabolic flux to the
changes in the activity of an enzyme is inconsistent with
the control coefficients in some samples (Box 2).
3



Box 2. Information refinement

As the available information increases, the distribution of the computed

control coefficients can be refined (Figure I). If it is experimentally

observed that the control coefficient of the flux Vx, CV x
p , is estimated to

be larger than 0.3, then the generated elasticities that lead to values of

CV x
p that do not satisfy the constraint are rejected. The pruning of these

elasticities at the same time refines the distributions of the other control

coefficients as illustrated by a sharper mode of the distribution of the

control coefficient of the flux Vy, CV x
p .

Figure I.
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Step 7. Populations of control coefficients are calculated
based on a well-established framework for MCA [41] and
are then stored.
Step 8. Statistical analysis, datamining and visualization.
The populations from Step 7 are analyzed using non-
parametric statistics and datamining to rank the enzymes
with respect to their impact on the objectives [60–62].

Although the proposed framework is designed around
Figure 1. Computational procedure for uncertainty analysis of metabolic networks

within ORACLE. Although the analysis revolves around MCA, the procedure

described here should be the same for uncertainty analyses, which use alternative

mathematical modeling frameworks.
MCA, any alternative approach for metabolic engineering
under uncertainty must consider the same steps and the
associated issues: system modeling, uncertainty modeling,
computational efficiency, statistical analysis and visual-
ization.

Prediction versus expectation
The results from the application of the ORACLE or similar
methods should not be viewed as predictions in the strict
engineering sense; instead, they are predictions in a stat-
istical manner, as expectations of success of the metabolic
engineering targets they identify. Rather than providing a
single solution, the analyses offer a set of alternative
solutions that are evaluated with respect to their uncer-
tainty, which itself is the propagation of the uncertainty in
the available information. One of the benefits of this
approach is that the alternative solutions can be given
back to the experts who can evaluate them based on their
‘expert opinion’ – a type of information that cannot be
modeled using conventional mathematical and statistical
modeling methods.

The ability to screen for and formulate alternative
strategies is crucial because the analysis generates a very
large set of data with many variables and dimensions
(multiple control coefficients). Similar to certain problems
4

in data mining and analysis, the formulation of the proper
question will dictate the methods and the tools used for
such analysis. This situation is very similar to the problem
facing biotechnology with ‘omics’ information. Here, the
opportunity exists to adapt omics methodologies for
analysis and visualization of information from the uncer-
tainty analysis of the control distribution in metabolic
networks. The metabolic control analysis of the central
carbon pathways in yeast has been one of the first appli-
cations of this kind of methodology [41,42].

A case study: ethanol production in yeast
ORACLE has been used for the analysis of ethanol pro-
duction by S. cerevisiae [41,42]. The only experimental



Figure 2. ORACLE analysis of the ethanol productivity in S. cerevisiae [42]. (a) The distribution of the flux control coefficients of ethanol production with respect to changes

in the activities of the enzymes in the central carbon pathways, CADH
� , were computed and analyzed. (b) The mean value and the first and third quartiles were calculated;

these values are plotted as box plots, and the bars that correspond to the quartiles provide visualization of the form (skewness) of the distribution of control coefficients. (c)

A very small number of enzymes and cellular activities has a significant impact on the specific ethanol productivity. The three most statistically important enzymes and

process are: (i) glucose transport (HXT); (ii) hexokinase (HXK); and (iii) ATP maintenance (ATPmt). Figure 2c adapted with permission from Ref. [42].
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information used in this analysis was the pathway stoichi-
ometry and the distribution of the metabolic fluxes [10].
Standard kinetic expressions (not kinetic parameters)
were used for the enzymes, and metabolite concentrations
were sampled within typical physiological ranges. In these
studies, a mathematical model of the central carbon path-
ways in yeast was constructed, comprising 55 metabolites
and 66 reactions, grouped into seven major pathways. It
also included the compartmentalization of the reactions in
the mitochondria and the transport reactions across the
mitochondrial membrane. A reliable kinetic model for this
systemdoes not exist, and it is difficult to construct because
the kinetic properties of such a large number of reactions
are not known and the available experimental information
does not allow reliable parameter estimation.

In this case study, the ORACLEmethodology (Figure 1)
was applied, using stoichiometry previously presented [10]
for the identification of metabolic fluxes. Enzyme import-
ance with respect to impact on ethanol productivity was
ranked (Figure 2). It was found that an increase in ATP
maintenance requirement decreased the ethanol pro-
ductivity; this suggested that maintenance demand lowers
ATP concentration, leading to an increased competition for
ATP as well as limiting hexokinase activity and flux
through glycolysis. To test this hypothesis, the analysis
was repeated under the assumption that ATP saturates
hexokinase. This hypothesis was simulated, assuming that
most of the enzyme states of hexokinase were in complex
form with the substrate, and that the elasticity of the
enzyme with respect to ATP was near zero. Under this
assumption, it was found that changes in ATP mainten-
ance had no effect on glycolytic flux and ethanol pro-
ductivity, confirming the hypothesis [42]. This example
illustrates howmethods such as ORACLE can also be used
for hypothesis testing, without the need for a detailed
kinetic model of the pathways.

Concluding remarks
Engineering complex metabolic pathways for the efficient
production of biofuels and biochemicals is a challenging
task, and the partial knowledge and uncertainty associ-
ated with the components of these pathways makes it
difficult to advance the field. Although it will be hard to
find some prophets and deities to help us with these
complex problems, hopefully ORACLE and similar risk
analysis methods will provide some much-needed ‘prophe-
tic’ guidance.

The development of industrial microorganisms requires
people from many disciplines working together: process
engineers, chemical and biochemical engineers, microbial
physiologists, biochemists, molecular biologists and
geneticists. In such settings – when researchers are faced
with complex problems – they usually start by focusing on
what they know best. The use of uncertainty-based math-
ematical modeling can permit identification of metabolic
engineering targets, without bias from previous experi-
ence, while simultaneously taking into account constraints
from the process engineering and downstream design spe-
cifications.

Although MCA is a local sensitivity framework, it can
serve as a starting point for the development of global
sensitivity analysismethods. Suchmethods have been used
extensively in other engineering fields, and they can be
easily extended for application in biological systems [43].
Within the field of uncertainty and sensitivity analysis,
methods exist for the analysis of uncertainty propagation.
These methods can be used in the framework discussed
above to identify which are the flux measurements or the
5
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enzymes whose uncertainty contributes the most toward
uncertainty of the control coefficients. Identifying these
sources of uncertainty can guide the investment of resources
in the study of specific components of the pathways, such
that uncertainty is reduced and the knowledge of the sys-
tem-of-interest is vastly improved.

The nature of the data of uncertainty analysis also
suggests the need for developments in various areas of
computational biology, such as large-scale computation,
statistical analysis and visualization toward productive
communication among experts from diverse backgrounds.
These areas have not been explored in the past, primarily
because researchers in metabolic engineering and syn-
thetic and systems biology have been overly concerned
with accurate prediction driven by conventional engineer-
ing paradigms and practices. Hence, the demand for engin-
eering microorganisms for fuels and chemicals will drive
new developments and practices in mathematical and
computational methods for metabolic engineering and
synthetic biology.
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