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Abstract 

This work concerns the investigation of the electrochemical promotion of Pt/YSZ catalyst 

giving more emphasis to the sustainable enhanced catalytic activity after current interruption.  

The permanent electrochemical promotion (P-EPOC) of C2H4 combustion over Pt/YSZ is 

investigated at 375°C under atmospheric pressure. Under anodic polarization, a non-faradaic 

enhancement of the reaction rate is observed (ρ = 4.2 and Λ = 370). However, after current 

interruption, the sustainable enhanced catalytic activity (P-EPOC) increases with the holding 

polarization time (γ =2,2 after 10 hours) giving evidence that a storage mechanism of oxygen 

promoters is involved in P-EPOC. In fact, a model involving two different types of 

promoters is proposed. Oδ1- promoters, highly mobile and reactive at the Pt/gas, are 

proposed to be responsible of EPOC while Oδ2- promoters, slow and very stable at the 

Pt/gas, are proposed to account for P-EPOC.  

Further electrochemical investigations of the Pt/YSZ interface realized at both atmospheric 

pressure and under high vacuum (HV) conditions gave strong evidence that the 

electrogeneration of the Oδ2- promoters is related to the formation of PtO taking place 

during an anodic polarization. In fact, the investigations of the O2(g),Pt/YSZ systems at 

atmospheric pressure, have revealed that, under anodic polarization, two electrochemical 

reactions take place: PtO formation at the Pt/YSZ interface and O2 evolution at the triple 

phase boundary (tpb). The current efficiencies of each process (ηPtO and ηO2) are determined 

allowing estimating the effective rate of PtO formation at the Pt/YSZ interface. In addition, 

CV-MS and DSCP-MS measurements, performed under HV conditions, have confirmed this 

process of oxygen storage at the Pt/YSZ interface and reveal a cooperative mechanism 

between O2 evolution reaction and PtO formation which allows the slow diffusion of 

oxygen strongly bonded (Oδ2- promoters) toward the Pt/gas interface. 
 

Key words: NEMCA effect, EPOC effect, P-EPOC effect, Pt/YSZ interface, solid state 

electrochemistry, Wagner theory for metal oxidation, oxygen storage, catalysis under high 

vacuum



Stored electrogenerated promoters inducing sustainable enhanced Pt catalyst activity 

Résumé 

Ce travail propose l’étude de la promotion électrochimique du catalyseur Pt/YSZ en portant 

une attention particulière à l’augmentation durable de l’activité calatytique observée après 

interruption du courant. 

La promotion électrochimique permanente (P-EPOC) de la combustion de C2H4 sur 

Pt/YSZ est étudiée à 375°C sous pression atmosphérique. Pendant une polarisation 

anodique, une augmentation non-faradique de la vitesse de réaction est observée (ρ = 4.2 

and Λ = 370). Cependant, après interruption du courant, l’augmentation durable de l’activité 

calatytique (P-EPOC) grandit avec le temps de polarisation (γ =2,2 après10 heures) 

témoignant qu’un mécanisme de stockage de promoteurs oxygène est associé à P-EPOC. Un 

modèle comportant deux différents types de promoteur est proposé. Les promoteurs Oδ1-, 

très mobiles et réactifs à l’interface Pt/gaz, sont suggérés être responsables de EPOC, alors 

que les promoteurs Oδ2-, lents et très stables à l’interface Pt/gaz, sont reliés à P-EPOC. 

Les études électrochimiques de l’interface Pt/YSZ réalisées par la suite, à pression 

atmosphérique et sous vide poussé, ont donné une forte preuve que l’électrogénération des 

promoteurs Oδ2- est reliée à la formation de PtO pendant la polarisation anodique. L’étude à 

pression atmosphérique a montré que pendant la polarisation, deux réactions 

électrochimiques ont lieu : la formation de PtO à l’interface Pt/YSZ et le dégagement 

d’oxygène à l’interface triple (tpb). Les efficacités de courant de chaque réaction (ηPtO et ηO2) 

sont determinées, ce qui permet d’estimer la vitesse effective de formation de PtO. En outre, 

les mesures CV-MS et DSCP-MS, faites sous vide poussé, ont confirmé ce procédé de 

stockage d’oxygène à l’interface Pt/YSZ et ont révélé un mécanisme de coopération entre le 

dégagement d’oxygène et la formation de PtO qui permet la diffusion lente d’oxygène 

fortement lié (les promoteurs Oδ2-) à l’interface Pt/gaz.  

 

Mots clés : Effet NEMCA, Effet EPOC, Effet P-EPOC, interface Pt/YSZ, électrochimie 

solide, théorie de Wagner pour l’oxidation des métaux, stockage d’oxygène, catalyse sous 

vide poussé. 
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CHAPTER I -   INTRODUCTION 

 

Electrochemical Promotion of Catalysis (EPOC), first observed by Vayenas in the 80’s [1], 

consists of the dramatic enhancement of the catalytic activity of a conducting catalyst 

supported on a solid electrolyte during the application of a constant current/potential step. 

EPOC is a challenging interdisciplinary phenomenon regrouping the field of catalysis, 

surface science, electrochemistry, solid state ionic and chemical reaction engeneering. Worth 

to mention that EPOC has not been found to be limited to any particular electrolyte, e.g. 

cationic or anionic, any conducting catalyst, e.g. metal or metal oxide, or any type of catalytic 

reaction. As a consequence, no doubt that the investigation of EPOC phenomenon 

represents a subject of growing interest regrouping many fundamental and applied 

investigations performed by several different groups all over the world (Fig I-1). 

 
Fig I-1 : Number of EPOC publications edited over the last decades from www.scopus.com 
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I . 1  M o t i v a t i o n s  a n d  o b j e c t i v e s  

In most of the reported EPOC studies, after current interruption, the catalyst returns to its 

initial activity, i.e. EPOC is considered to be reversible [2]. However, after long term 

polarization, some systems revealed a remaining enhancement of their catalytic activity [3-5]. 

This intriguing behavior, first reported in our laboratory as Permanent EPOC (P-EPOC) [6] 

represents a challenging subject for the fundamental understanding of the phenomenon.  

Previous works suggested that during polarization, promoter storage, ‘hidden’ from catalysis 

is responsible of the P-EPOC behavior [5]. However, the nature and the location of this 

storage represent a serious point of controversy. 

 

This works aims to corrolate the gas exposed catalyst (Pt/gas) activity with the Pt/YSZ 

interface in order to understand the mechanism by which the effect of polarization at the 

catalyst/electrolyte interface propagates to the catalyst/gas interface. In this aim, both 

atmospheric and high vacuum conditions are studied. At atmospheric pressure, the 

investigation is performed in a large domain of temperature, by chronopotentiometry and 

cyclic voltammetry which are commonly used techniques to describe and get knowledge 

upon both anodic and cathodic behavior of electrochemical sytems. Under high vacuum 

(HV), a new electrochemical technique has been developed for electrochemical and 

electrocatalytic investigations of the Pt/YSZ interface. In this technique an electrochemical 

perturbation is imposed to the Pt/YSZ interface and the reaction products at the Pt/gas 

interface are analyzed online by mass spectrometry. The response time of this technique is 

less than 1s. 

 

I . 2  O u t l i n e  

After description of the motivations and objectives of the work (Chapter I), the study 

performed herein is divided in three different parts. Part I concerns the electrochemical 

promotion of C2H4 combustion over Pt/YSZ at atmospheric pressure, Part II focuses on 
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the electrochemical behavior of the O2(g),Me/YSZ interface upon anodic/cathodic 

polarization at atmospheric pressure and Part III deals with the electrochemical and the 

electrocatalytic behavior of the Pt/YSZ interface under high vacuum conditions (HV).  

 

I.2.1 Part I : Electrochemical promotion (EPOC and P-EPOC) 

In Chapter II, the EPOC literature is reviewed. After a prolonged anodic polarization, an 

unexpected complex relaxation behavior, after current interruption, of the catalytic activity is 

reported for several systems. Depending on the experimental conditions, this catalytic 

enhancement is observed to be either permanent (P-EPOC : the catalytic activity reaches a 

sustainable higher catalytic activity after current interruption), either persistent (Pers-EPOC : 

the catalytic activity remains enhanced after current interruption, for a finite time, before to 

restore its initial state). P-EPOC is quantified by γ, the permanent enhancement factor and 

Pers-EPOC is quantified by ΛOS, the oxygen storage efficiency.  

 

In Chapter III, the electrochemical promotion of ethylene combustion over Pt/YSZ is 

studied under atmospheric pressure at 375°C by varying the reactive gas composition, the 

applied anodic current and the duration of the polarization step imposed. During the 

polarization, the electrophobic behavior of the system is confirmed (in agreement with 

EPOC theory). However, after current interruption, the irreversibility of the phenomenon is 

established to increase with increasing polarization time. This suggests that slow irreversible 

promoter storage takes place in parallel to the rapid mechanism of sacrificial promoter 

described in literature. 

 

I.2.2 Part II : Electrochemical investigation of O2(g),Me/YSZ 

(Me:Ni,Pt) systems 

In Chapter IV, the electrochemistry of generic Me/YSZ systems is reviewed. Solid state 

electrochemistry literature reports various possible reaction paths and reaction locations for 

the mechanism taking place upon an anodic/cathodic polarization of a Me/YSZ interface. 



Outline 

14 

Because of these discrepancies the review is extended to the field of high temperature metal 

oxidation and to the literature of aqueous state electrochemistry. On this basis, the literature 

concerning the Ni/YSZ and the Pt/YSZ systems is subject to special focus.  

 

In Chapter V, the O2(g),Ni/YSZ system is investigated under atmospheric pressure as 

reference system. Cyclic voltammetry measurements performed between 350°C and 450°C 

reveal that under anodic polarization, nickel oxide formation takes place at the Ni/YSZ 

interface in parallel to the oxygen evolution reaction occurring at the triple phase boundary 

(tpb). Current efficiencies are determined for both processes and the results are correlated to 

the electrochemical interpretation of the Wagner oxidation theory.  

 

In Chapter VI, the O2(g),Pt/YSZ system is investigated by cyclic voltammetry between 250°C 

and 375°C at atmospheric pressure (O2 20% in He). Under anodic polarization, PtO is 

formed at the Pt/YSZ interface in parallel to the oxygen evolution reaction occurring at the 

tpb. Depending on the applied potential, the PtO formation is found to follow a parabolic or 

logarithmic growth law allowing to propose a model for Pt/YSZ interface electro-oxidation 

in relation to the Wagner or the Eley & Wilkinson oxidation mechanisms. 

 

I.2.3 Part III : Investigation under high vacuum 

In Chapter VII, a new probe device is built to perform electrochemical measurements under 

high vacuum (HV) conditions, while monitoring simultaneously the electrochemically 

formed products. The short residence time of the microreactor coupled to the high 

sensitivity and the fast detection response (<1s) of QMS analyzer appeared as key 

parameters for the elaboration of such a solid electrochemical mass spectrometric 

investigation tool (SEMS). 

 

In Chapter VIII, the Pt/YSZ interface is investigated under HV conditions by CV-MS 

measurements (coupling cyclic voltammetry to mass spectroscopy) and DSCP-MS 
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measurements (coupling double step chronopotentiometry to mass spectroscopy) at 400°C. 

The cathodic stability of YSZ and the anodic PtO formation. 

 

In Chapter IX, the electrocatalytic behavior of the Pt/YSZ system is investigated for CO 

oxidation under HV conditions at 400°C. For both oxygen lean and oxygen rich conditions, 

the CO oxidation reaction is found to be composed of a chemical contribution and an 

electrochemical faradaic contribution without any synergetic effect.  

 

Finally in Chapter X, a general discussion on the electrochemical promotion of the Pt/YSZ 

catalyst for gas phse reaction is proposed. On the basis of all the results obtained, a model 

involving two different types of promoters is proposed. First type of promoters, Oδ1-, are 

proposed to be responsible of the rapid electrochemical promotion observed during the 

polarization (EPOC) while second type of promoters, Oδ2-, more stable, are suggested to be 

stored during the polarization step and linked to the P-EPOC effect reported after current 

interruption. 
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CHAPTER II -   STATE OF THE ART  

 

The catalytic activity, of both metal and conductive metal oxide catalysts supported on YSZ, 

is found to be dramatically modified by the application of an electrochemical polarization. 

This phenomenon, first reported in the 80’s by Vayenas as Non-faradaic Electrochemical 

Modification of Catalyst Activity (NEMCA), is in our days known as Electrochemical 

Promotion of Catalysis (EPOC). It has been reported that after potential (current) 

interruption, the catalyst is generally observed to restore rapidly its initial activity, i.e. EPOC 

is generally reversible and the state of the art EPOC model proposed by Vayenas expects 

such behavior. 

Nevertheless, it has been found that, following a prolonged anodic polarization, at potential 

(current) interruption several catalysts remain in a promoted state compared to the initial 

open circuit activity. Moreover, an exposure to a reductive atmosphere allowed restoring the 

initial catalytic activity. This effect first reported in our laboratory was named Permanent 

EPOC (P-EPOC) and represents a challenging field of research for several years. 

This chapter proposes a review of the literature of EPOC which highlights the main 

parameters influencing the electrochemical promotion behavior of YSZ supported catalysts 

with special focus on the P-EPOC phenomenon. Prolonged polarization time, tH, oxygen 

rich gas mixture composition and low temperature appeared as main conditions required to 

the observation of P- EPOC for ethylene combustion over Pt/YSZ. This allows to define 

experimental conditions for the further investigation proposed in this work. 



 

20 

 



   State of the art 

21 

I I . 1  I n t r o d u c t i o n  

Electrochemical promotion of catalysis (EPOC) means non-Faradaic tuning of the catalytic 

reaction rate by electric polarization of the interface between an electron conducting catalyst 

(metal or metal oxide) and an ion conducting support. Typical use is for gas phase reactions 

over metal or metal oxide catalysts in a solid electrolyte cell at temperatures between 300 and 

600°C, where the most often used support, yttria-stabilized zirconia (YSZ), is an oxide ion 

(O2–) conducting material. The state-of-the-art model of EPOC attributes the phenomenon 

to electrochemically generated species, responsible for promotion but at the same time 

consumed slowly in the catalytic reaction (‘sacrificial’ promoter). In early works already, 

EPOC was related to alteration of catalyst work function. Although EPOC is most often 

fully reversible, long-lasting polarization of both metal (Pt, Rh) and oxide (IrO2, RuO2) 

catalysts was found to cause an apparent ‘permanent’ effect, where the steady-state open 

circuit catalytic activity after current interruption exceeded significantly its initial level before 

polarization.  

 

I I . 2  E P O C  p h e n o m e n o n  

Controlled tuning of catalytic activity has been a long-sought goal in heterogeneous 

catalysis. In their pioneering work in the early 1980s Vayenas et al. reported the control of 

catalytic reactions via electrochemical polarization [1]. They found that the catalytic activity 

of thin porous metal catalyst films could be tuned in a controlled manner by polarization of 

the catalyst/solid electrolyte interface in an electrochemical cell of the type: 

 

catalyst 

(working electrode) 

WE 

solid 

electrolyte 

catalytically 

inert metal 

(counter electrode) 

CE 
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where the catalyst film is the working electrode and the catalytically inert metal (typically 

gold) is the counter electrode. Take the example of ethylene combustion as catalytic 

reaction: 

 

(g) OH 2(g) CO 2      (g) O 3 (g) HC 22242 +→+  II-1 

 
occurring at an open-circuit reaction rate of ro (mol O s–1). Using an oxide ion (O2–) 

conducting material (e.g. yttria-stabilized-zirconia, YSZ) as solid electrolyte, application of an 

anodic current between the counter and the working electrode (now the solid electrolyte is 

the source of O2– ions and the working electrode is the collector of electrons) may result in 

the electrochemical oxidation of ethylene at the working electrode: 

 
-12e(g) OH 2(g) CO 2      -O 6 (g) HC 22

2
42 ++→+  II-2 

 

Supposing a current efficiency of 100%, the maximum possible electrochemical reaction 

rate, rel (mol O s–1), is calculated with Faraday’s law: 

 

el
Ir

zF
=  II-3 

 
where I is the electric current, z is the charge number of the transported ions (for O2–, 

z = 2), and F is the Faraday constant. If open-circuit and Faradaic reactions would be 

additive, Eq. 3 would give the maximum expected increase in reaction rate due to 

polarization. 

 

Fig. II-1 shows the evolution of the experimentally observed reaction rate, r, in a stepwise 

anodic polarization cycle, i.e. before, during, and after galvanostatic polarization of the 

catalyst/YSZ interface in the combustion of ethylene ( pC2H4 = 0.36kPa, pO2 = 4.6 kPa) 

over Pt/YSZ at 370°C, reported by Bebelis and Vayenas [1]. It is seen, that the experimental 

rate increase, r – ro, is by orders of magnitude higher than the maximum possible rate 
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increase calculated from Faraday’s law. Obviously, polarization of the catalyst/electrolyte 

interface causes a dramatic alteration in catalytic activity rather than simply contribute to the 

reaction rate by adding the electrochemical (Faradaic) reaction. The highly non-Faradaic 

character of electrochemical promotion originates its currently used synonym: non-Faradaic 

electrochemical modification of catalytic activity (NEMCA effect) [2]. 

Fig.  II-1   : Rate, r, and catalyst potential V , response to step changes in applied current during 

C2H4 oxidation on Pt /YSZ. T=370°C,PO2=54.6 kPa, PC2H4 =0.36 kPa. The experimental (τ) and 

computed (2FNPt/gas/I ) rate relaxation time constants are indicated on the figure [1]. 2FNPt/gas/ 

is the number of active sites of the Pt catalyst. 

 

EPOC is usually quantified by two parameters, ρ and Λ. The rate enhancement factor, ρ, is 

defined as the ratio of the steady-state promoted catalytic rate, rp, to the initial open-circuit 

reaction rate, ro, and is a measure of the level of promotion (equation II-4): 
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0

pr
r

ρ =  II-4 

The Faradaic efficiency, Λ, is defined as the ratio of the observed rate increase to the 

maximum possible electrochemical rate (equation II-5): 

 

0

2

pr r
I
F

−
Λ =  

II-5 

 
so |Λ| > 1 is the criterion of non-Faradaic behavior. For the example seen in Fig.  II-1, the 

approximate steady state values are ρ ≈ 26 and Λ ≈ 74000. 

 

Since its discovery [3], the non-Faradaic character of EPOC has been demonstrated for 

more than 70 catalytic reactions, and it is now well established that EPOC is not limited to 

any particular class of catalysts, electrolytes or reactions [2]. 

 

Electrochemical promotion induced, by application of potential difference between the 

working catalyst electrode and the reference results in a change in catalyst work function 

responsible of the enhancement of the catalytic reaction rate [4]. In fact, catalyst work 

function measurements performed by Ladas et al [5] using the Kelvin probe technique over 

Pt catalyst deposited on O2- or Na+ conducting electrolytes, report a one-to-one relationship 

between the applied working-reference potential difference, ΔUWR, and the catalyst (WE) 

work function change, ΔΦW.  

 

e ΔUWR = ΔΦW  II-6 

where e is the unit electron charge. 

This experimental fact was attributed by the authors to the population of the catalyst/gas 

interface by oxygen backspillover ions, taking place during an anodic polarization. Later, this 

relation (equation ΙΙ−6) was theoriticaly validated by Leiva et al [6] for a wide range of catalyst 

work function (0.2eV-1eV). 
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The current understanding of the physicochemical origin of EPOC, based also on 

numerous other spectroscopic and electrochemical techniques and reviewed thoroughly [7-

10], attributes the effect of electrochemical promotion to transport of ionic species through 

the solid electrolyte support, their discharge at the triple phase boundary (tpb) and 

subsequent migration of the discharged species to the catalytically active catalyst/gas 

interface. The discharged species act as promoters but are also consumed by the catalytic 

reaction and/or desorption. The resulting steady-state population of promoters at the gas 

exposed catalyst surface causes a potential-controlled change in the work function of this 

latter. According to this concept, EPOC is reversible and the catalyst restores its initial 

activity, typically within a few tens of minutes, after potential or current interruption. 

 

In terms of catalytic reaction rate, the state-of-the-art model of EPOC predicts steady-state 

open-circuit reversibility (i.e. sacrificial promoters), fast response upon current imposition 

depending on the applied current and relatively fast relaxation (depending on Λ) upon 

current interruption. However, several experiments, especially when related to long lasting 

polarization, have revealed steady-state open-circuit irreversibility and/or current dependent 

complex relaxation transients. Such effect, termed ‘permanent’ electrochemical promotion 

(P-EPOC), can not be explained by the current model of EPOC. 

 

I I . 3  P e r m a n e n t  E P O C  ( P - E P O C )  

In our laboratory, several cases of irreversible EPOC have been reported. Such effect, 

termed ‘permanent’ electrochemical promotion (P-EPOC), was first observed with IrO2 

catalyst for ethylene combustion [11-14], and later also with RuO2 [15-17] and Rh [18] 

catalysts, all interfaced with YSZ. Furthermore, it was found that reversibility of EPOC may 

depend strongly on the duration of polarization [19, 20]. In fact, as illustrated in Fig.  II-2, in 

the same catalytic system  short (15 min) polarization causes reversible promotion, see curve 

(a), while after prolonged (50 min) polarization the open-circuit catalytic reaction rate after 
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current interruption remains significantly higher than its initial value before current 

application, see curve (b).  

 

The "permanent" rate enhancement ratio, γ, was then introduced in order to quantify the 

irreversibility of electrochemical promotion  (equation II-7): 

 

0

'

r
r

=γ  II-7 

 where r' is the open-circuit catalytic reaction rate after the current interruption, so for γ>1 

the electrochemical promotion exhibits a permanent effect. 

 
Fig.  II-2  :Polarization and relaxation transients of the rate of ethylene combustion on IrO2/YSZ 

catalyst due to current application (300 μA) for two different polarization times: (a) short 

polarization to give reversible EPOC and (b) long polarization to give P-EPOC. T = 380°C, pO2 = 

17 kPa, pC2H4 = 140 Pa [19]. 

 

Nicole et al [19] reported the evolution of the permanent enhancement factor, γ, for 

IrO2/YSZ catalyst in ethylene/oxygen gas mixtures at T = 380°C as a function of 

polarization time (Fig.  II-3). For short polarization time the γ value is close to one, i.e. 

(a)

(b)
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reversible EPOC is observed. As the polarization holding time increases, the γ factor is 

increasing to reach a plateau after about 20 minutes of polarization. It appears that no 

permanent enhancement of catalytic activity process is taking place in the very first stage of 

polarization, but a finite polarization time is needed to permanently affect the system. 

 
Fig.  II-3 : Influence of holding time of the galvanostatic step at 300 μA on the permanent 

enhancement factor γ (equation II-7) for IrO2/YSZ catalyst, T=380°C, pO2 = 20 kPa, pC2H4 = 150 

Pa. [19] 

 

A second approach to emphasis the role of duration of the polarization step is shown in Fig.  

II-4 which compares two ways of supplying a given charge to the IrO2/YSZ catalytic cell. 90 

mC are passed through the cell by application of either five successive pulses or one unique 

galvanostatic step of identical current. By pulses application, even after the final pulse, no 

permanent promotion enhancement is observed (γ = 1). However, if the same charge is 

passed through the cell by one unique galvanostatic step, the final reaction rate is enhanced 

by a factor of 1.4. This fact shows clearly that P-EPOC is directly linked to the polarization 

time since a certain delay is required to modify in a permanent way the catalytic activity of 

the IrO2/YSZ system. 
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Fig.  II-4 : Influence of holding time of galvanostatic step on the persistent activation of 

IrO2/YSZ catalyst. A charge of 90mC is passed through the cell by application of 5 pulses (A) 

and 1 galvanostatic step(B), T=380°C, pO2 = 20 kPa, pC2H4 = 150 Pa. [19] 

 

An approach to investigate electrochemical promotion by means of cyclic voltammetry 

consists of measuring the voltammetric charge. For this purpose, cyclic voltammetry is 

performed in a narrow potential range around the open-circuit potential, and the 

voltammetric charge is determined by integrating the area under the voltammogram. Nicole et 

al. studied the voltammetric charge of IrO2/YSZ interfaces in ethylene/oxygen gas mixtures 

at T = 380°C [19]. Recorded over a range of ±25 mV around the equilibrium potential at 

different scan rates, fairly symmetrical cyclo-voltammograms exhibiting no peaks were 

obtained, as shown in Fig.  II-5. The voltammetric charge was attributed to formation of an 

oxygen capacitor according to the reaction: 

 

IrO2 + δ O–  ←→   IrO2+δ + δ e– II-8 
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Fig.  II-5    Typical cyclo-voltammogram of an IrO2 catalyst in a narrow potential range around 

the equilibrium (UWRe) potential. Scan rate: 20 mV s-1, pO2 = 20 kPa, T = 380°C. [19] 

 
As seen in Fig.  II-6, a linear correlation was observed between the voltammetric charge and 

the reaction rate of ethylene combustion during open circuit relaxation of the reaction rate 

after current interruption. This clearly shows that the electrochemical promotion of IrO2 

catalyst is directly related to the stored charge at the catalyst (WE)/YSZ interface. 
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Fig.  II-6   Relation between voltammetric charge and rate of ethylene combustion over an IrO2 

catalyst during open circuit relaxation.  pC2H4 = 120 Pa, pO2 = 180 Pa, T = 380°C. [19] 
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Similarly, Jaccoud et al [20] recently observed a complex relaxation behaviour on Pt/YSZ 

catalytic cell after prolonged potentiostatic polarization (400mV) at 525°C and 600°C ( Fig.  

II-7 ), also highly depending on the experimental temperature. At high temperature (600°C), 

the catalytic activity drops abruptly almost to its initial activity upon current interruption, 

then increases up to a promoted state before to return again to its initial state (Fig.  II-7 b). 

At lower temperature (525°C), the first catalytic activity drop observed upon current 

interruption leads to an intermediate plateau value, r’, then it decreases slowly to its initial 

state (Fig.  II-7 a). 

 

 
Fig.  II-7   :Pers-EPOC transients observed for ethylene combustion over Pt/YSZ, (a) T = 525°C, 
(b) T = 525°C, EWR = 400 mV, pC2H4 = 0.25 kPa, pO2 = 1 kPa; [20] 

 

Worth to notice that under these conditions, where the catalyst activity, upon current 

interruption, is a complex function of time but finally returns to its initial value, the 

permanent enhancement factor, γ (equation II-7), is not a suitable parameter. For such case, 

Jaccoud et al. porposed to introduce an oxygen storage efficiency define as (equation II-9): 

 

r
OS

F

N
N

Λ =  II-9 

where NF=ItH/2F is the maximum amount of oxygen promoters supplied to the catalyst 

surface during the anodic polarization time tH and Nr is the number of oxygen atoms 

consumed in the catalytic reaction after current interruption. As shown in Fig II-9, the so 

estimated values of ΛOS are much higher than one (ΛOS >>1) which demonstrates that the 

(a) (b)
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stored oxygen acts as a promoter upon current interruption and we are not dealing with a 

simple consumption of oxygen stored during the preceding current imposition. Such 

behaviour after current interruption has been reported as persistent EPOC (Pers-EPOC). 

 
Fig.  II-8  Effect of the polarization time tpol on the oxygen storage efficiency ΛOS at 525°C and 

600°C. pC2H4 = 0.25 kPa, pO2 = 1 kPa. [20] 

 

Investigation of P-EPOC by work function measurements confirmed the major role of the 

holding polarization time. Fig.  II-9 displays the evolution of the catalyst work function 

observed by Wodiunig et al [17] during the imposition of a galvanostatic step to RuO2 catalyst 

in ethylene/oxygen gas mixture. At current interruption, the work function decreases 

dramatically to an intermediate value and slowly decreases to its initial open-circuit value. 
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Fig.  II-9  : Time dependence of the work function change during galvanostatic step of 50 μA for 

three polarization holding times, t = 1, 3 and 23 minutes, T=380°C, pO2 = 17.7 kPa, pC2H4 = 114 

Pa. [17] 

 

Once again, the duration of the anodic polarization step appears as a key parameter to the 

understanding of P-EPOC. The increase of the work function relaxation time with 

polarization holding time reflects the increasing amount of promoters lying at the catalyst 

gas exposed surface.  

 
Fig.  II-10  : Oxygen desorption after application of a galvanostatic step of 5μA on IrO2/YSZ for 

different polarization times, t = 180, 400, 600, 1200 and 1800s, T=350°C, pO2 = 20 kPa, pC2H4 = 150 

Pa [19] 
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Investigations by TPD experiments revealed clearly that a prolonged polarization leads to 

oxygen storage into the catalytic cell [21-25]. Fig.  II-10 shows the influence of 

electrochemical pre-treatment on the thermal oxygen desorption of IrO2/YSZ catalyst in 

high vacuum. When the catalyst is submitted to an anodic polarization pre-treatment, the 

oxygen production is greatly enhanced. In fact, after a galvanostatic step of 5 μA, a new 

oxygen desorption peak, which grows with increasing polarization times, appears at 400°C 

[19].  

Nevertheless, the initial unpromoted steady state activity of the catalyst may be restored 

(even after prolonged polarization) by exposing the catalyst to a highly reductive 

atmosphere. Fig.  II-11 reports the impact of a reductive atmosphere (pC2H4=150 Pa) on an 

IrO2/YSZ catalyst in the P-EPOC state.  

 

 
Fig.  II-11 : Impact of reductive atmosphere on persistent EPOC, T=380°C, pC2H4 = 150 Pa, pO2 = 

15 kPa or 0 kPa. [19] 

 

Similar permanent enhancement of catalytic activity (P-EPOC) has also been recently 

reported by Valverde [26-28] for catalyst supported on K+ electrolyte conductor, e.g. for C3H6 

combustion over Pt/K-βAl2O3.  
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I I . 4  P r o p o s e d  m e c h a n i s m  i n v o l v e d  i n  P - E P O C  

Several attemps have been made in order to propose a model for the experimentally 

observed P-EPOC phenomenon. 

Nicole proposed a promoter storage mechanism taking place at the IrO2/YSZ interface 

through the electrochemical formation of a high oxidation state iridium oxide species 

IrO2+δ. The IrO2/IrO2+δ system (equation II-8) is then proposed to act as a chemical 

capacitor able to store promoter species during the anodic polarization step and to release 

them upon interruption. The details of the model are given in [19]. 

 

The electrochemical investigation of Pt/YSZ cermet electrode in 20kPa O2 in He at 450°C 

performed by Jaccoud revealed for the first time that after long polarization time, a slow 

platinum oxidation takes place at the Pt/YSZ [20, 29-31]. The model given by Jaccoud for 

describing the anodic polarisation of Pt/YSZ interface is the following. 

- Oxygen is first rapidly stored at the catalyst/YSZ interface up to the formation of 

one monolayer. At 450°C, under 20kPa O2, the process saturates within 10 

minutes. 

- A second type of oxygen storage in form of backspillover species is proposed to 

take place in parallel at the catalyst/gas interface and causes, in principle 

reversible, electrochemical promotion of catalysis (EPOC). The electrochemical 

saturation of this species appears after 80 minutes in agreement with the time 

needed to reach steady state during EPOC measurements of the author. 

- Finally, a third type of stored oxygen, consecutive to the first process saturation, is 

attributed to the formation of PtO into the electrode bulk. The amount of this 

species is not reported to saturate even after 33h of polarization, and it is found to 

obey, after an induction period of a few minutes, to a t1/2 kinetic law, typical for 

diffusion-controlled processes. 

This model of platinum electrooxidation, obtained under unreactive atmosphere, leads the 

author to propose a P-EPOC model where during the anodic polarisation of the catalyst, 

oxygen incorporation into the bulk of the Pt electrode catalyst occurs in parallel to the 
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classical EPOC phenomenon. At current interruption, the so formed unstable platinum 

oxide, unstable at open circuit, is expected to decompose releasing promoter species to the 

Pt/gas interface [20, 32]. 

 

I I . 5  C o n c l u s i o n  

Electrochemical Promotion of Catalysis consists of application of small current/potential to 

a conductive catalyst supported on a solid electrolyte. It induces a non faradaic modification 

of the catalyst activity described by the state of the art EPOC theory proposed by Vayenas in 

the late 80’s. In theory, and also in practice the, EPOC phenomenon is reversible, i.e. after 

current interruption the promoted reation rate returns rapidly to its initial unpromoted state. 

However, after long term polarization, several supported catalysts (metal and metal oxide), 

revealed that the classical EPOC theory may not explain the transient behaviour observed. 

The main statements proposed upon years and reviewed in this chapter may be summarized 

as follows : 

● The open circuit catalytic activity of the catalyst can be increased by prolonged (>30 min) 

polarization (P-EPOC phenomenon) 

● The temperature has a major influence on the P-EPOC phenomenon.  

− At low temperature (<400°C), the relaxation transient reaches a new enhanced open 

circuit steady state characterizing a Permanent EPOC (P-EPOC) quantified by γ. 

− At high temperature, although no P-EPOC is observed, the relaxation transient is very 

slow and complex characterizing a Persistent EPOC (Pers-EPOC) quantified by ΛOS. 

● Permanent-EPOC (P-EPOC) is characterized by the “permanent” enhancement 

factor γ  which is defined by the ratio of open-circuit steady state reaction rates after, r’, and 

before, r, polarization (equation II-7). 

r
r'

=γ  II-7 

γ  values up to five can be achieved.  
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● Persistent-EPOC (Pers-EPOC), due to prolonged anodic polarization of a catalyst interfaced 

with O2- conducting solid electrolyte, is characterized by the “oxygen storage efficiency” ΛOS 

which is defined as the ratio of the maximum amount of oxygen promoters supplied to the 

catalyst surface during anodic polarization, NF, to the number of oxygen atoms consumed in 

the catalytic reaction after current interruption, Nr. 

r
OS

F

N
N

Λ =  II-9 

● Both P-EPOC and Pers-EPOC are observed only for long polarization times (one to several 

hours). 

● Changing the feed composition allows returning from P-EPOC to the initial un-promoted 

catalytic rate. 

● The catalyst work function follows the catalytic rate after current interruption. 

● Both P-EPOC and Pers-EPOC seem to be related with the charge stored at the 

catalyst/electrolyte interface during the polarization step. 
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CHAPTER II I -   EPOC AND P-EPOC FOR C 2 H 4  

COMBUSTION OVER Pt/Y SZ 

 

The catalytic oxidation of C2H4 over a Pt/YSZ/Au electrochemical cell was studied under 

excess of O2 at 375°C. Both catalytic and electrocatalytic properties of the catalyst were 

investigated with regard to the EPOC model proposed by Vayenas. It turns out that for 

short term polarization transients, the electrocatalytic cell behaves as expected (e.g. 

reversible as predicted by EPOC theory). On the other hand, long term polarization 

revealed unexpected relaxation transient behavior highly depending on the polarization 

time. In these experimental conditions, using both chronopotentiometry and cyclic 

voltammetry combined with mass spectrometry, it has been found that after current 

interruption, the catalytic rate remains in a highly active P-EPOC steady state, where it is 

almost twice as high as the initial open-circuit rate. During this highly active steady state, 

the application of a similar negative current for a similar time period has been found to 

result in the return of the catalytic rate to the initial open-circuit state. Similar reversibility 

of the rate has been observed in cyclic voltammetry experiments where after a complete 

potential cycle the open-circuit rate is almost the same to that before polarization.  

On this basis, a mechanism is proposed for the origin of P-EPOC, based on the storage 

of promoting species via migration through the three phase boundaries to the metal/gas 

interface during current application. 
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I I I . 1   I n t r o d u c t i o n  

As reviewed in previous Chapter, the nature of modification of the catalyst activity 

(EPOC, P-EPOC or Pers-EPOC phenomenon) observed upon electrochemical 

polarization is highly depending on the experimental conditions, e.g. polarization time, tH, 

temperature, T, and oxygen partial pressure, pO2. It turns out that short term polarization 

leads to the observation of the well known reversible EPOC behaviour, while application 

of longer tH conducts to Pers-EPOC at high temperature or to P-EPOC at low 

temperature. Oxygen rich atmosphere is known to favour not only the efficiency of 

electrochemical promotion (ρ and Λ) in electrophobic catalytic systems but also its 

remaining influence after current interruption (γ and ΛOS).  

Based on the conclusions of Chapter II, it was decided in this chapter to revisit and 

generalize the mechanism of electrochemical promotion. For this purpose, one focuses 

on the permanent electrochemical promotion, P-EPOC, (tH up to 10 hours) of the 

ethylene combustion reaction over Pt/YSZ catalyst under oxygen rich atmosphere 

(pO2/pC2H4=40) and at low temperature (375°C) to avoid any complex Pers-EPOC 

behavior. 

 

I I I . 2  E x p e r i m e n t a l  s e t u p  

The general experimental setup used in this part for both catalytic and electrochemical 

investigations is depicted in Fig. III-1. The reactant gases used were Carbagas certified 

standards of 20% O2/He, 1% C2H4/He (99.95% purity) and He (99.996% purity). Mass 

flow controllers (E-5514-FA, Bronkhorst) were used to control the gas feed composition 

and to keep the gas flow continuously at 200ml/min to feed the electrochemical reator.  

 

The reactor, already characterized in previous work [1], was an atmospheric single-

chamber type quartz tube of 90ml (Fig. III-2). The single-pellet three-electrode cells were 

suspended in the reactor with the three gold wires serving as electrical contacts to the 

electrodes. A K-type (NiCr-Ni) thermocouple placed in proximity of the surface of the 

working electrode was used to measure the temperature of the system. The reactor was 

put into a furnace (XVA271, Horst) equipped with a heat control system (HT30, Horst).  
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Fig. III-1 : Schematic representation of the general set-up.  
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Fig. III-2 : Scheme of the atmospherique reactor. 1: quartz tube; 2: electrochemical cell 

 

 

capillary to Mass Spectrometer (MS) 
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A heated capillary tube (120°C), placed in the vicinity of the working electrode, was 

connected to a mass spectrometer (MS, Prolab-Thermo Onix) allowing on-line 

monitoring of the gas composition in the reactor.  

 

Electrochemical mass spectrometry (EMS) measurements was used to control the gas 

composition in the reactor, i.e. the reaction products (CO2 and H2O) were detected on-

line by MS (Prolab-Thermo Onix) during potential sweep using a galvanostat–

potentiostat (Autolab, Model PGSTAT30, EcoChemie). 

 

III.2.1 Pt and Au deposition on YSZ 

The solid electrochemical cell consisted of a thin (1mm) rectangular YSZ pellet (8mol% 

Y2O3-stabilized ZrO2 Technox 802, Dynamic Ceramic Ltd) supporting the three 

electrodes: working, counter and reference. The Pt working electrode (thickness of 1μm) 

was deposited by magnetron sputtering technique in inert atmosphere (Ar) at room 

temperature. Direct current (dc) mode was used with a discharge of 330 V at an argon 

pressure of 10−2 mbar, resulting in a metal deposition rate of 0.09 nm s−1. For structure 

stabilization a calcination pretreatment step at 700°C for 4h in air was performed. Gold 

counter and reference electrodes were deposited on the other side of the pellet by 

application of metalorganic paste (Gwent Electronic Materials Ltd. - C70219R4) followed 

by calcination at 550°C. The influence of the thermal pretreatment on the sputtered Pt 

film microstructure was already described by Jaccoud [2]. The author mentions that the 

calcinations step leads to sintering of the Pt film forming a percolated network with a 

macroporous structure at the YSZ surface. In this work the surface characterization of 

the sputtered Pt film was performed by scanning electron microscopy (SEM) and X-ray 

diffraction (XRD) and lead to similar observation as Jaccoud got. Results are given in the 

second part of this work (Chapter VII).  

 

The electrodes size is 7 x 5 mm giving a geometric surface of 0.35 cm2 for each of them. 

The working and counter electrodes were located in a symmetrical face-to-face 

arrangement on the opposite sides of the YSZ pellet (Fig. III-3). This ensures a 

symmetrical current distribution in the cell during the electrochemical investigation [3]. 
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Fig. III-3 : Placement and dimensions of the Pt electrodes prepared by sputtering. WE: Pt 

working electrode; CE: Au counter electrode; RE: Au reference electrode. 

 

Electrochemical promotion involving the use of a Pt metal supported film as both normal 

catalyst and working electrode, it is important to distinguish the catalytic and the 

electrocatalytic properties of the Pt catalyst electrode. This can be performed by 

estimating the ethylene combustion catalytic active surface area of the Pt/YSZ catalyst, i.e. 

the Pt gas exposed interface APt/gas and I0, the exchange current of the Pt/YSZ interface. 

 

III.2.2 Surface titration of the Pt/YSZ catalyst 

The determination of the catalytic active surface area, i.e. Pt/gas interface area Apt/gas, is 

carried out by isothermal titration technique as described by Vayenas [4]. This experiment 

was performed at 375°C under a constant gas flow of 200ml/min in the previously 

described reactor as follows: 

 

- The reactor is first purged with pure He during 20 minutes. 

- The catalyst surface is then exposed for 5 minutes to 20% O2 in He in order to 

reach an oxygen coverage near to saturation at the Pt/YSZ catalyst surface. 

- The reactor is then purged with pure He for different desorption time td.  

- The catalyst is then immediately exposed to a 1% C2H4 in He flow in order to 

chemically titrate the remaining oxygen adsorbed at the catalyst surface. 

2( ) 2 4 2 23 2 2gO C H CO H O+ → +  III-1 

Platinum

 

Gold 
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- The catalytic rate of CO2 formation is monitored with a mass spectrometer 

(Fig. III-4) and integration of the obtained peak allows the determination of 

the amount of adsorbed oxygen NO after desorption time tD. 
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Fig. III-4 : Determination of NO by integration of the CO2 formation transient monitored by 

MS during the C2H4 titration step at 375°C. 

 

The y-intercept obtained by plotting the amount of oxygen adsorbed at the catalyst 

surface, NO, versus the desorption time, tD, represents the number of active sites at the 

catalyst surface NPt/gas. The number of active sites at the Pt film investigated herein is then 

estimated to be 109 nmol (Fig. III-5). 

NO
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Fig. III-5 : Determination of NPt/gas by plotting NO as a function of desorption time tD at 

375°C. 

 

III.2.3 Exchange current of the Pt/YSZ catalyst 

The overall electrocatalytic activity of the O2/O2- redox system in the reaction medium 

may be estimated by the measure of the exchange current I0. In case of a multistep 

process, the overall kinetic will be dictated by the rate limiting step (rds) and the Buttler 

Volmer equation, describing the current-potential characteristic (equation III-2): 

0

a c
act act

F F
RT RTI I e e

α α
η η−⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 III-2 

where αa and αc are the anodic and cathodic transfer coefficient, ηact is the activation 

potential of the working catalyst electrode, R is the ideal gas constant (8.32 J.mol-1.K-1), F 

the Faraday constant (96500 C.mol-1) and T the temperature.  

Considering the high field approximation (ηact>100mV), the Buttler-Volmer equation is 

reduced to equation III-3 : 

0ln ln a act
FI I

RT
α η= +  III-3 
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The exchange current, I0, for the Pt/YSZ/Au electrocatalytical cell is then determined in 

different ethylene/oxygen gas mixtures from a Tafel plot (Fig. III-6). 
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Fig. III-6 : Determination of I0 by plotting Tafel plot measured for 2 different oxygen partial 

pressure PO2=8.2kPa (▲), PO2=2kPa (●), PO2=1kPa (■). PC2H4=0.2 kPa T=375°C 

 

Oxygen partial pressure 

[kPa] 

Exchange current 

[μA] 

1 kPa 13.4 μA 

2 kPa 7.2 μA 

8.2 kPa 4.1 μA 

Table III-1 : The exchange current i0 in the Pt/YSZ/Au cell as a function of oxygen partial 

pressure PO2, PC2H4=0.2 kPa T=375°C 

 

As expected the exchange current is observed to be dependant of the surrounding gas 

composition. This gas composition dependence has been subject to many studies and was 

related to the oxygen coverage at the catalyst surface by Vayenas [5] who proposed, by 
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considering a Langmuir-type adsorption of oxygen, the following relationship between 

the exchange current and the oxygen coverage θO : 

 

( ) 1/2
0 1O OI θ θ⎡ ⎤−⎣ ⎦∼  III-4 

 

or in terms of oxygen partial pressure pO2 : 

 

( )
2

2

1/4
0

0 1/2

01
O

O

K p
I

K p+
∼  III-5 

 

As C2H4 is added to the gas mixture, I0 is modified in two ways : 

- θO is directly affected by the C2H4 coadsorption, θC2H4, at the catalyst surface 

- C2H4 molecule of the gas phase may react with the electrochemically produced 

O2- promoter at the catalyst surface. 

 

Worth to notice that this implies that I0 represents an important parameter in the EPOC 

theory. Actually, Vayenas observed experimentally that the faradaic enhancement factor, 

Λ, is commonly related to I0 according to equation III-6 [4]: 

 

0

0

2Fr
I

Λ ≈  III-6 

 

Hence, to obtain high Λ values, the electrode catalyst should present a low I0 value, i.e. the 

interface must be highly polarizable. The magnitude of I0 being proportional to the tpb 

length, the morphology of the Pt film should have a dramatic influence on its 

electrochemical behavior. 
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I I I . 3  R e s u l t s  a n d  d i s c u s s i o n  

III.3.1 Open circuit ethylene combustion over Pt/YSZ catalyst 

The combustion of ethylene over Pt/YSZ catalyst is reported to take place above 280°C 

according to the following global reaction : 

 

2( ) 2 4( ) 2( ) 2 ( )3 2 2g g g gO C H CO H O+ → +  III-7 

 

Fig. III-7 displays the influence of the gas composition on the catalatic rate of reaction 

III-7, the experiment is performed at 375°C under constant flow rate of 200mL/min. 

Two approaches are proposed, the variation of ethylene partial pressure at fixed oxygen 

partial pressure and the variation of oxygen partial pressure at fixed ethylene partial 

pressure.  

 

  
Fig. III-7 : Catalytic reation rate of CO2 production as a function of gas composition. (1) 

dependence on ethylene partial pressure at PO2=10kPa, (2) dependence on oxygen partial 

pressure at PC2H4=50Pa, T=375°C 

 

Worth is to notice that pO2 >> pC2H4 in both cases. Under these conditions, the reaction 

rate is of positive order with respect to ethylene and negative order with respect to 

oxygen. Pt/YSZ/Au presents the expected electrophobic behavior for C2H4 combustion 

reaction, i.e. oxygen is strongly adsorbed at the catalyst surface while ethylene is weakly 

chemisorbed. 

(2)(1) 
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The rate of CO2 formation in terms of equivalent O mol.s-1 may also be given as a 

function of the ratio pO2/pC2H4 (Fig. III-8). Two different regimes are observed depending 

on the oxidative/reductive properties of the gas mixture.  

- For pC2H4/pO2, <5.10-3 the surrounding gas mixture is oxygen rich such as PtO 

is favored at the platinum surface. In this case, ethylene combustion may be 

approximated to a pseudo first order reaction in ethylene.  

 

- On the other hand, for pC2H4/pO2>0.02, the oxygen amount in the gas mixture 

is low, stabilizing the metallic form of platinum. In this case, ethylene 

combustion may be approximated to a pseudo first order reaction in oxygen. 

 

- A transition domain, corresponding to a transition state of Pt/PtO, is observed 

for 5.10-3<pC2H4/pO2 <0.02. In this region both form, i.e. Pt and PtO, are 

expected to be present at the same time at the catalyst surface, however, this 

region is dramatically affected by the initial (reductive/oxidative) composition 

of the gas mixture. 

 

 
Fig. III-8 : Catalytic reation rate of CO2 production as a function of pC2H4/pO2. From (1) and 

(2) data of  Fig. III-7. T=375°C 

 

(2) 

(1) 
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These experimental observations may be interpreted quantitatively by the following 

kinetic scheme [4] : 

2( ) 2( )1
2 22( ) ( )

O Og a

O Oa a

→⎧ ⎫
⎪ ⎪
⎨ ⎬

→⎪ ⎪
⎩ ⎭

 III-8 

2 4( ) ( ) 2( ) 2 2
5 2 2
2g a gC H O P O CO H O+ → + → +  III-9 

Where O(a) is a molecular adsorbed oxygen adsorbed and P is a highly reactive 

intermediate.  

 

The rates of both step may be written respectively as : 

( )
2

1ad O Or k P θ= −  III-10 

2 4C H Or k P θ=  III-11 

Where kad is the oxygen adsorption rate constant, k is the rate constant of formation of 

the reactive intermediate P and θO is the molecular oxygen coverage at the catalyst 

surface. 

Assuming a Langmuir isotherm for atomic oxygen chemisorption one may express the 

oxygen coverage as  

 

2 4

2

1

1
O

C H

ad O

kp
k p

θ =
+

 
III-12 

 

And the whole mechanism may then be described by the following equation : 

2 2 4

2 4 2

ad O C H

C H ad O

k k P P
r

k P k P
=

+
 III-13 

 

Then on the oxygen rich side (kadpO2>>kpC2H4), the oxygen coverage at platinum surface 

is near unity and step III-9 is the rate determining step of the mechanism. The equation 

of the reaction rate may be reduced to a pseudo first order : 

2 40 C Hr k P=  III-14 
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On the other extreme condition, i.e. oxygen lean side (kadpO2<<kpC2H4), oxygen adsorption 

step is the rate determining step, oxygen coverage is close to zero and the reaction rate of 

the ethylene combustion may be reduced to : 

20 ads Or k P=  III-15 

 

III.3.2 EPOC and P-EPOC on the Pt/YSZ/Au system 

III.3.2.1 Influence of the gas composition 

 

A typical catalytic reaction rate transient obtained at 375°C for ethylene combustion over 

Pt/YSZ/Au cell during a short galvanostatic polarization step (5min) is reported in Fig. 

III-9. Initially, i.e. at open circuit conditions, the catalytic ethylene combustion over Pt 

takes place at the unpromoted catalytic reaction rate, r0 = 300 nmolO s-1.  
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Fig. III-9 : Transient effect of a constant applied anodic current on the CO2 formation 

catalytic rate (left) and on the working (Pt) - reference (Au) potential difference (right). 

PO2=8.2kPa. PC2H4=0.2 kPa T=375°C 
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Considering the number of reactive sites at Pt/gas interface, NPt/gas, previously determined 

(section III.2.2), the corresponding open circuit turnover frequency can be calculated 

using equation III-16: 

10
0

/

2.7
Pt gas

rTOF s
N

−= =  III-16 

 

Considering the previously mentioned relationship between Λ and I0 (equation III-6), the 

faradaic efficiency factor of this reaction is expected to be of the order of magnitude of 

2Fr0/I0, i.e. 14000. 

 

At t = 0, a constant anodic galvanostatic polarization of 0.5mA is applied between the Pt 

working electrode and the gold counter electrode, this corresponds to a faradaic supply of 

O2- ions to the Pt catalyst from the YSZ electrolyte at rF=I/2F. As a consequence, the 

catalytic rate, r, increases rapidly within the first seconds, and then more slowly to a new 

steady state promoted value, rp=1260 nmolO.s-1, which is 4.2 times higher than r0. This 

catalytic rate increase, Δr=rp − r0, is 370 times larger than the faradaic rate of O2- supply, 

i.e. rF, highlighting the non faradaic character of the electrochemical promotion. One may 

notice the deviation of 2 orders of magnitude for the actual value of Λ to the value 

predicted from the experimental relation between r0 and I0. However, a new promoted 

value of TOFp, i.e. under anodic polarization, is estimated according to equation III-17: 

/

p
p

Pt gas

r
TOF

N
=  III-17 

 

Fig. III-10 displays the influence of the gas mixture composition on the electrochemical 

promotion observed at 375°C. Three different ratio of pO2/pC2H4 are given, the general 

EPOC phenomenon previously described (consisting of the dramatic catalytic rate 

increase with concomitant potential increase) was observed in each case directly after the 

application of a constant anodic current (0.5mA).  
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Fig. III-10 : Reaction rate transients during application of a constant anodic current on the 

CO2 formation catalytic rate (left) and on the turnover frequency (right) for 3 different oxygen 

partial pressures PO2 . (1)PO2=1kP , (2)PO2=2kPa and (3)PO2=8.2kPa. PC2H4=0.2 kPa T=375°C 

 

The estimation of the EPOC parameters (Table III-2) showed that decreasing the oxygen 

partial pressure in the gas mixture strongly decreses both ρ and Λ values. Similarly, Bebelis 

reported a strong influence of the gas composition on both ρ and Λ values for ethylene 

oxidation over Pt/YSZ catalyst [6, 7]. 

 

PO2 1 kPa 2 kPa 8.2 kPa

TOF0 2.5s-1 2.6s-1 2.7s-1

TOFp 2.8s-1 4.3s-1 11.5s-1

ρ 1.3 1.6 4.2 

Λ 31 70 370 
Table III-2 : Experimental EPOC parameters as a function of PO2. Conditions as in Fig. 

III-10. 

 

PO2 [kPa]

(1) 

(2) 

(3) 

Λ 

ρ 

γ 
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According to Vayenas [4], upon current interruption, the flow of the electrogenerated 

promoter O2- supplied from the tpb to the gas exposed Pt catalyst stops and the catalytic 

reaction rate returns slowly to its initial unpromoted value because of the gradual 

consumption by C2H4 (or desorption) of the promoters from the Pt/gas interface. 

Considering the value of TOFp for the electrochemically promoted reaction (11.5s-1) and 

the obtained Λ value (370) one can estimate the average life time (τD) of the promoter 

upon current interruption from the relation  

32
p

s
TOF

τ Λ
= =  III-18 

 

One should then expect that after about 32s, the catalytic activity of the system would 

have return to its initial state. Experimentally (Fig. III-9), even if a dramatic drop of 

catalytic reaction rate is initially observed upon current interruption, the relaxation time 

needed for the catalyst to return to its initial catalytic activity is more than one order of 

magnitude longer (>1200 s).  
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Fig.  III-11  : Open circuit relaxation transients obtained by increasing the duration of a 

constant applied anodic current on the CO2 formation catalytic rate (left) and on the 

corresponding turnover frequency (right). PO2=8.2kPa. PC2H4=0.2 kPa T=375°C  
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In addition, the increase of the polarization time, tH, leads to even slower relaxation 

transients (Fig.  III-11). In fact, increasing the polarization time, slows down the 

relaxation rate upon current interruption reaching a new steady state, r’, where the 

catalytic rate is higher than the initial unpromoted catalytic rate, r0.  The ratio r’ to r is 

defined as the permanent enhancement factor γ  (equation II-7) 

 

Furthermore, the increase of pO2 has a dramatic impact not only on EPOC (Table III-2) 

but also on P-EPOC (Fig. III-10). In fact under less oxidizing atmosphere, the 

phenonomenon of electrochemical promotion seems to be reversible, i.e. returns rapidly 

to its initial catalytic activity upon current interruption, contrary to more strongly 

oxidizing atmosphere where a remaining promoted activity slowly decreases without 

reaching its initial catalytic state even after two anodic polarization time periods, i.e. herein 

after 120 minutes (P-EPOC). 

 

III.3.2.2 Influence of polarization time on γ values 

Fig.  III-12  shows the transient effect of a constant applied anodic current of +0.5 mA 

for 170 min, on the catalytic rate of CO2 formation, rCO2 (equation III-9), expressed as 

consumed mol O and on the working (Pt) - reference (Au) potential difference (UWR) at 

375°C.  

 

Initially, under open-circuit conditions r0 = 300 nmolO.s-1, while positive current 

application causes a 4.2-fold increase of the catalytic rate, i.e. ρ = 4.2, reaching 

1260 nmolO.s-1. The Faradaic efficiency, Λ, equals 370 indicating a non-Faradaic process. 

Worth to note is the fact that even after 170 min of anodic polarization the system is not 

at steady-state, but the catalytic rate increases slowly.  

 

After current interruption, the catalytic rate decreases until it is stabilized at a new steady-

state, called P-EPOC steady-state, where the catalytic activity is higher than that in the 

initial open-circuit state. After an anodic current application for 170 min γ equals 1.7, 

since in the P-EPOC state CO2 formation rate is 70% higher than ro. 
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Fig.  III-12  : Transient effect of a constant applied anodic current on the CO2 formation 

catalytic rate (left) and on the working (Pt) - reference (Au) potential difference (right). 

PO2=8.2kPa. PC2H4=0.2 kPa T=375°C  

 

The effect of anodic current application time, tH, on the “permanent” rate enhancement 

ratio, γ, is shown in the insert in Fig.  III-12. As shown, γ increases by tH toward a plateau 

in agreement with previous studies using IrO2 [8-11]. 

 

III.3.2.3 Influence of cathodic polarization on the P-EPOC state  

Fig.  III-13 a) shows the effect of four constant negative current application steps of 

0.1mA for 4 min each, on the CO2 formation rate after current interruption. As shown, 

negative polarization causes a decrease in the CO2 formation rate; while by interruption of 

the negative current the catalytic rate increases again up to a state of lower activity than 

that of the free relaxation case which leads to P-EPOC (shown in Fig.  III-12). The 

application of successive negative current steps leads to the gradual shift from the P-

EPOC steady-state towards the initial open-circuit state in a period of shorter time.  
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Fig.  III-13  : Transient effect of cathodic current application during depolarization on the 

CO2 formation catalytic rate (left) and on the working-reference potential difference (right). 

PO2=8.2kPa. PC2H4=0.2 kPa T=375°C. 

 

Also, worth to note is that the charge supplied during each step of negative current 

application is 4% of that supplied during the positive current application, thus a complete 

return of the rate to the initial state could be obtained after about 25 steps considering the 

same current efficiency for both charge storage (upon anodic current application) and 

charge release (upon cathodic current application).  

 

The effect of negative current application, of similar charge to that applied during the 

preceding positive polarization, on the catalytic rate after current interruption is shown in 
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Fig.  III-13 b). Negative current application has a significant decreasing effect on the 

catalytic rate. Moreover, after negative current interruption the reaction rate increases and 

is stabilized in a steady-state much lower than that obtained in Fig.  III-13 a) and close to 

the initial. This indicates the direct correlation between the charge stored during positive 

polarization and the P-EPOC steady-state. Negative polarization serves as a fast and 

efficient way for the release of the stored charge. 

 

III.3.2.4 Transient behavior upon linear potential sweep. 

Fig.  III-14 shows the transient effect of linear potential sweep on the faradaic rate of O2- 

transport, I/2F, on the CO2 and H2O formation rates and on the rate enhancement ratio 

for the CO2 production, ρCO2, obtained by EMS using a sweep rate of 1 mV s-1. As 

shown, linear increase of the potential from 0 V to anodic maximum potential (+1 V) 

results in increase of the catalytic rates.  

During the reverse potential sweep from +1 to 0 V, a hysteresis on the CO2 and H2O 

formation rate was observed. At 0V rCO2 is 760 nmolO s-1, 260% higher than the initial 

open-circuit rate. Similar experiments under faster sweep rates revealed that when slow 

sweep rates (< 5 mV s-1) are used, any possible delay between the potential application 

and the MS measurement can be neglected. Also, from previous catalytic studies [1] it has 

been found that the used hourly space velocity (HSV=133 h-1) is high enough to avoid 

any accumulation – mass transport limitations phenomena in the reactor. Accounting for 

the above, it can be concluded that the hysteresis presented here is not due to EMS delay, 

but due to both the inexistence of a stable electropromoted steady-state (as mentioned in 

Fig.  III-12, rate increases slowly) and to the remain of the system in a more activated P-

EPOC steady state after current interruption. Similar behavior has been detected for the 

H2O formation rate. On the other hand, negative polarization causes a decrease in the 

catalytic rate, in agreement with previous EPOC studies [4]. Additionally, almost no 

permanent state was observed at the end of the cathodic sweep. This is attributed to the 

fact that during the negative potential scan any promoting species stored during positive 

polarization are pumped back to the electrolyte. 
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Fig.  III-14  : Effect of linear potential sweep on the simultaneously recorded faradaic rate of 

O2- transport, CO2 and H2O formation rates and rate enhancement ratio of CO2 production, 

ρCO2. υ=1mV.s-1, PO2=8.2kPa. PC2H4=0.2 kPa T=375°C 
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III.3.3 General discussion 

The ethylene combustion reaction over Pt/YSZ/Au catalyst has been studied under both 

open circuit (classical catalysis) and closed circuit conditions for both short (EPOC) and 

long (P-EPOC) anodic polarization times at 375°C.  

 

The first characterization of the sample by isothermal titration method allowed the 

determination of the gas exposed active surface area of the catalyst NPt/gas. Investigation 

of the classical catalytic reaction of ethylene combustion was then performed by varying 

the gas mixture composition (Fig. III-8). The results revealed an electrophobic catalytic 

behaviour of the system in agreement with the kinetic mechanism reported in literature 

(equation III-13): 

 

The electrochemical promotion of ethylene combustion has been studied by applying 

anodic polarization step to the working Pt catalyst electrode in different gas mixture 

compositions (Fig. III-10). It turns out that a high oxygen partial pressure in the gas 

mixture is favourable to both EPOC and P-EPOC phenomenon. Under these oxidizing 

conditions, the kinetics of the ethylene combustion is reduced to a pseudo first order 

reaction with respect to ethylene and the Pt/YSZ catalyst exhibited strong electrophobic 

EPOC behaviour (Fig. III-9), in good agreement with the sacrificial promoter mechanism 

of electrochemical promotion [4]. According to this mechanism, anodic polarization 

produces oxygen promoters via (presumably partial) discharge of O2− arriving from the 

solid electrolyte (equation III-19).  

 
2 (2 )YSZ adsPt O Pt O eδ δ− − −+ → − + −  III-19 

 

The resulting Oδ− promoters migrate with their mirror charge through the triple phase 

boundary and progressively cover the catalyst/gas interface. They increase the work 

function of the metal and consequently weaken the Pt–O bond of chemisorbed oxygen 

atoms, which leads to an increase of the catalytic activity. As postulated in the state-of-

the-art sacrificial promoter model of EPOC, the electrochemically produced backspillover 

species are consumed both by reaction with the reactant (ethylene) and by desorption. 
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When balance between electrochemical production and consumption is reached, the 

electropromoted rate of the catalytic reaction (ethylene oxidation in the present case) 

reaches a steady-state and it remains constant during the whole polarization period, 

meaning that no more alteration of the catalyst/gas interface occurs.  

 

However, upon current interruption, the relaxation transient expected to be rapid appears 

to be rather slow. In addition, increasing the anodic polarization time seems to slow down 

further the relaxation transient. This is an indication that the polarization time has a 

positive effect on the stability of promoters. In fact, as displayed in Fig.  III-15, the 

estimated lifetime of the promoter τD (the determination of τD is shown schematically in 

Fig.  III-15)  is found to increase linearly with the square root of the anodic polarization 

time (insert of Fig.  III-15). 

 
Fig.  III-15  : Effect of increasing anodic holding time tH on the relaxation rate transient after 

current interruption. (1)  5min (2) 10min (3) 20 min and (4) 180 min PO2=8.2kPa. PC2H4=0.2 

kPa T=375°C. Insert : Linear realationship between τD and tH1/2 

 

In addition to the long relaxation period a new enhanced steady state reaction rate, r’, is 

reached. This behaviour, characteristic of P-EPOC phenomenon, is described by the γ 

parameter (equation II-7). Experimentally, γ  is found to increase linearly with the square 

root of the holding polarization time (insert in Fig.  III-12). However the involved time 
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constant indicates that the permanent alteration (P-EPOC) is linked to very slow 

processes certainly related to diffusion process. 

 

 In the filed of EPOC, the alteration of the catalytic reaction rate observed during 

polarization is commonly described by an experimental relation linking the change in 

reaction rate to the change of catalyst work function. 
*

0

( )ln
b

r
r k T

α⎛ ⎞ Φ − Φ
=⎜ ⎟

⎝ ⎠
 III-20 

where Φ is the catalyst work function, Φ ∗ is a constant, and α the EPOC coefficient 

which is positive for electrophobic reactions and negative for electropholic ones. 

So, the influence of polarization time observed on the relaxation transients implies a 

modification of the catalyst work function after current interruption. As previously 

mention in Chapter II, for the same EPOC reaction over RuO2/YSZ catalytic system, 

Wodiunig et al. observed such catalyst work function transient, i.e. depending on 

polarization time after current interruption (Fig II-9). Worth to notice that the work 

function Φ is directly related to the coverage θj of the promoting species, j, according to 

the Helmoltz equation : 

0

M
j j

j

eN P θ
ε

ΔΦ = Δ∑  III-21 

where e is the electron charge, NM is the surface atom density of the catalyst surface, ε0 is 

the vacuum permittivity and Pj the dipole moment of the j species, which is coverage 

dependent with typical values of 1 to 5 Debye. The herein reported P-EPOC 

phenomenon, implying a permanent change of catalyst work function should then be 

related to the coverage of the catalyst surface with stable promoters with relatively high 

dipole moment Pj, i.e. the dipole moment of the oxygenpromoter formed during 

prolonged polarization and remained on the catalyst surface upon current interruption (P-

EPOC) seems to be higher than that of the promoters formed by short term polarization 

(EPOC). 

 

The extreme reducing conditions (multistep electrochemical reduction or use of ethylene) 

needed in order to restore the initial catalytic activity of a P-EPOC state can be explained 

by the low chemical reactivity of the involved promoters. 



Conclusions 

64 

Furthermore these promoters seem to desorb at high temperatures (600°C). As previously 

reviewed in Chapter II, increasing temperature is unfavorable to both EPOC and P-

EPOC. In fact, it is well known that the classical EPOC phenomenon disappears at 

temperature exceeding 600°C [5, 12, 13]. Furthermore, at moderate temperature (525°C 

and 600°C) the P-EPOC investigation on ethylene combustion over Pt/YSZ catalyst 

performed by Jaccoud et al. revealed complex relaxation transients and the oxygen storage 

efficiency (equation II-9) decreases strongly with increasing temperature [14]. 

 

I I I . 4  C o n c l u s i o n s  

In this chapter, the electrochemical promotion of catalytic ethylene oxidation over a 

Pt/YSZ/Au electrochemical cell was studied under excess of oxygen at 375°C. The gas 

exposed active area of the cell was determined by isothermal titration technique and 

under open circuit conditions (classical catalysis) the catalysis followed the expected 

kinetic mechanism already reported in literature. Upon anodic current application (EPOC 

and P-EPOC), a strong non Faradaic enhancement of the catalyst activity was observed 

(Λ = 370), corresponding to a 4.2-fold increase of the reaction rate, in agreement with the 

sacrificial promoter EPOC theory. However after longer polarization time, at current 

interruption, the relaxation transients slowed down (τD  increases) and the catalytic rate 

remained in a highly active P-EPOC steady state rp (depending on duration of the 

previous anodic polarization tH and characterized by γ >1). Worth is to notice that once 

the catalyst is in the P-EPOC highly active steady state, the application of a similar 

negative current for a similar time period results in the return of the catalytic rate to the 

initial open-circuit state. Similar results for the reversibility of the rate have been observed 

in cyclic voltammetry experiments. After completion of the potential cycling the open-

circuit rate is almost the same as that measured before polarization.  

 

All those results suggested that during the polarization a slow (current independant) 

irreversible promoter storage process takes place at the gas exposed catalyst surface in 

parallel to the rapid sacrificial promoter storage/release process imposed by the current. 

The second part of this work focuses on the formation mechanism of this stable 

promoter. An electrochemical investigation of the O2(g),Pt/YSZ system is proposed, with 
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regard to the platinum aqueous state electrochemistry and high temperature oxidation 

theory, in order to gain knowledge on the high temperature platinum film solid 

electrochemistry. 
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CHAPTER IV-   STATE OF THE ART 

 

This chapter proposes a review of the relevant litterature of the O2(g),Me/YSZ system, 

presenting the various reaction paths and reaction locations such as the different models and 

rate determining steps proposed for the mechanism taking place upon an anodic/cathodic 

polarization. To get a clearer picture of the interaction between oxygen species and YSZ 

supported metal, the review is extended to the field of high temperature metal oxidation, 

recalling the main Wagner metal oxidation theory and its electrochemical interpretations 

given by Mott & Cabrera and Eley & Wilkinson.  

On this basis, the literature concerning the Ni/YSZ and the Pt/YSZ systems is subject of 

special focus. The field of solid state electrochemistry appearing to be subject to 

controversial interpretations, the literature of aquaeous state electrochemistry and high 

temperature oxidation of both systems are given as it may be useful to the understanding of 

the phenomena investigated. 
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I V . 1  O 2 ( g ) , M e / Y S Z  e l e c t r o c h e m i s t r y  

IV.1.1 The O2(g),Me/YSZ system 

The field of high temperature solid electrochemistry is related to several technologies such as  

electrochemically promoted catalysts (EPOC) [1], gas sensors [2-6] , gas pumps [7, 8], solid 

oxide fuel cells (SOFCs) [9] and electrolysis cells [10, 11]. 

 

As depicted in Fig. IV-1, the O2(g),Me/YSZ system is composed of three different phases. A 

solid electrode is deposited on a solid electrolyte and this electrochemical system is hanging 

into a gaseous atmosphere. This geometry implies three double interfaces respectively 

Me/gas, Me/YSZ and YSZ/gas and a triple phase boundary where the three phases are 

present. Each of those interfaces has different properties and involves different physical and 

chemical mechanisms contributing to the overall electrochemical reaction taking place in the 

cell. For this reason the determination of the oxygen evolution reaction sites and reaction 

mechanism is still misunderstood and no clear agreement can be found in the extensive 

literature.  

 
Fig. IV-1 : Schematic representation of an O2(g), Me/YSZ solid electrolyte cell indicating the 

triple phase boundary (tpb). 

 

IV.1.2 Yttria Stabilized Zirconia as solid electrolyte 

A solid electrolyte is an ionically conducting solid medium. Due to the presence of intrinsic 

or extrinsic point defects in their structures, mobile sublattices allow the ionic conduction in 
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a rigid framework [12-14]. Specific ions are able to migrate, into the solid, along those 

defects. 

Zirconium dioxide, ZrO2, presents three different states at ambient pressure: a non 

conducting monoclinic structure at low temperature, a tetragonal one between 1100 and 

2400°C, and at higher temperatures ZrO2 changes to a conducting cubic structure [15-17]. 

The face-centered cubic structure is fluorite type as shown in Fig V-2.  

 
Fig.  IV-2 : Schematic representation of stabilization of zirconium oxide fluorite structure by 

yttria dopping 

 

Each metal cation is surrounded by eight oxygen atoms and each oxygen anion is 

coordinated with four metal cations. Common defects of this structure are vacancies and 

interstitials. Vacancies are sites that would be occupied in the ideal structure but are empty in 

the real solid, they are reported as Schottky defects. On the other hand interstitials would be 

empty in the ideal structure but in the real solid electrolyte ions may move from their original 

location in the lattice to an interstitial site, they are reported as Frenkel defects. Both 

Schottky and Frenkel defects allow different migration mechanism.  Vacancy migration 

consists of the hopping of an O2- ion from a vacancy to another one located nearby 

(Schottky defects). Interstitial migration implies the migration of ions moving through the 

interstice of the regular lattice (Frenkel defects). The cubic conducting structure of zirconia 

can be stabilized down to room temperatures by doping the lattice with aliovalent ions.  In 

addition to this structural stabilization, the doping leads to the creation of vacancies to 

maintain electroneutrality of the crystal lattice. Then by doping zirconia with yttria, oxygen 

vacancies are created by charge compensation with respect to the following equation [18-20]: 
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2 '
2 3 2 3 x

ZrO
Zr OO

Y O Y V O⎯⎯⎯→ + +ii

 IV-1 

 

The maximal conductivity of the resulting yttria stabilized zirconia electrolyte is observed for 

a 9% mol Y2O3 concentration at 1000°C [21, 22] and decreases with increasing dopant 

concentration because of defect association and electrostatic interactions. At lower 

temperatures, the conductivity is maximal close to the stability limit of the cubic phase 

corresponding to 8% at 600°C 0[23, 24]. A key factor for a solid to be seen as an electrolyte, 

their electronic transport number should be as low as possible. Over a wide range of 

temperature and pressure, YSZ can be seen as a purely ionic conductor independent of 

oxygen partial pressure. At 700°C, Weppner reported [25] the YSZ electronic conductivity to 

be 10-7 Ohm-1cm-1 at 20kPa oxygen while the ionic conductivity was 10-3 Ohm-1cm-1. 

Electronic conductivity is found to be significant only at extremely high (p-type) or low (n-

type) oxygen partial pressures. Under normal conditions of operation, YSZ 8%, can then be 

considered as a purely O2- ionic conductor, with a transference number of unity (th+te < 

0.01●tion) and a temperature depend conductivity, σ, expressed by Kilner [26] as : 

m

b

E
k TT Aeσ

⎛ ⎞−
⎜ ⎟
⎝ ⎠=  IV-2 

where  A is a constant, kb is the Boltzman constant and Em the energy for hopping. 

 

IV.1.3 Possible reaction path at O2(g),Me/YSZ system 

By investigating the O2(g),Me/YSZ system, authors conclude a complex dependence upon 

several experimental parameters as oxygen partial pressure, temperature, polarization 

potential, polarization time but also on electrode preparation method and their consequences 

on electrode microstructure [27-47]. Several reaction paths were proposed as depicted in Fig. 

IV-3. 
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 (1)“Triple phase boundary process” :  

Dissociative adsorption of oxygen on metal surface followed by 

diffusion of adsorbed oxygen species on the gas exposed electrode 

surface toward the tpb, where the electrochemical reaction takes 

place. The reduced oxygen O2- enters the solid electrolyte by 

association with an oxygen vacancy VO.  

 
 

(2) “Electrolyte process”: 

Dissociative adsorption of oxygen on YSZ surface immediately 

followed by the electrochemical reaction at YSZ/gas interface. 

The reduced oxygen O2- enters the solid electrolyte by association 

with an oxygen vacancy VO and electrons originating from metal. 

  
(3) “Surface process”  

Dissociative adsorption of oxygen on metal surface followed by 

the electrochemical reaction at Me/gas interface. The reduced 

oxygen species diffuses from the gas exposed electrode surface 

toward the tpb to be incorporated into the electrolyte.  

  
(4) “Interface process” : 

Dissociative adsorption of oxygen on metal surface followed by 

diffusion of adsorbed oxygen species on the gas exposed electrode 

surface toward the electrolyte/electrode interface where the 

electrochemical reaction takes place. 

Electrochemical reaction takes place over the entire Me/YSZ 

interface instead of being confined to the tpb.  

 

 

(5) “Electrode process” : 

Dissociative adsorption of oxygen on metal surface followed by 

diffusion of adsorbed oxygen species trough the electrode to the 

reaction sites at the electrode/electrolyte interface. 

 
Fig. IV-3: Possible pathways for the oxygen exchange reaction (cathodic case) 
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● Process 1 [41, 44, 48-51] is the most straightforward one as the triple phase boundary is 

supposed to be the only electrochemical active part of the system. YSZ electrolyte acts as 

sink/source of O2- anions, metal electrode acts as current acceptor/donor of electrons and 

gas atmosphere is the source/sink of oxygen. Electrolyte/metal interface is inactive to 

electrochemical reaction acting as a blocking interface. However, since the triple phase 

boundary is geometrically represented by a line (zero width), the site of the electrochemical 

reaction (ERS) is often reported to extend toward an adjacent interface.  

● Process 2 [49, 52-54] considers the extension of tpb to electrolyte surface (process 2) 

implies that YSZ acts, at least partially, as an electronic conductor. As previously reported (§ 

IV.1.2), YSZ,8% is most likely a pure ionic conductor under atmospheric atmosphere, this 

process is then limited by lack of YSZ electronic conduction. However, local partial 

reduction of YSZ, by application of a strong cathodic current or a low O2 partial pressure, 

can produce significant electronic conductivity and lead to a mixed ionic-electronic 

conductor (MIEC) [6, 55]. The mixed conductivity can also be achieved by implantation of 

an electronic conductor in the near surface YSZ layers [56-63].  

Process 3 [49, 52-54] allows for the extension of the tpb to the  metal/gas interface, assumes 

the stability of charged oxygen species at metal gas exposed surface. Stability and diffusion 

of this particular oxygen at metal surface has been extensively discussed in many works and 

especially in the field of Electrochemical Promotion of Catalysis, with regard to the 

promoter backspillover theory.  

● Process 4 [1, 46, 47], proposes the extension of electrochemical reaction sites to the whole 

Me/YSZ interface by analogy to liquid state electrochemistry where the reaction sites are 

located at the electrode/electrolyte interface. Diffusion of oxygen along this interface was 

found possible with a limited rate [55], and accumulation of oxygen at the Me/YSZ interface 

occurs by formation of metal oxide [27, 41, 64, 65]. This process is largely accepted for 

oxygen permeable metal electrode, e.g. Ni [53], and controversed for metal electrode 

presenting low oxygen solubility, e.g. Pt [54, 65, 66].  
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● Process 5 [49], involves oxygen diffusion across the metal bulk electrode to the 

electroactive reactive sites at the Pt/YSZ interface. This process concerns only the metal 

electrodes presenting sufficiently high oxygen solubility, e.g. Ag. 

 

IV.1.4 Metal oxidation at high temperture 

In this work the reactivity of oxygen with metal at high temperature is of particular interest. 

The rich literature of high temperature metal oxidation reports that depending on 

experimental conditions (P, pO2, T), and on the initial state of the metal surface, three 

different oxidation kinetics are commonly considered for metal oxidation. 

 

IV.1.4.1 Linear reation rate 

In case of a pure metallic surface, i.e. there is no oxide layer barrier at the metal surface, the 

oxidation rate is expected to be constant with time as the reaction is controlled by one of the 

charge transfer steps of the mechanism rather than by a transport process. The linear 

oxidation rate can then be expressed as : 

Lx k t=  IV-3 

where x is the mass or the thickness of the oxide formed and kL is the linear rate constant. 

The oxidation never slows down until complete formation of metal oxide. This process is 

observed at the very first oxidation stage and later on if a porous unprotective oxide is 

formed at the metal surface. 

 

IV.1.4.2 Parabolic reation rate 

In case of diffusion controlled mechanism where diffusion of ions through a compact oxide 

layer at the interface is the rate determining step, a parabolic growth of oxide is observed 

[67-72]: 
1/2

Px k t=  IV-4 

where x is the mass (thickness) of the oxide formed and kp is the parabolic rate constant. 
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The electrochemical potential acting as driving force, the oxide grows and diffusion length 

increases slowing down the reaction rate with increasing polarization times. 

Wagner first observed experimentally this kinetic growth law at high temperature and 

proposed a commonly accepted high temperature metal oxidation theory model involving 

the displacement of charged species as rate determining step [73, 74]. A scheme of Wagner 

model is presented in Fig.  IV-4, assumptions made are the following.  

 
Fig.  IV-4:Diagram scale formation according to Wagner’s theory [74]. 

 

The oxide layer is dense and adherent to the metal, migration of charged species (ions, 

electrons or holes) is the rate determining step of oxidation process, both metal/oxide and 

oxide/gas interface are in thermodynamical equilibrium, the oxide formed is stochiometric 

and solubility of oxygen into the oxide layer is neglected. The resulting electrochemical 

potential gradient in the oxide layer is the driving force of the process. The resulting ions 

flux, Fi, can then be written as : 

*
i i

i i i i i i
d d dF C u C u z F
dx dx dx
μ μ Φ⎛ ⎞= − = − +⎜ ⎟

⎝ ⎠
 IV-5 
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where Ci is the ion concentration in the oxide, ui its mobility and μi* the electrochemical 

potential and Φ the Galvani potential . Considering the Nernst-Einstein equation which 

relates the mobility of the ion to its diffusion coefficient, Di, the equation becomes : 

Considering displacement of cations, electroneutrality of the film implies a coupled 

displacement of electrons into the film with a similar flux. 

The derivation of this model, for the formation of metal oxide of stochiometry MeO, leads 

Wagner to the determination of a parabolic law for the growing oxide layer as follows:  

3 i
i ox

Cdx D V
dt x

Δ
= −

 
IV-7 

where Vox indicates the number of moles of metal required to form one mole of oxide, e.g. 

for MeO, Vox=1. 

However, because of the basic restrictive assumptions made the experimental results were 

usually found deviating from model predictions. Upon oxide growth, the layer formed is 

unlikely compact, similarly oxide stochiometry is rarely observed. Moreover, ionic transport 

may also occur through grain boundary diffusion especially in case of few structure defects 

in the layer. 

 

IV.1.4.3 Logarithmic and inverse logarithmic reation rate 

At low temperatures, after formation of a thin barrier oxide layer at the metal surface, the 

oxidation rate is commonly measured as logarithmic or inverse logarithmic growth. 

Oxidation rate is then expressed respectively as [67-71, 75-79]: 

log( 1)Logx k at= +  or 1 log( )Logb k t
x

= −  IV-8 

where x is the mass or the thickness of the oxide formed, kLog is the logarithmic rate 

constant, a and b are constants. Experimental distinction between the two laws is unrealistic 

because in the mathematical analysis of the results, both equations have constants (a and b) 

which can be adjusted to fit almost perfectly the data [67]. 

i
i i i i i

dC dF D C u z F
dx dx

Φ
= − +  IV-6 
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However for logarithmic and inverse logarithmic oxide growth, oxidation is limited by mass 

transport across the oxide film, the driving force being the electric field across the film. In 

these conditions, three main theories were developed upon years of research, i.e. limitation 

by electron mass transport, by cation mass transport and by cation incorporation into the 

oxide film. 

 

● Electron tunneling : Mixed Ionic-Electronic Conductivity 

Thin metal oxide films commonly behave as mixed ionic-electronic conductors (MIEC)[58, 

59, 80-82], electrons can then enter into the film by overpassing an energy barrier, ΔUe, 

corresponding to the energy difference of the Fermi level in the metal and the conduction 

band of the oxide. This mechanism can take place through a classical thermal emission but 

also by electron tunneling effect if the energy barrier is much larger than the electron thermal 

energy as depicted in Fig.  IV-5. 

 
Fig.  IV-5 : Electron emission from metal in presence of oxide film, thermal emission and 

emission by tunneling 

 

In the latter case, the probability, W, that an electron enters into the oxide can be written 

[79]: 

t

L
LW e

⎛ ⎞
−⎜ ⎟

⎝ ⎠=  with 1 4 (2 )e e
t

m U
L h

π
= Δ  IV-9 
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where Lt represents the critical tunneling distance of the order of several angstroms at which 

the film begins to attenuate the electron tunnel current, h is the Planck constant, me the 

electron mass and , ΔUe, the energy difference of the Fermi level in the metal and the 

conduction band of the oxide .  

 

● Cation diffusion through the oxide: High Field Theory  

Mott and Cabrera developed a theory which is probably the most established and accepted one 

for metal thin film oxidation (x is less than 10nm) [68-71]. They assume that growth is 

limited  by cation migration across the oxide film.  

At the metal/metal oxide interface, a metal ion must pass into the oxide (potential barrier W) 

and moves into the metal by hopping mechanism (potential barrier U). Similarly as proposed 

by Wagner, oxygen is dissociatively adsorbed at the metal oxide/gas interface, producing sink 

for electron, however solid state diffusion is assumed too slow to play a significant role and 

motion of cations is due to the apparition of a strong electric field with a constant drop 

through the oxide layer thickness, decreasing the migration energy of cations by 

2
qaE

x
 IV-10 

where x is the oxide layer thickness, q is the charge of the metal ion, a the cation hopping 

distance and E the potential drop.  

  
Fig.  IV-6 : Electric field in the oxide and schematic representation of its effect on the charge 

transfer at the interface. 
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Final assumption is that every leaving metal cation is pulled across the oxide layer and reacts 

with oxygen adsorbed. The oxide growth is then determined in case of high field by : 

2
W qaE
kT xkTdx N e e

dt
υ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= Ω

 
IV-11 

where N is the number of metal atoms at the metal/metal oxide interface, Ω is the volume 

of oxide per metal ion, υ is the vibrational frequency of metal lattice and q the charge of the 

metal ion. 

This equation cannot be analytically integrated but Mott & Cabrera approximate the solution 

to a inverse logarithmic law. 

 

● Cation incorporation into the oxide: Place exchange mechanism 

Eley & Wilkinson [73, 83, 84] proposed a mechanism of place exchange between adsorbed 

oxygen and underlying platinum. In this case, the incorporation of metal or oxygen ion into 

the oxide lattice is the rate determining step. 

The description previously made holds but the electric field created acts on the rate of place 

exchange rather than on the cation migration. The activation barrier is supposed to increase 

linearly with the thickness so by assuming that each leaving metal ion reacts with oxygen, 

oxide growth is determined by : 

( )
W

xn kTdx Ap e e
dt

μ
⎛ ⎞−⎜ ⎟ −⎝ ⎠=

 
IV-12 

where x is the oxide layer thickness, pn is the pressure dependency, μ and Α are constants 

depending on the oxide structure.  

The mathematical derivation is the same as the one previously proposed, i.e. no difference 

can be made between the lowering of the penetration energy into the film and the lowering 

of the cation migration across the film. The place exchange limitation mechanism leads then 

also to a logarithmic law for the oxide growth rate. 

However, the dominance of this process is suggested for low oxygen pressure, while at 

higher oxygen partial pressure the cation and electron migration mechanism, pressure 

independent, become the rate determining step. 
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I V . 2  O 2 ( g ) , N i  e l e c t r o c h e m i s t r y  

IV.2.1 O2(g),Ni/YSZ electrochemistry 

The Ni-YSZ system is widely used in the field of solid oxide fuel cell, SOFC, as anode 

material because of its low charge transfer resistance and its very good electrocatalytic ability 

for hydrogen oxidation. Under polarization, oxygen evolution reaction takes place at the 

triple phase boundary (reaction V-13) and NiO is formed in the bulk of the metal electrode 

through the Ni/YSZ interface (reaction V-14). 

2
2

1 2
2

O O e− −→ +  IV-13 

2 2O Ni NiO e− −+ → +  IV-14 

In fact, the nickel oxidation reaction induces a large volume change in the Ni electrode 

which leads to cracks and breaks if the formation of NiO overpasses 60% [116]. In their 

SOFC study [117], Birss et al. report by thermogravimetric analysis (TGA) a parabolic 

formation of NiO at 700°C while the reduction reaction is pseudo first order (Fig.  IV-7). By 

analogy to Hoar & Price’s electrochemical interpretation of the Wagner oxidation theory [118], 

the authors propose a mechanism where Ni2+ diffusion toward the NiO scale is the limiting 

step. 

 

 
Fig.  IV-7 : TGA analysis during successive Ni-YSZ oxidation and reduction steps during redox 

cycling at: (A) reduction at 700°C, (B) oxidation at 700°C. [86] 
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IV.2.2 Nickel aquaeous electrochemistry 

In neutral and alkaline electrolyte media the Ni electrochemical behavior is commonly 

described by the reaction scheme proposed by Bode  [88,89]. The author proposed to 

interpret the typical cyclic voltammograms obtained in such conditions by separating three 

different domains (namely A, B and C in Fig.  IV-8).  

 
Fig.  IV-8 : Cyclic voltammograms of Ni(111) in 1M KOH. The Ni(111)crystal was prepared by 

thermal annealing in a hydrogen atmosphere. The first scan and subsequent sweep are 

highlighted. Sweep rates:main plot 50 mV s-1, inset 10 mV s-1 [89]. 

 

● Region A, corresponding to the more negative potential in the voltammogram (insert in 

Fig.  IV-8), is reported as the Ni(II) region  where, according to Pourbaix, Ni behaves like an 

electropositive metal. The lower negative limit of the voltammogram corresponds to 

hydrogen evolution reaction and hydrogen absorption into the nickel bulk electrode. Upon 

anodic potential sweep, the observed anodic peak a, is assigned to the formation of a slightly 

soluble nickel oxide : α-Ni(OH)2 with concomitant expulsion of absorbed hydrogen from 

the bulk [88,89]. 
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22 ( ) 2Ni OH Ni OH eα− −+ − +R  IV-15 

If the potential is cycled in this Ni(II) region (insert in Fig.  IV-8),, upon cathodic potential 

sweep, the reduction peak a’ is observed corresponding to the reduction of : α-Ni(OH)2 

back to metallic Ni [88,89]. 

 

● In region B (intermediate potential domain in Fig.  IV-8), according to the Bode oxidation 

model, α-Ni(OH)2 is irreversibly transformed by dehydration in a more dense phase, β-

Ni(OH)2 [88,89]. 

2 2( ) ( )Ni OH Ni OHα β− → −  IV-16 

As a consequence, the peaks a and a’ previously observed in region A diminish and may even 

disappear, due to the irreversible formation of β-Ni(OH)2 which can not be reduced back to 

Ni by the successive cathodic sweeps. Worth is to mention that the irreversible formation of 

β-Ni(OH)2 phase may also take place by aging of the α-Ni(OH)2 oxide layer[89]. 

 

● Region C, known as Ni(III) region, correspond to the oxidation of the hydroxide Ni(II) 

layer to Ni(III) by ejection of a proton taking place before the oxygen evolution reaction. In 

highly alkaline media, the further oxidation of β-Ni(OH)2 phase leads to the formation of an 

hydrous Ni(III) oxide, β-NiOOH (equation IV-17) which may lead to nickel over-oxidation 

state in a neutral electrolyte , i.e. NiO2. 

2( )Ni OH NiOOH H eβ + −− + +R  IV-17 

 

IV.2.3 High temperature nickel oxidation 

The overall reaction of nickel oxidation at high temperature may be written as : 

2( )
1
2 gNi O NiO+ R  IV-18 

This process has been widely studied and is well described at high temperature (T > 700°C) 

by the Wagner oxidation theory, i.e. a parabolic oxide growth law (Fig.  IV-9). The parabolic 

rate constant is proportional to the surrounding oxygen partial pressure and commonly 
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reported to vary according to 
2

1/6
p Ok p∝  [90]. The mechanism is governed by a bulk diffusion 

process of single or doubly charged nickel vacancies [91]. 

However, at lower temperature, the reaction rate decreases and a sub-parabolic growth law is 

reported. At those temperatures, oxidation behaviour of Ni is reported to be highly 

dependant on the pretreatment of the metal prior the oxidation [92]. Nevertheless, worth to 

notice that even if short circuit transport mechanisms play a role, the mechanism of inward 

transport of oxygen toward the Ni bulk for the NiO layer formation remains. 

 

 
Fig.  IV-9 : NiO parabolic growth kinetics : Ni weight gain as a function of the square root of 

time during the first hours of oxidation at 900°C in 0.02 atm O2  [90] 
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I V . 3  O 2 ( g ) , P t  e l e c t r o c h e m i s t r y  

IV.3.1 O2(g),Pt/YSZ electrochemistry 

As the solubility of oxygen in platinum metal is much lower than that of nickel, two major 

ways of thought can be distinguished according to the reaction sites involved in the Pt/YSZ 

polarization and the resulting mechanism proposed.  

● A first class of authors focuses on the major role of the triple phase boundary supposed to 

be the only electrochemical active part of the system as the oxygen evolution reaction IV-21 

involves species present in each phase (processes 1 to 3).  

● A second group of authors, with regard to the aquaous state theory of platinum 

electrochemistry, emphases the role of the binary Pt/YSZ interface and platinum multilayer 

oxidation (processes 4 and 5). Oxygen evolution taking place at the triple phase boundary is 

commonly seen as a side reaction occurring in parallel to platinum oxidation.  

A rapid survey of both approaches and the resulting proposed mechanisms follows. 

IV.3.1.1 Triple phase boundary acting as only reaction site 

The mechanism of O2(g),Pt/YSZ system under polarization can then be reduced to oxygen 

evolution reaction over platinum catalyst as follows : 

2( ) 2 ads
g PtO OR  IV-19 

ads ads
Pt tpbO OR  IV-20 

22ads
tpb Pt YSZO e O− −+ R  IV-21 

Since the charge transfer takes place at the triple phase boundary, its length, ltpb, is one of the 

most important factors influencing the electrode performance. Radhakrishnan et al. [41, 48] 

found, by electrochemical impedance spectroscopy measurements, a direct influence of ltpb 

on the polarization resistance Rp and concluded to a charge transfer limited reaction. 

Mizusaki et al [8, 48, 51, 93, 94] proposed two different limiting steps for this mechanism 

depending on the experimental temperature.  
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(A) (B)

Fig.  IV-10: Effect of reversal potential (A) and of anodisation holding time (B) on the cathodic 

potential peak. [95] 

 

Above 600°C, oxygen atom surface diffusion to/from the triple phase boundary was found 

to be rate determining while at temperatures below 500°C, oxygen dissociation on platinum 

surface was proposed as RDS. 

By studying Electrochemical Promotion of Catalysis (EPOC), Vayenas et al [96] conducted 

kinetic analysis at lower temperatures (380°C) involving cyclic voltammetry and Tafel 

measurements and concluded to electrochemical adsorption limitations at the tpb. 

Observation of one cathodic peak in the voltamogramms has been reported in literature in a 

wide range of temperature and oxygen partial pressure with electrodes prepared by several 

methods [41, 44]. Anodic reverse potential and anodisation time was found to have a 

dramatic influence on voltammograms as shown in Fig.  IV-10. After long polarization times 

two peaks were usually observed, and explained by two different types of chemisorbed 

oxygen at platinum surface supporting the spillover theory of EPOC [1]. 
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Fig.  IV-11: Thermal desorption spectra of oxygen on Pt/YSZ film after gaseous oxygen 

adsorption at 673 K and an O2 pressure of 4 · 10-6 Torr for 1800 s followed by electrochemical O2- 

supply (I = 15 μA) for various time periods.[96]  

 

Temperature Programmed Desorption measurements performed by Vayenas [97, 98] and 

Vernoux [34, 99] show that anodic polarization of the Pt/YSZ cell leads to formation of Oδ- 

species, which had a different behavior than the chemisorbed oxygen originating from the 

gas. TPD measurements presented in Fig.  IV-11 show the progressive apparition of back-

spillover anions, reported as promoters in EPOC theory, with increasing anodic polarization 

times. Promoters desorb at higher temperature than the oxygen formed via gaseous 

adsorption without polarization indicating a strongly bonded oxygen on platinum surface, 

however because of the observation of a parallel increase in catalytic activity and platinum 

oxide being known of low catalytic activity, platinum oxidation reaction was then excluded 

from the mechanism [1]. 
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IV.3.1.2 Pt/YSZ binary interface and tpb acting as reaction sites 

If binary Pt/YSZ interface is electrochemically active, platinum oxidation reaction should be 

considered in the mechanism taking place at O2(g),Pt/YSZ system under polarization. Several 

authors support then that the observed cathodic peak reduction is more likely related to the 

platinum oxidation reaction at Pt/YSZ interface rather than to the oxygen evolution taking 

place at the triple phase boundary. However they do all agree that oxygen evolution reaction 

take place at the triple phase boundary as a side reaction process, equation IV-22. 

2
2( )

1 2
2 gO O e− −+R

 
IV-22 

 

Chao et al. [27] proposed, for the interpretation of the voltammograms presented in Fig.  

IV-12, that a slow oxidation process is taking place at Pt/YSZ interface limited by oxygen 

adsorption in the electrolyte subsurface. This was supported by confrontation of the large 

amount of charges involved in the cathodic reduction process to the rather limited triple 

phase boundary length.  

Fig.  IV-12 : Effect of reversal potential (A) and of anodisation holding time (B) on the cathodic 

current peak. [27] 

 

Through the electrochemical investigation of a screen printed Pt/YSZ electrode , Jaccoud et 

al. [65,66,100,101] observed for the first time a third cathodic process after long lasting 

(A) (B)
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anodic polarization of the cell as shown in Fig.  IV-13 : In order to explain this behavior, the 

authors proposed a mechanism involving three oxygen storage locations into the 

O2(g),Pt/YSZ system which can be summerized as follows: 
2 2Pt O PtO e− −+ +R  IV-23 

/tpb Pt gasPtO PtOR  IV-24 

2
/ 2Pt YSZ bulkPtO O PtO e− −+ +R  IV-25 

 

A first monolayer adsorbed rapidly at the Pt/YSZ binary interface during the initial times of 

anodic polarization, equation IV-23. This first oxygen storage is assumed to be rather limited 

and will then rapidly reach saturation. In parallel, similar reaction takes place at the triple 

phase boundary but the formed strongly bonded oxygen diffuses toward the gas exposed 

platinum surface being a second larger oxygen storage location, equation IV-24. Finally, after 

the completion of the first process, an incorporation and subsequent diffusion of oxygen 

into the platinum bulk is proposed as a third oxygen storage location, equation IV-25. This 

last oxygen sink was proposed to explain the third cathodic peak observed for the first time 

by Jaccoud [65]. 

 
Fig.  IV-13 : Effect on the anodic polarization time on the shape of the first linear cathodic sweep. 

[65] 
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IV.3.2 O2(g),Pt aqueous electrochemistry 

Jerkiewicz et al. combined CV and electrochemical quartz-crystal nanobalance (EQCN) 

measurements where nanogram interfacial mass changes can be measured and directly 

correlated with the cyclic voltammogram as shown in Fig. IV-14 [104]. This corresponds to 

an in-situ determination of the molecular weight increase of the Pt surface oxide. 

 

 
Fig. IV-14  : Cyclic-voltammetry profile (A) and mass-response profile (B) for a Pt electrode in 

0.5 M aqueous H2SO4 solution recorded at ν=50 mV s−1 and T=25°C. 

 

The voltammogram obtained is similar to that presented in previous literature [102-107], 

however evolution of masses during the potential sweeps shows a continuous almost linear 

increase with increasing potential in the oxide formation region. Jerkiewicz et al. proposed that 

one O atom is added to the surface, and PtO is the oxide species formed. It was also 

ascertained that the surface oxide was anhydrous, and that the process did not involve OHads 

as an intermediate. The mechanism proposes that surface oxidation proceeds via a 

progressive coordination of chemisorbed O adatoms (Ochem) to the Pt substrate as depicted 

schematically in Fig. IV-15 [106, 107].  

 

The first step is an interaction of H2O molecules with the Pt electrode at potential values 

between 0.27 and 0.85 V. At these potentials the Pt surface atoms carry a partial positive 

charge that attracts the negatively charged oxygen atoms in the dipolar water molecules (Eq. 

(A) (B)
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V-26) and is characterized by a strong physisorption. In the second step, the discharge of 

half a monolayer (ML) of H2O molecules takes place and results in the formation of 0.5 ML 

of Ochem. (Eq. V-27). This process is accompanied by charge transfer. The third step is 

discharge of the second half-monolayer of H2O molecules exhibiting strong interfacial 

interactions with the Pt surface. As the second half-monolayer of Ochem starts to build up, 

strong lateral repulsive dipole-dipole interactions set in which involve the dipole moment of 

the (Pt-Pt)δ+-Ochemδ- surface compound. These interactions lead to an interfacial place 

exchange process of the initial half-monolayer of Ochem adatoms with the Pt surface atoms 

producing a surface PtO lattice in which the repulsive interactions are minimized. This place 

exchange is accompanied by completion of the charge transfer from Pt to Ochem, which leads 

to a quasi-3D surface lattice built up from Pt2+ and O2- (Eq. V-28).  

 

Pt + H2O → Ptδ+-Oδ-H2 (IV-26)

(Pt-Pt)-H2O → (Pt-Pt)δ+-Ochemδ- + 2H+ 

+ 2e- 
(IV-27)

Pt-Ochem + H2O → (Pt2+-O2-)quasi-3D + 

2H+ + 2e- 
(IV-28)

Fig. IV-15 : Mechanism and schematic representation of platinum electrooxidation in acidic 

media, model proposed by Jerkiewicz. [104] 

 

IV.3.3 High temperature platinum oxidation 

The overall oxidation reaction of platinum at the gas exposed suface may be written as : 

2( )
1
2 gPt O PtO+ R

 
IV-29 
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The driving force of this process is the variation of free energy, i.e. the formation of 

platinum oxide requires that oxygen partial pressure is larger than the dissociation pressure 

of the oxide .  

Berry, proceeding to resistance measurements on platinum wires at high temperature, reports 

the evolution of oxide layer thickness for varying conditions of oxygen partial pressure and 

temperature [108].  

 
Fig.  IV-16 : Isobaric change in resistance (A) and of normalized oxidation rate as function of 

temperature (B). [108] 

 

Upon temperature increase the oxidation rate first increases and then decreases at 

temperatures higher than 550°C because the platinum oxide becomes thermodynamically 

less favourable than metal platinum.  

Berry estimated ΔH and ΔS for the formation of platinum oxide at platinum wire surface 

[108]. Vayenas et al proposed similar thermodynamic values [109]. Using the ΔH and ΔS 

values, one may calculate the dissociation oxygen partial pressure pO2* at any given 

temperature T: 

2ln O PtOp G H T S
p RT RT

∗ Δ Δ − ⋅ Δ
= =

°
 IV-30 

where p0 = 100kPa is set as the reference oxygen partial pressure. 

(A) (B)
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Fig.  IV-17 : Stability domain of surface platinum oxide (Berry [108] and Vayenas et al. [109]), p° 

= 100 kPa.  
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CHAPTER V-   ELECTROCHEMICAL 

INVES T IGATION OF THE Ni/Y SZ SY STEM 

 

In this chapter, cyclic voltammetry has been used for the investigation of the oxidation-

reduction reactions of a model metal electrode deposited over an YSZ pellet, during anodic 

and cathodic polarization, respectively. The choice of Nickel as working electrode was 

motivated by its oxidation mechanism following the Wagner theory at high temperature. 

Electrodes were deposited by sputtering on YSZ and investigated at temperatures between 

350°C and 450°C, in 20 kPa O2 and under atmospheric pressure. It has been found that a 

NiO scale is formed during anodic polarization at the Ni/YSZ interface and then is reduced 

during the subsequent cathodic potential sweep resulting in a significant cathodic peak. A 

correlation between cyclic voltammetric findings and metal oxidation theories has been 

obtained for the NiO formation rate. Finally, an original model is proposed for the 

electrochemically induced formation and growth of NiO at the Ni/YSZ interface. 
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V . 1  I n t r o d u c t i o n  

Nickel is a material commonly used in solid oxide fuel cells (SOFC) for environmentally 

acceptable energy production and, in addition, it is considered as a reference material for 

fundamental studies on the mechanism of high temperature oxidation of metals. Numerous 

studies have been devoted to both fields. However, only few fundamental studies using 

electrochemical techniques have been published on the O2(g),Ni/YSZ system [1-4]. An 

investigation by cyclic voltammetry of the electrochemically induced oxidation of this 

reference system is then proposed.  

 

V . 2  E p e r i m e n t a l   

V.2.1 General setup 

The reactor was an atmospheric single-chamber type quartz tube of 90ml (Fig. V-1). The 

single-pellet three-electrode cells were suspended in the reactor with the three gold wires 

serving as electrical contacts to the electrodes. A K-type (NiCr-Ni) thermocouple placed in 

proximity of the surface of the working electrode was used to measure the temperature of 

the system. The reactor was put into a furnace (XVA271, Horst) equipped with a heat 

control system (HT30, Horst).  

The reactant gases used were Carbagas certified standards of 20% O2/He, 1% C2H4/He 

(99.95% purity) and He (99.996% purity). Mass flow controllers (E-5514-FA, Bronkhorst) 

were used to control the gas feed composition and to keep the gas flow continuously at 

200ml/min to feed the electrochemical reator. 

Electrochemical stimulation and data acquisition are performed by using a galvanostat–

potentiostat (Autolab, Model PGSTAT30, EcoChemie). Unless otherwise specified, the 

potential of the working electrode is given with respect to the reference Pt electrode exposed 

to oxygen partial pressure of 20 kPa. 
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Fig. V-1 : Scheme of the atmospherique reactor. 1: quartz tube; 2: electrochemical cell 

 

V.2.2 Deposition of Ni and Pt on YSZ 

The solid electrolyte cell consists of a rectangular YSZ (8%mol Y2O3-stabilized ZrO2 

Technox 802, Dynamic Ceramic Ltd) pellet (10 mm x 15 mm) of 1mm thickness supporting 

the three electrodes: working, counter and reference. The Ni working electrode (thickness of 

880 nm) was deposited by magnetron sputtering on one side of the electrolyte pellet in inert 

atmosphere (Ar)  at room temperature. Direct current (dc) mode was used with a discharge 

of 455 V at an argon pressure of 4.3x10−3 mbar, resulting in a nickel deposition rate of 0.05 

nm/s. The mask used during the deposition allowed to deposit one rectangular (7 x 5mm) 

film on the YSZ surface (working electrode). Platinum counter and reference electrodes 

were deposited on the other side of the electrolyte pellet by magnetron sputtering technique 

in inert atmosphere (Ar) at room temperature. Direct current (dc) mode was used with a 

discharge of 330 V at an argon pressure of 10−2 mbar. Under these conditions, a 1 μm thick 
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Pt electrode was deposited with a deposition rate of 0.09 nm s−1 on the YSZ pellet, as 

determined by profilometric measurement (Alphastep, Model 500) of the film deposited on 

smooth silicon samples processed simultaneously. The mask used during the deposition 

allowed to deposit two rectangular (7 x 5mm) films on the YSZ surface (counter and 

reference electrodes). 

The working and counter electrodes were located in a symmetrical face-to-face arrangement 

on the opposite sides of the YSZ pellet (Fig. V-2), ensuring a symmetrical current and 

potential distribution in the cell during electrochemical investigations [10].  

 
Fig. V-2 : Placement and dimensions of the Pt electrodes prepared by sputtering. WE: working 

electrode; CE: counter electrode; RE: reference electrode. 

 

Before use, a pretreatment process including a calcination step at 700oC for 4h in air was 

performed in order to obtain a stable surface structure during the electrochemical 

measurements in the whole examined temperature range [10]. 

 

V . 3  E l e c t r o c h e m i c a l  i n v e s t i g a t i o n   

The electrochemical oxidation of YSZ supported Ni working electrode was studied at 

atmospheric pressure with 20kPa O2 in He. The influence of anodic reverse potential, anodic 

holding time and temperature on the nickel working electrode oxidation mechanism was 

investigated by cyclic voltammetry. 

Nickel 
Platinum 
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V.3.1 Influence of the anodic reverse potential 

Fig.  V-3 shows the effect of the anodic reverse potential, Er, on the cyclic voltammograms 

of Ni/YSZ system at 350°C. The increase of the anodic reverse potential leads to the 

formation of a single cathodic peak. The latter becomes more significant and shifts to lower 

potential values, with increasing reverse potential. 
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Fig.  V-3: Effect of the anodic reverse potential, Er on the voltammogram of Ni/YSZ system. 

Insert: effect of Er, on the amount of formed NiO (nmol) (left axis) and corresponding reduction 

charge (μC) (right axis). pO2=20kPa, ν=20mV s-1 and T=350°C. 

 

Worthy to note is the fact that when the anodic reverse potential is set to values lower than 

~150 mV the reduction peak does not appear on the voltammogram. This threshold 

potential indicates that the reduction peak is more likely related to the reduction of an 

electrochemically formed NiO equation V-1, rather than to the reduction of an oxide 

formed chemically by the surrounding oxygen equation V-2.  
−− +→+ eNiONiOYSZ 22  V-1

Increasing Er 
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NiONigO →+)(21 2  V-2

An estimation of the formed oxide (nmol) is performed by integrating the cathodic peak 

considering equation V-1, then plotted as a function of the anodic reverse potential (insert in 

Fig.  V-3). This figure shows that increasing the anodic reverse potential results in an 

increase of the formed nickel oxide. 

 

V.3.2 Influence of the anodic holding time 

Fig.  V-4 displays the voltammograms obtained after anodic polarization of the Ni electrode 

for increasing holding time. By holding the anodic potential up to 5 minutes at 400mV, the 

cathodic peak related to NiO reduction grows and shifts to more negative potentials.  
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Fig.  V-4 : Linear potential sweep voltammograms of Ni after holding the potential at +400mV 

for various holding times tH (1) 5s, (2) 20s, (3) 60s, (4) 120s and (5) 180s. Insert gives the estimated 

charges of the cathodic peak and the equivalent nickel oxide thickness formed. PO2=20 kPa, 

υ=20mV/s and T=350°C. 

Increasing th 
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As shown in the insert, the anodic polarization of the Ni electrode leads to a parabolic 

growth of NiO. However, during anodic polarization oxygen evolution (equation V-3) takes 

place in parallel to the nickel oxide formation. The current efficiency for NiO formation 

(ηNiO) and for oxygen evolution (ηO2) during anodic polarization is defined by equation V-4 

and equation V-5, respectively: 
−− +→ eOO 221 2

2  V-3

NiO NiO TotalQ Qη =  V-4

NiOO ηη −=1
2

 V-5

where, QNIO is the charge involved in the reduction of NiO peak and QTotal is the charge 

passes during the holding time tH of the anodic potential step. 
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Fig.  V-5 : Effect of holding time, tH, on the current efficiencies of NiO formation, ηNiO, and O2 

evolution, ηO2, under Er=400mV. PO2=20 kPa and T=350°C. 
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Fig.  V-5 shows the effect of holding time at a fixed anodic potential (Er = 400mV) on the 

current efficiency of both NiO formation (ηNiO) and O2 evolution (ηO2). This figure shows 

that the initial current efficiency of NiO formation (ηNiO) is close to 100% and then 

decreases rapidly with a concomitant increase of the current efficiency of O2 evolution (ηO2). 

This is certainly related to the different mechanism of the involved reactions (equation V-1 

and equation V-3). In fact, it seems that oxide scale formation acts as a barrier for further 

oxide growth without any influence on the O2 evolution reaction. 
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Fig.  V-6 : Effect of holding time, tH, on the current efficiency of NiO formation, ηNiO, for 

increasing  holding potentials, EH. PO2=20 kPa and T=350°C. 

 

Furthermore, the current efficiency for NiO formation (ηNiO) depends strongly on the 

applied holding potential as shown in Fig.  V-6. 

In order to estimate the effective rate (Reff) of NiO formation, the following equation has 

been used (equation V-6):  

Increasing Er
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FIFIR NiOeffeff 22 η==  V-6

where, I is the applied current during the anodic polarization and Ieff is the effective current 

used for NiO formation. 
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Fig.  V-7 : Effective rate of NiO formation (eq. 5) as a function of tH-1/2 for different holding 

potentials. PO2=20 kPa and T=350°C. 

 

Fig.  V-7 shows the variation of Reff (equation V-6) with the reciprocal square root of the 

holding time, tH-1/2, for three different potentials at 350°C. As shown, a linear correlation 

between the effective rate (pmolO/s) of the NiO formation and the tH-1/2 is observed.  

 

V.3.3 Influence of temperature 

In order to evaluate the effect of temperature on the effective rate of NiO formation, similar 

experiments were performed at higher temperatures.  
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Fig.  V-8 : Effect of temperature on the voltammogram of Ni/YSZ system. PO2=20 kPa, 

υ=20mV/s and T=350°C. 
 

Fig.  V-8 shows voltammograms of the Ni /YSZ system carried out at 350, 400 and 450°C. 

This figure shows that increasing the temperature, the general shape of the voltammogram 

remains almost the same; however, the current peak increases strongly. The calculated 

current efficiency for NiO formation (ηNiO) at holding potential EH = 400mVand for three 

different temperatures 350, 400, and 450°C is presented in Fig.  V-9. This figure shows that 

increasing temperature results in a rapid decrease of ηNiO.  
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Fig.  V-9 : Effect of holding time, tH, on the oxidation efficiency of NiO formation, ηNiO, for three 

different temperatures; 350°C, 400°C and 450°C. PO2=20 kPa, Ea=400mV  

 

V . 4  G e n e r a l  d i s c u s s i o n   

Upon anodic polarization of the Ni/YSZ interface two parallel reactions take place:  

● Formation of NiO (equation V-1) 

● Oxygen evolution (equation V-3) 

For low polarization times the NiO formation is the main reaction. However, after few 

seconds of polarization the reaction of oxygen evolution dominates. This behavior is 

certainly related with the formation of NiO scale which seems to induce an auto-inhibition 

of NiO growth without effecting the oxygen evolution reaction. 

The t-1/2 dependence of the effective rate of NiO formation (Fig.  V-7) allows to suggest the 

following parabolic law (equation V-6) for the effective rate of NiO formation upon anodic 

polarization: 
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1/2( , )eff p HR k T tη −=  
V-7

 

where, kp (η,T) is the parabolic law constant, depending on the applied overpotential (η) and 

temperature (T). 

This approach is similar to the model proposed by Wagner [5] and Hoar & Price [6] for high 

temperature oxidation of metals exposed to oxygen.  
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Fig.  V-10 : Effect of holding anodic potential, EH, on the parabolic law constant, k, (equation V-

7). PO2=20kPa T=350°C. 

 

The dependence of the parabolic law constant on the applied potential can be given by the 

relation: 
0 exp( / )p pk k F RTα η=  V-8

where, kp0 is the parabolic law constant at open circuit (η = 0), α the charge transfer 

coefficient, F the Faraday number and η = E-Eoc (Eoc: open circuit potential).  
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The two parameters of this relation (kp0 and α) can be calculated from Fig.  V-10 where 

log(kp) is plotted as a function of overpotential, η, at 350°C. 
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Fig.  V-11 : Typical Arrhenius plot of the NiO formation kinetics for 3 anodic holding potential 

values; 400, 500 and 600 mV. PO2=20kPa T=350°C. 

 

The dependence of parabolic law constant, kp, on applied overpotential at 350oC can be 

given by the relation: 
1/25exp(0.33 / ) / pmol/spk F RTη=  V-9

The influence of temperature on the rate constant of NiO growth can be evaluated from 

activation energy determination using Arrhenius plots at different applied potentials (Fig.  

V-11). The obtained apparent activation energy (Eact) decreases from 35 kJ/mol to 17 

kJ/mol by increasing the anodic overpotential form 400 to 600 mV. 
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V . 5  P r o p o s e d  m o d e l  

Initially, before any anodic polarization, one can consider a pure Ni electrode, and thus a 

Ni/YSZ interface. By anodic potential application, NiO formation occurs at the interface 

with high ηNiO. This is a two step process; oxidation of Ni to Ni2+ (equation V-10) and the 

combination of Ni2+ with O2- (equation VI-12) coming from the reduction of O2 at the 

cathode, according to (equation VI-11): 

Anode : −+ +→ eNiNi 22  V-10

Cathode : −− →+ 2
2 2)(2/1 OegO  V-11

Interface : NiOONi →+ −+ 22  V-12

The global cell reaction is: 

NiOgONi →+ )(2/1 2  
V-13 

After anodic polarization resulting in a complete coverage of the Ni surface by a NiO layer, 

two new interfaces are created; Ni/NiO and NiO/YSZ together with the three phase 

boundary (t.p.b.) NiO/YSZ/O2. 

The rate of NiO formation at the NiO/YSZ interface is controled by reaction V-12 

involving outward diffusion of Ni2+ (when fresh NiO is formed at the NiO/YSZ interface) 

or inward diffusion of O2- through the oxide film (NiO is formed at the Ni/NiO interface). 

It is worthwhile to mention that this ionic diffusion process, in the domain of working 

temperature (<450°C), is not a bulk diffusion but takes place along grain boundaries. 

Moreover, as the reported diffusivity of Ni2+ in NiO is ~10 orders of magnitude greater than 

O2- diffusivity [16] we can consider that Ni2+ diffusion through the NiO scale, resulting in 

the formation of fresh NiO at the NiO/YSZ interface, is the rate determining step in NiO 

growth under anodic polarization.  
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Fig.  V-12 : Schematic representation of the oxidation process during anodic polarization.  

 

The above consideration of Ni2+ diffusion as rate determining step is similar to Wagner’s 

theory at high temperatures [5]. A difference between Wagner’s (chemical oxidation with 

O2(g)) and the current model constitutes the mean of oxygen supply for Ni oxidation, i.e. O2 

from the gas phase or O2- from the electrolyte support, respectively. The parabolic growth 

law proposed by Wagner in the chemical oxidation of Ni by O2 is also applied in our study 

(equation V-13), as in both systems the r.d.s. is the diffusion of Ni2+ through NiO. 

Concerning O2 evolution reaction, which takes place at the t.p.b., the rate of this reaction is 

not firmly affected by the presence of the oxide scale, since electron transfer can occur by 

electron tunneling through NiO to the Ni electrode resulting in O2 evolution at the NiO-

YSZ-O2(g) t.p.b. (Fig.  V-12).  
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V . 6  C o n c l u s i o n s  

In this study, the cyclic voltammetry technique has been used for the electrochemical 

investigation of a Ni electrode supported over an YSZ solid electrolyte pellet in the 

temperature range between 350° and 450°C. It has been found that NiO is electrochemically 

formed by the O2- species supplied from the electrolyte upon anodic polarization. Moreover, 

the NiO scale grows according to the parabolic growth law, in agreement with Wagner’s 

oxidation theory of metals at high temperatures. A model for the NiO initial formation has 

been proposed, where NiO is formed at the Ni/YSZ interface and grows by the outward 

diffusion of Ni2+ species through the NiO layer, which is determined as the rate limiting 

step. This implies for the auto-inhibition of NiO formation by its continuous growth. This is 

similar to Wagner’s theory; however, a difference between Wagner’s and the current model is 

the mean of supplying oxygen for the oxidation of Ni, which is the O2 of the gas phase or 

O2- from the electrolyte support, respectively. Also, it has been found that O2 evolution 

reaction is not firmly affected by the oxide formation, since it occurs and is controlled by 

electron tunneling though NiO to the Ni electrode. An apparent activation energy of the 

limiting outward Ni2+ diffusion process has been calculated (35 kJ/mol under EH = 400 

mV) and has been found to decrease by increasing potential. 
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CHAPTER VI -   ELECTROCHEMICAL 

INVES T IGATION OF THE Pt/Y SZ SY S T EM 

 

The electrochemical investigation of a sputtered platinum electrode is performed at 

atmospheric pressure (20 kPa O2 in He) in the temperature range of 250°C-375°C. Under 

anodic polarization two reactions take place, oxygen evolution reaction at the triple phase 

boundary and PtO formation at the Pt/YSZ interface. Cyclic voltammetric investigation was 

used to quantify the influence of both processes by determining their respective current 

efficiencies. PtO formation is found to be an auto-inhibited reaction with different kinetic 

regimes depending on the applied potential. Finally, with regard to the Wagner oxidation 

theory and the Eley & Wilkinson place exchange mechanism, an original electro-oxidation 

model is proposed for the O2(g),Pt/YSZ system. 
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V I . 1  I n t r o d u c t i o n  

The great majority of studies involving Pt/YSZ interface, are performed at high temperature 

(T > 300°C) and under atmospheric pressure [1]. However, in the field of solid state 

electrochemistry, the preparation procedure of the sample is of primary importance. In fact, 

although the chemical composition of a conductive electrode is identical, depending on the 

deposition technique (paste thermal decomposition, screen printing, sputtering or pulsed 

laser deposition) the experimental results obtained and their interpretation may greatly differ 

[2-6]. In addition, the cell microstructure which has a major impact on the electrochemical 

behavior may also be affected by temperature increase (sintering effects) and upon extensive 

use (aging effects). Worth to notice that these morphological impacts are comonly the source 

of reproducibility problems and that they are frequently discussed or mentioned in the 

literature [7, 8]. 

 

In this work, in order to minimize these problems, it was chosen to prepare the working 

electrode by magnetron sputtering technique and to stabilize its structure by thermal pre-

treatment. The morphological investigation performed on the so prepared Pt/YSZ samples 

revealed a stable Pt film, statistically (111) oriented and presenting a macroporous structure, 

i.e. a large amount of triple phase boundaries (tpb). Investigation by cyclic voltammetry is 

performed at high temperature (250°C < T < 375°C) under atmospheric pressure in the 

previously described setup.  

 

V I . 2  E x p e r i m e n t a l  

VI.2.1 Deposition of Pt on YSZ by sputtering 

Platinum film electrodes were deposited by magnetron sputtering technique in inert 

atmosphere (Ar) at room temperature on a rectangular YSZ (8mol% Y2O3-stabilized ZrO2 

Technox 802, Dynamic Ceramic Ltd) pellet (10 mm x 15 mm) of 1 mm thickness. Direct 

current (dc) mode was used with a discharge of 330 V at an argon pressure of 10−2 mbar. 
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Under these conditions, 1 μm thick Pt electrodes were deposited with a deposition rate of 

0.09 nm s−1 on the YSZ pellet, as determined by profilometric measurement (Alphastep, 

Model 500) of the film deposited on smooth silicon samples processed simultaneously.  

 

The solid electrochemical cell used in this work consists of three electrodes deposited on 

YSZ solid electrolyte. The working and counter electrodes were located in a symmetrical 

face-to-face arrangement on the opposite sides of the YSZ pellet ensuring a symmetrical 

current and potential distribution in the cell during electrochemical investigations [9]. The 

electrodes size is 7 x 5 mm giving a geometric surface of 0.35 cm2 for each of them (Fig. 

VI-1). 

 

 
Fig. VI-1 : Placement and dimensions of the Pt electrodes prepared by sputtering. WE: working 

electrode; CE: counter electrode; RE: reference electrode. 

 

Before use, a pretreatment process including a calcination step at 700°C for 4h in air was 

performed in order to obtain a stable surface structure during the electrochemical 

measurements in the whole examined temperature range [8]. 

V I . 3  P t / Y S Z  f i l m  m o r p h o l o g i c a l  c h a r a c t e r i z a t i o n  

Each sample morphology was characterized before any electrochemical investigation by 

high-resolution scanning electron microscopy (HRSEM, Leo Gemini 982). The 
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crystallographic structure and orientation were analyzed by X-ray diffraction (XRD, 2 θ = 

10°–90°, Bragg–Brentano diffraction geometry, Cu–Kα radiation, V = 40 kV, I = 30 mA). 

 

VI.3.1 Scanning Electron Microscopy 

The as-sputtered platinum electrode (left image inFig. VI-2) presents a very compact layer 

with nearly no porosity, as expected for the sputtering deposition technique. The layer 

follows the topography of the YSZ substrate. However, after heat treatment at 700 °C in 20 

kPa of O2 for 4 h, the Pt film is strongly modified resulting in the formation of agglomerates 

and the appearance of YSZ substrate, (right image in Fig. VI-2). This film discontinuity, 

observed after the thermal treatment, has been already reported by Jaccoud [8, 10]. From SEM 

images we can estimate that in this new structure only 60% of the YSZ is covered by Pt. The 

estimated three phase boundary (tpb) length can be estimated from SEM images to 

370m/cm2. 

    
Fig. VI-2 : SEM pictures of the as-sputtered electrode (left) and after heat treatment  at 700 °C in 

20 kPa of O2 for 4 h (right). 

 

VI.3.2 X-Ray Diffraction 

XRD analysis was performed on both polycrystalline YSZ(8%) substrate (Fig. VI-3) and 

YSZ  Pt sputtered electrode (Fig.  VI-4). Even if several crystallite orientations are observed, 

majority of the crystallites has a (111) orientation, and the substrate can then be considered 

as statistically (111) oriented. 
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Fig. VI-3 : XRD pattern of polycrystalline YSZ(8%) 
 

 
Fig.  VI-4 : XRD pattern of sputtered platinum electrode. YSZ substrate before (A) and after 

(B)substraction of the XRD pattern of YSZ. 
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The XRD pattern of the Pt sputtered electrode after treatment at 700°C (20kPa O2, 4h) is 

presented in Fig.  VI-4 before (A) and after (B) subtraction of the XRD pattern of YSZ 

substrate. This figure shows that the platinum crystallites are mainly (111) oriented. 

Furthermore, by using the Scherrer equation the crystallite average size is estimated to be 

32 nm. 

 

VI.3.3 Discussion 

Deposition of Pt by sputtering on YSZ substrate leads to an uniform film following the 

substrate topography. However, the as-deposited film did not show a good stability upon 

long term electrochemical measurements. Jaccoud [8] proposed to stabilize the structure by 

thermal pretreatment at 700°C for 4 hours in 20 kPa O2. This pretreatment leads to a 

dramatic change of the film leading to a network of (111) oriented crystallites covering only 

60% of the YSZ substrate and resulting in the formation of macro pores of few hundreds of 

nanometers. This results in an increase of the triple phase boundary length (estimated at 

370m/cm2) and concomitant binary Pt/YSZ interface decrease (0.2cm2).  

 

(a) (b)

Fig.  VI-5 : Schematic morphology of sputtered Pt/YSZ electrode before (a) and after (b) thermal 

treatment at 700°C during 4 hours. 
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V I . 4  E l e c t r o c h e m i c a l  i n v e s t i g a t i o n   

This electrochemical investigation of platinum film sputtered on YSZ(8%) polycrystalline 

substrate (Pt/YSZ) is performed by cyclic voltammetry in 20kPa O2 in He. The influence of 

anodic reverse potential, temperature, anodic holding time and oxygen partial pressure has 

been first investigated. 

 

VI.4.1 Influence of anodic reverse potential 

In this first series of experiment, the potential of the Pt working electrode is cycled 

(20 mV s-1) in a defined domain of potential at 325°C in 20% O2 in He. The lower limit is 

fixed at Ec=-500mV while the upper limit, i.e. the anodic reverse potential, Ea, is increased 

from 50mV to 500mV by steps of 50mV (Fig.  VI-6).  

 
Fig.  VI-6 : Effect of anodic reverse potential Era increase from 50mV to 500mV by steps of 50mV 

on the cyclic voltagemogram of Pt/YSZ. Insert : determination of the charge involved in the 

cathodic peak related to PtO reduction. T=325oC, pO2=20 kPa, v=20mV s-1. 

 

Increasing 

Ea QPtO 
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For anodic reverse potentials lower than 100mV, no cathodic peak is observed, however as 

the anodic reverse potentials is set at 150mV, a small cathodic peak is observed at -100mV. 

By increasing Era, the cathodic peak grows and shifts to more negative values. In the anodic 

part of the voltammograms the current forms a plateau at 3μA between 150mV and 450mV 

and at higher anodic overpotential it increases sharply. 

 

Upon an electrochemical stimulation of the O2(g),Pt/YSZ system, two electrochemical 

reactions may take place, i.e. the oxygen evolution/reduction reaction (equation VI-1) taking 

place at the triple phase boundary and the oxidation/reduction of platinum electrode 

(equation VI-2) occurring mainly at the binary Pt/YSZ interface.  

2
2( )

1 2
2 gO O e− −+R  VI-1 

2 2Pt O PtO e− −+ +R  VI-2 

The measured voltammograms is then composed of both contributions.  

 

The amount of the formed PtO is performed by integration of the cathodic peak (insert of 

Fig.  VI-6) considering equation VI-2 then plotted as a function of the anodic reverse 

potential. This represents the amount of platinum oxide formed and stored in the 

electrochemical cell during the anodic polarization (Fig.  VI-7). This figure shows that 

between 50mV and 500mV, a linear relationship is obtained between the amount of formed 

PtO and the anodic reverse potential. Considering that 60% of the YSZ is covered by Pt and 

a Pt monolayer consists of 1015 atoms, the estimated amount of formed PtO corresponds to 

about 0.5 equivalents PtO monolayer at 500mV. 
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Fig.  VI-7 : Evolution of the cathodic charge estimated by peak integration and equivalent 

amount of formed PtO upon the increase of the anodic reverse potenital. T=325oC, pO2=20 kPa, 

v=20mV s-1. 

 

VI.4.2 Influence of the scan rate 

The influence of scan rate on the voltammogram is presented inFig.  VI-8. The experiments 

are performed at 325°C under 20kPa O2 in He in a fixed potential domain (+400mV/-

600mV).  

 

Both in the anodic and cathodic part of the voltammogram, the current increases with scan 

rate. Furthermore, the peak potential for PtO reduction shifts to more negative values as the 

scan rate is increased. As presented in the insert of Fig.  VI-8, a linear relationship is 

obtained between the peak potential of PtO reduction and the logarithm of the scan rate. 

Furthermore, both the anodic current (at 400mV) and cathodic peak current depend linearly 

on the inverse square root of the scan rate. Finally, the cathodic charge of PtO reduction 

decreases with the scan rate.  
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Fig.  VI-8 :Influence of scan rate on the measured voltammograms. (1) 10mV s-1, (2) 20mV s-1, (3) 

30mV s-1, (4) 40mV s-1, (5) 50mV s-1, (6) 75mV s-1, (7) 100 mV s-1, (8) 125mV s-1 (9), 150mV s-1, (10) 

175mV s-1 and (11) 200mV s-1. Insert gives the dependence of the cathodic peak potential on the 

logarithm of the scan rate. T=325°C, pO2= 20kPa. 

 
Fig.  VI-9 : (A) Evolution of the anodic current at 400mV (1) and cathodic peak current (2) with 

the inverse square root of the scan rate, and (B) Scan rate dependence of the cathodic charge 

estimated by peak integration and the equivalent amount of PtO formed. T=325°C, pO2= 20kPa. 

 

(B)(A) 

(1)

(2)

Increasing scan rate 

Increasing 

scan rate 

/ 
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The large separation between the anodic and cathodic peaks (Fig.  VI-8), the variation of the 

cathodic peak potential with scan rate (insert of Fig.  VI-8) and the decrease of the cathodic 

charge (related to PtO reduction) with scan rate (Fig.  VI-9 B) shows clearly that the 

electrode presents a fraction of the Pt/YSZ active sites less accessible (inner surface) to 

reactants. Furthermore, the observed I-ν1/2 dependence (Fig.  VI-9A) gives evidence that 

limitations due to mass transport are involved in this system. 

 

VI.4.3 Influence of anodic holding time 

The anodic holding time of the polarization at 400mV has been varied from 1 to 10 minutes 

by step of 1 minute in a 20% O2 in He atmosphere at 325°C. The subsequent cathodic linear 

potential scans are presented in Fig.  VI-10.  

 

 
Fig.  VI-10 : Linear sweep voltammograms of the sputtered Pt/YSZ electrode. Effect of the 

holding time tH = 0s, 60s, 120s, 180s, 240s, 300s, 360s, 420s, 480s, 540s and 600s, at Era=400mV on 

the first cathodic scan. T=325°C, pO2=20kPa, ν=20mV s-1 

 

Increasing tH 
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The cathodic reduction peak appears at -250 mV, and then increases and shifts to more 

negative potentials with increasing holding times. After 10 minutes of anodic polarization 

the cathodic peak seems to reach saturation. Worthy to notice the increase of current at high 

cathodic potential (i.e. in the domain where oxygen reduction dominates) with increasing 

holding time.  

In order to quantify this behavior of the Pt/YSZ interface under anodic polarization, it is 

proposed to define the current efficiency for PtO formation (ηPtO) by equation VI-3 and for 

oxygen evolution (ηO2) by equation VI-4 during anodic polarization: 

PtO
PtO

Total

Q
Q

η =  
VI-3

2( )
1

gO PtOη η= −  VI-4

where QPtO is determined as shown in Fig.  VI-6 (insert) and QTotal is the anodic charge 

passing through the cell during the anodic polarization step. 

 
Fig.  VI-11 : Effect of the holding time on the current efficiency of PtO formation and O2 

evolution. Ea=400mV, pO2=20kPa, T=325°C. 

 

Fig.  VI-11 shows the effect of holding time at a fixed anodic potential (400mV) on both the 

current efficiency of PtO formation and O2 evolution. The initial rapid decrease of ηPtO and 

ηPtO 

ηO2 

tH
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the concomitant increase of ηO2 suggest that the forming PtO layer acts as barrier to further 

oxide growth without effecting the oxygen evolution reaction. Decreasing the value of the 

holding potential leads to a similar behavior but with a slower kinetic (Fig.  VI-12). 

 

 
Fig.  VI-12 : Effect of the holding time on the current efficiency of PtO formation and O2 

evolution. Ea=100mV, pO2=20kPa, T=325°C. 

 

VI.4.4 Influence of temperature 

Fig.  VI-13 presents the IR-drop corrected linear sweep voltammograms (20mV s-1) obtained 

between 400mV and -700mV at various temperatures after anodic polarization of the 

Pt/YSZ interface at 400mV for 1 hour in 20kPa O2 in He. 

 

For all investigated temperatures, a reduction plateau is firstly obtained at negative potentials 

certainly related to platinum oxide reduction (equation VI-2) mainly at the Pt/YSZ interface 

followed by a rapid increase in current at more negative potentials corresponding to the 

oxygen reduction reaction (equation VI-1) taking place at the triple phase boundary. 

However, increasing temperature has a dramatic effect on both reduction potential and 

current of PtO and O2 reduction (equation VI-2, VI-1).  

 

ηO2 

ηPtO 

tH
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Fig.  VI-13 : Linear sweep voltammetry in O2(g),Ptsputt/YSZ system. Effect of temperature on the 

first cathodic scan after 1 hour of anodic polarization at 400mV. 275°C (1), 300°C (2), 325°C (3), 

350°C (4) and 375°C (5). pO2=20kPa, ν =20mV/s 

 

In fact the reduction plateau potential of PtO is shifted (from -420mV at 275°C to -280mV 

at 375°C) while the plateau current increases (from 10μA at 275°C to 45μA at 375°C). 

Moreover, at higher overpotential the current of O2 reduction increases strongly, this shows 

the dramatic impact of temperature on the oxygen reduction reaction at the tpb. 

 

The linear dependence of both PtO and O2 reduction with respect to the square root of the 

scan rate found previously allows estimating their activation energy. In case of mass transfer 

limitation, supposing a semi-infinite linear diffusion of oxidative species, the faradaic current 

measured in CV is proportional to the square root of the scan rate and the current peak is 

according to equation VI-5: 

 

(4) 

(5) 

Increasing T 

Increasing T 

(2) 

(3) 

(1) 
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1/2
1/2 * 1/220.99p Ox Ox

FI FA D C
RT

α ν⎛ ⎞= ⎜ ⎟
⎝ ⎠

 VI-5 

where A is the electrode surface area, α is the charge transfer coefficient, DOx the diffusion 

coefficient of the O species, COx* the concentration of O in the bulk, ν is the scan rate, F, R 

and T have their usual meanings. 

 

By assuming that the pre-exponential factor of the diffusion coefficient, Dox, does not 

depend on temperature, the dependence of Dox on temperature can be given by an Arrhenius 

type relation (equation VI-6)  

0
aE

RT
Ox OxD D e

−⎛ ⎞
⎜ ⎟
⎝ ⎠=  VI-6 

 

Equation VI-7 can be rearranged as follows : 

2
aE

RT
pI T cst e

−⎛ ⎞
⎜ ⎟
⎝ ⎠= i

 
VI-7 

 

Fig.  VI-14 presents the linear dependence of ln(Ip2T) on the inverse of the temperature for 

both platinum oxide and oxygen reduction reaction. From the slopes, activation energies of 

PtO reduction and O2 reduction reaction are estimated to be 113kJ mol-1 and 190kJ mol-1 

respectively. These values show clearly that the O2 reduction reaction is more sensible to the 

increase in temperature than the PtO reduction. In fact at high temperatures ( >375°C) the 

current due to PtO reduction is completely hidden by the oxygen reduction reaction. 

 

To estimate the influence of temperature on the kinetics of PtO formation, the anodic 

holding time of the Pt/YSZ interface at 400mV has been varied from 1 to 10 minutes by 

steps of 1 minute in 20% O2 in He atmosphere in the temperature range between 250°C and 

375°C. For all temperatures and holding times only one reduction peak is observed. 

Furthermore, the peak current and peak potential are strongly influenced by both 

temperature and holding time. Worthy to notice the increase of current at high cathodic 
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potential, (i.e. in the domain where oxygen reduction dominates), with increasing holding 

time.  

 
Fig.  VI-14 : Determination of activation energy using equation VI-6. (1) PtO reduction, (2) O2 

reduction. 

 

The charges involved in the reduction of PtO formed during the anodic polarization step are 

estimated by integration of the cathodic peak and plotted versus the anodic holding time 

(Fig.  VI-15) and ln(tH) (insert). The linear Q-ln(t) dependence obtained at high holding 

potential (Ea = 400mV) gives strong evidence that the PtO growth may be related to a Mott 

& Carbrera or place exchange mechanism. However, worth to mention that at lower holding 

potential (Ea = 100mV), a Q-t-1/2 dependence is observed, which gives evidence that 

diffusion and Wagner oxidation theory should be considered. 

(2) 

(1) 



 Electrochemical investigation 

136 

 
Fig.  VI-15 : Evolution of QPtO as a function of anodic holding time. 250°C (1) , 275°C (2), 300°C 

(3), 325°C (4), 350°C (5), Ea = 400mV pO2=20kPa Insert : Plot of QPtO as a function of ln(t) 

 

Fig.  VI-16 displays the decrease of platinum oxide formation efficiency, ηPtO (equation VI-

5), with increasing temperature. This decrease of ηPtO is accompanied with a concomitant 

increase of ηO2 according to equation VI-6.  

 

As shown in Fig.  VI-17, decreasing the potential to 100mV leads to a slower kinetics as 

previously expected. Nevertheless, holding the potential at 100mV leads to a similar decrease 

of the current effiency ηPtO with both increasing holding time and temperature.  

 

Increasing T

(5) 

(3) 
(4) 

(2) 
(1) 
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Fig.  VI-16 : Evolution of ηPtO as function of anodic holding times. 250°C (1) , 275°C (2), 300°C 

(3), 325°C (4), 350°C (5), Ea=400mV, pO2=20kPa 

 

 
Fig.  VI-17 : Evolution of ηPtO as function of anodic holding times. 250°C (1) , 275°C (2), 300°C 

(3), 325°C (4), 350°C (5), Ea=100mV, pO2=20kPa 

 

Increasing T 

Increasing T 

th
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VI.4.5 Influence of oxygen partial pressure, pO2 

The influence of oxygen partial pressure pO2 on the voltammograms of the Pt/YSZ electrode 

was studied at 450°C. In this measurements the oxygen partial pressure, pO2, has been 

determined by analysis the gas phase using a mass spectrometer. Furthermore the potential 

of the reference electrode has been corrected using the Nernst equation VI-8. 

WR WR
2

2

O
O(20 kPa)  ( ) ln4 20 kPa

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

pRTE E p F
 VI-8 

where EWR(pO2) is the experimental potential difference between the working and the 

reference electrodes exposed to the varying pO2. EWR(20 kPa) is the corrected working electrode 

potential. 

 
Fig.  VI-18 : Effect of oxygen partial pressure on the voltammogram measured between 400mV 

and -600mV. (1) 10 Pa, (2) 20 Pa, (3) 350 Pa, (4) 2.5 kPa, (5) 20 kPa. T=450°C, ν =20mV/s 

 

As shown in Fig.  VI-18, increasing pO2 in the gas phase leads to an important change of the 

voltammograms. In fact, increasing the oxygen partial pressure results in a dramatic increase 

of the O2 reduction reaction without a sensible effect of the PtO reduction current. 

Increasing pO2 
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V I . 5  G e n e r a l  d i s c u s s i o n  

The morphological characterization of the thermally pretreated sputtered Pt electrode 

revealed a porous (111) oriented platinum film presenting a percolated macroporous 

structure with holes of few hundred μm diameter at the YSZ electrolyte surface. An 

estimation of the platinum coverage lead to an active surface of 60% of the geometric 

electrode surface area. Similarly the tpb length was estimated to be of 370m/cm2. 

 

The electrochemical investigation showed that upon anodic polarization two parallel 

reactions take place, i.e oxygen evolution and platinum oxide formation.  

- Formation of PtO (equation VI-2) 

- Oxygen evolution (equation VI-1) 

A current efficiency for PtO formation, ηPtO, is introduced to reflecting the current 

contribution to platinum oxidation. The latter is found to be relatively close to unity at initial 

time of polarization (Fig.  VI-16), but a rapid auto inhibition of platinum oxide growth is 

observed while the side oxygen evolution reaction is not affected.  

 

The effective rate of platinum oxide formation may be estimated according to the following 

equation : 

eR
2 2

eff PtO
ff

I I
F F

η
= =

i  VI-9 

where I is the applied current during the anodic polarization and Ieff is the effective current 

for PtO formation. 
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Fig.  VI-19 : Effective rate of PtO formation as function of the inverse of the square root of the 

anodic holding time for different temperatures. 300°C (1), 325°C (2), 350°C (3) Ea = 100mV, 

pO2=20kPa 

 

The t-1/2 dependence of the effective rate of PtO formation Reff observed at 100mV (Fig. VI-

23) suggested a Wagner type parabolic growth for the electrochemical formation of PtO. A 

similar approach to that proposed in the previous chapter allows to write : 

1/2
( , )

PtO
T

dQ k t
dt η

−=  VI-10 

with  

( , ) 0

aE
RT

Tk K eη

⎛ ⎞−⎜ ⎟
⎝ ⎠=  VI-11 

 

An Arrhenius plot alows to estimate the apparent activation energy of the PtO formation at 

100mV to give Eact = 146 kJ/mol. 

 

 

(1)

(3) 

(2) 

Increasing T 
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Fig.  VI-20 : Effective rate of PtO formation as function of the inverse of the anodic holding time 

for different temperatures. 250°C (1) , 275°C (2), 300°C (3), 325°C (4), 350°C (5) Ea = 400mV, 

pO2=20kPa 

 

Fig.  VI-20 shows the variation of the estimated effective rate of PtO formation with the 

inverse of the anodic holding polarization time at 400mV. For each temperature a linear 

relationship passing through the origin is observed. The PtO growth appears then to follow 

a logarithmic type growth as proposed by Conway in aqueaous electrolyte and by Mott & 

Cabrera in their electrooxidation model. The following kinetic regime is then observed : 

1
( , )

PtO
T

dQ k t
dt η

−=  VI-12 

with  

( , ) 0

aE
RT

Tk K eη

⎛ ⎞−⎜ ⎟
⎝ ⎠=  VI-13 

An Arrhenius plot alows to estimate the apparent activation energy of the PtO formation at 

400mV to give Eact = 29 kJ/mol. 

(5)

(4)

Increasing T

(1)

(2) 

(3)
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V I . 6  P r o p o s e d  m o d e l  

The model of platinum electrochemical oxidation proposed herein, considers an approach 

similar to the electrochemical interpretation of Wagner’s theory given by Hoar & Price [11] at 

low overpotential and considers the Mott & Cabrera mechanism [12-15] at high overpotential. 

In addition, the model takes into account the state of the art EPOC backspillover theory 

implying the migration of O2- promoter at the Pt/gas surface. Fig.  VI-21 illustrates the 

mechanism proposed to take place upon an anodic polarization of such a cell.  

 
Fig.  VI-21 : Schematic representation of the oxidation process during anodic polarization of 

theplatinum  sputtered electrode 

 

Initially the electrode is assumed as a purely metallic platinum film lying on the YSZ 

electrolyte. By applying an anodic polarization platinum oxidation takes place at the Pt/YSZ 

interface in two steps, i.e. the oxidation of Pt to Pt2+ (equation VI-14) and the subsequent 

instantaneous combination of Pt2+ and O2- originating from the electrolyte (equation VI-15).  
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2 2Pt Pt e+ −→ +  VI-14
 

2 2
/Pt YSZPt O PtO+ −+ →  VI-15

 

This occurs with a high ηPtO within the first times of polarization but slows down rapidly to 

reach a saturation amount of PtO formed at the Pt/YSZ interface. This oxide layer acts then 

as a barrier to further oxide formation. However, a very slow process of PtO formation 

toward the platinum bulk is suggested to take place upon prolonged polarization time 

(reaction VI-16). 

/Pt YSZ bulkPtO PtO→  VI-16

According to litterature, oxygen penetration into the oxide scale is the most probable rate 

determining step of oxidation mechanism. The Pt2+ migration model proposed by Wagner 

appears to be valid only at low overpotential. A process of oxygen diffusion across PtO 

proposed by Mott & Cabrera [15] or a place exchange mechanism between platinum and 

strongly adsorbed oxygen proposed by Wilkinson [16] are more likely to be observed in the 

higher potential domain. However, experimentally this process of long term PtO formation 

toward the Pt bulk electrode appears to be very slow and only significant after long lasting 

anodic polarization of the Pt working electrode. In this case platinum bulk may be 

considered as a long term oxygen storage location into the Pt/YSZ system. Moreover, 

according to the theory Electrochemical Promotion Of Catalysis [17-19], oxygen promoters 

originating from the triple phase boundary populates the Pt/gas interface during the anodic 

polarization (reaction VI-17).  

/tpb Pt gasPtO Pt O→ i  VI-17

The nature of those oxygen promoter species is subject to controversy but all authors refer 

to strongly bonded oxygen at the Pt/gas interface. As this species is formed at the triple 

phase boundary before populating the Pt/gas interface, it seems reasonable to suppose that 

oxygen bonding at the Pt/gas interface and at the Pt/YSZ interface are of the same nature. 

However, worth to mention that this migrating oxygen species should be in equilibrium with 

the oxygen present in the surrounding gas phase (reaction VI-18) in agreement with the long 

residence time of the promoters reported by the authors of the EPOC field. 
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/ 2( )Pt gas gPt O Pt O+i R  VI-18

Finally the side reaction of oxygen evolution (equation VI-19) taking place at the tpb is 

proposed to be not firmly affected by the formation of a thin platinum oxide at the binary 

Pt/YSZ interface as electrons may cross rapidly the oxide layer formed there, by tunneling 

effect to the Pt electrode, while gaseous oxygen will evolve to the gas phase. 

2
2( )

1 2
2 gO O e− −→ +  

VI-19

 

V I . 7  C o n c l u s i o n  

In this chapter, morphological characterization of the sputtered platinum electrode allowed 

to estimate the electroactive surface area of the platinum film as well as its structural 

properties. Subsequent electrochemical investigation, performed by cyclic voltammetry, 

allowed to identify two electrochemical process taking place at the electrode/electrolyte 

interface. The efficiency of the platinum oxidation reaction was estimated and correlated to 

Wagner‘s theory of metal oxidation at low holding potential and to place exchange 

mechanism at higher potential to propose a model of the electrochemically induced 

oxidation of platinum. 
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CHAPTER VII -   SO LID ELECTROCHEMICAL MASS  

SPECTRO METRY (SEMS)   

 

In the field of electrochemical promotion of catalysis (EPOC) several investigation devices 

are based on the coupling of analytical techniques to electrochemistry. However, most of 

them are performed under atmospheric pressure conditions where the promotion 

mechanism is still subject to controversy. In order to obtain a clearer mechanistic picture of 

the phenomenon, Imbihl et al. proposed to investigate EPOC under high vacuum (HV) 

conditions. Surface analysis tools like PEEM and SPEM were combined with success to 

electrochemical methods allowing the authors to directly observe the migration of O2- 

promoters at the catalyst surface during anodic polarization. Few years later, Vayenas et al. 

proposed an EPOC investigation of CO oxidation using labeled oxygen confirming the 

EPOC sacrificial promoter model suggested for atmospheric conditions.  

In order to shed more light on the intriguing P-EPOC behavior of Pt/YSZ interface 

reported in this work, a new probe device, coupling electrochemistry and mass spectroscopy 

techniques, is developed for the investigation of a solid electrochemical cell under high 

vacuum conditions (HV). Two configurations are realized, single and dual chamber type 

reactors, for the investigation of both the electrochemical and electrocatalytical behavior of 

the Pt/YSZ system. Compared to a conventional setup we can readily select the pressure 

(down to 10-8mbar) and access to much shorter response time (less than 1s). 
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V I I . 1  I n t r o d u c t i o n  

Coupling electrochemistry to another analytical technique represents a constant effort in 

the field of research as it allows to gain valuable information for the elucidation of complex 

electrochemical mechanisms. Surface analysis techniques, e.g. Auger electron spectroscopy, 

X-ray photoelectron spectroscopy (XPS) [1,2], scanning photoelectron spectroscopy (SPEM) 

[3-5], photoelectron emission microscopy (PEEM)[4-7], scanning tunneling microscopy 

(STM), are usually coupled to electrochemistry to investigate electrochemical deposition and 

adsorption at the electrode while spectroscopic techniques, e.g. infrared-spectroscopy, gas 

chromatography (GC) [8-9], mass spectrometry (MS)[8-11], may be coupled to monitor 

(qualitatively and quantitatively) the products of an electrochemical reaction. Relatively 

recently, the field of aqueous electrochemistry yielded important insight from the 

development of differential electrochemical mass spectrometry (DEMS) technique allowing 

online detection of electrochemically formed products and intermediates [12,13]. 

Here, a new probe device is built to perform electrochemical measurements (under HV 

conditions, while monitoring the electrochemically formed products. Actually, a 

microreactor configuration equipped with a gas analyser quadrupole mass spectrometer 

(QMS) is proposed for the investigation of solid state electrochemical systems. The high 

sensitivity and the fast detection response of QMS analyzer appeared as key parameters for 

the elaboration of such a solid electrochemical mass spectrometry investigation tool (SEMS).  

 

V I I . 2  E x p e r i m e n t a l  s e t u p  

Two different HV setup configurations are proposed, a single chamber type configuration 

(Fig. VII-1 a), designed for the electrochemical investigation of a metal electrode supported 

on a solid electrolyte, Pt/YSZ electrochemistry, and a dual chamber type configuration (Fig. 

VII-1 b), adapted to the investigation of CO oxidation over Pt/YSZ catalyst.  
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a) Single chamber configuration 

 
b)  Dual chamber configuration 

 

 
 

Fig. VII-1 : Scheme of the high vacuum experimental setup. (a) single chamber configuration, 

(b) dual chamber configuration 
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These two configurations mainly differ by the electrochemical reator and the gas supply to 

the system. The HV chamber, heating system, current application/measurement and MS gas 

sampling are the same (Fig. VII-2). The general setup consists of two key parts namely the 

electrochemical reactor and the mass spectrometric equipment placed in the HV chamber. 

 

VII.2.1 HV chamber and vacuum setup 

The whole HV chamber (VHV = 10 L) is maintained typically at 10-8 mbar by a pumping 

system composed of a turbomolecular pump (Pfeiffer TMU 521, 520 L/s) and a second 

molecular pump (Peiffer TMU 071P, 60 L/s), which are connected to a rotary pump (Trivac 

D16B, 16 m3/h). The total volume and the effective pumping speed of the system yields to a 

time constant of  20ms.  

 

A manipulator allowing 3 translational and 2 rotational degrees of freedom supports the 

heating system and the electrochemical reactor containing the sample. This manipulator is 

fixed on the top of the device positioning the sample in the middle of the HV chamber. The 

mass spectrometer equipment is placed on the side and can be moved next to the 

electrochemical reactor during the experiments. The gases used as reactants (O2 (46 purity) 

and CO (60 purity) carbagas certified) are introduced in the system via HV leak valves and 

capillary gas lines. A pressure gauge (Balzer CPG 300), added on the other side of the device, 

allows measuring the total pressure in the HV chamber. 
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Fig. VII-2 : Scheme of the high vacuum experimental setup. 1: main chamber; 2: manipulator and 

support, 3 : electrochemical reactor 4: mass spectrometer and sniffer, 5 : pressure gauge and 6: 

molecular pump.  

 

VII.2.2 Heating system 

The scheme of the heating system is shown in Fig. VII-3. The sample is mounted in a 

copper reactor block. The block is fixed to a base copper piece which is heated by radiation 

and electron bombardement from a tungsten filament (12V, 50W). During the heating, the 

electrons emitted by the filament are confined in the base copper piece ensuring that they all 

contribute to its heating and do not perturbate the electrochemical measurements.  
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Fig. VII-3 : Scheme of the heating system, cross view. 1: manipulator holder; 2: filament, 3: base 

cupper piece connected to thermocouple K-type, 4 : electrochemical reactor, 5: sample and 6: 

electrical connections.  

 

In addition, two high voltage power sources (Delta Electronika ESO 300-0.45) are 

connected to the base copper piece and to the filament. This tuning system, operating at 

about 500V, is used to create a strong electric field which accelerates the electrons emitted 

by the filament, heating efficiently the reactor because of the excellent heat conductivity of 

copper. As a consequence, the whole contains of the reactor (sample and reactive gas 

mixture) is homogeneously heated by radiation up to 500°C with small deviation from the 

imposed reactor temperature. 

 

VII.2.3 Mass spectrometric equipment 

The mass spectrometric equipment, designed herein, is similar to the one used and 

characterized by Valloton during his PhD work [14]. A residual gas analyser (Pfeiffer, 

Prisma200) quadrupole MS is enclosed in the so called “sniffer” composed of multi-cylindric 

stainless steel tubes (Fig. VII-4). The “sniffer” aims to collect maximum of gases desorbing 

from the sample surface. Its unique front opening (3.5mm diameter) is placed in the vicinity 

of the gas feed to be analysed and its cone shape ensures the diffusion of non collected 

molecules away from the electrochemical reactor, i.e. avoides gas back mixing.  

3

1

6

54 

2 

1.5 cm 
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Fig. VII-4 : Scheme of the sniffer. 1: cone shape collector; 2: inlet gases capillary tubes, 3 : 

quadrupole MS, 4: differential pumpimg.  

 

In addition, reactant gases are introduced by two gas capillary tubes built on both sides of 

the “sniffer”. For the single chamber type reactor configuration, the oxygen gas source is 

released in the main HV chamber in order to set a similar pO2 value in both anodic and 

cathodic chamber of the reactor (electrochemical investigation). On the contrary, for the 

dual chamber type reactor configuration, reactant gases are directly transfered to the anodic 

and to the cathodic chambers by connecting the capillary tubes to the gas inlet of 

electrochemical cell with Teflon tubes avoiding gas loss into the HV main chamber (catalytic 

measurements).  

 

The volume of the ionic detection chamber is connected to a molecular pump (PS = 60 L/s) 

to ensure a continuous forced convection of analysed gases.  

The time constant detection τ of a given species is directly given by the ratio of the 

ionization chamber volume to the differrential pumping speed.  

where τ is the detection time constant, V0 is the volume of the ionisation chamber and PS is 

the actual pumping speed of the ionic chamber. Worth to notice that due to the complex 

0V
PS

τ =  VII-1 

1 

2 34 

4 cm 
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multi-section structure of the whole “sniffer”, its actual efficient pump speed is modified 

according to equation VII-2: 

∑= )/1(/1 iCPS  VII-2 

where Ci representing the conductance of each section of the sniffer, is estimated according 

to the Molecular flow theory [15] (equation VII-3).  
1/2

2i i
X

RTC KS
Mπ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 VII-3 

where K is the Clausing’s factor , S the section of the sniffer entrance, T the temperature, MX 

the molecular mass of the analysed gas. Considering the so estimated pumping speed (0.63 

L/s) and the volume of the gaz collector (V0 = 0.38 L), the detection time constant is 

determined to be 0.6s. 

 

VII.2.4 Electrochemical reactors 

As previously mentioned, two types of reactor were designed in this work, a single chamber 

type reactor well suited for electrochemical investigation of the Pt/YSZ system and a dual 

chamber type reactor adapted to catalytic investigation (EPOC and P-EPOC).  

VII.2.4.1  Single chamber type reactor 

The electrochemical reactor is composed of two copper pieces (Fig. VII-5). The sample is 

loosely fixed in the middle of the electrochemical reactor with an inert ceramic paste 

(Feuerfestkitt, Firag AG), differentiating a working compartment (containing WE and 

thermocouple, Vworking=0.7 cm3) and a reference compartment (containing CE and RE, 

Vreference=0.5 cm3) but permitting free gas circulation in the whole reactor. The sides of each 

compartment present six openings (3mm diameter holes), two holes were isolated by 

alumina ceramic tubes and were used for the output of electrical connections (gold wires) 

connected to the electrodes and of the thermocouple fixed at the Pt/YSZ sample surface. 

The four other holes ensure the free circulation of gases in both compartments, i.e. the 

reactor is similar to a single chamber reactor as the gas inlet is located in the main HV 
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chamber. The gas analysis of the working compartment is performed via an additional 3mm 

diameter hole placed on the top face of the reactor. 

The pumping speed of the reactor, determined by the gas flow at the openings, is estimated 

to be 0.64 L/s. Considering the volume of the reactor, this results in a time constant of 1ms, 

much faster than the vaccum system and we can consider the reactor in constant 

homogeneous pressure conditions (CSTR). 

The temperature is measured by two (NiCr-Ni) thermocouples, connected to the sample 

next to the working electrode and connected to the reference compartment of the reactor 

respectivelly.  

 

 

 
Fig. VII-5 : Scheme of the electrochemical reactor. 1: bottom part; 2: top part, 3 : sample 4: holes 

ensuring both connection and free gas circulation 5 : hole to MS detection. WE: working 

electrode, CE: counter electrode, RE: reference electrode. 

 

VII.2.4.2 Dual chamber type reactor 

The sample is sealed gas tight in the reactor with an inert ceramic paste (Feuerfestkitt, Firag 

AG), separating two independent compartments: the working compartment (containing WE 
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and thermocouple, Vworking=0.7 cm3) and the reference compartment (containing CE and RE, 

Vreference=0.5 cm3) (Fig. VII-6). The working compartment is efficiently pumped by seven 

openings (3mm diameter holes) while the reference compartment is effectively sealed since 

the openings are used as feedthroughs for the gas inlet and electrical connections. In fact, 

the direct feed of reactant is ensured by stainless steel inlet gas lines (2.8 mm diameter) 

connected to two openings of the working compartment (O2 and CO) and to one opening 

of the reference compartment (O2). Temperature monitoring and gas analysis of the dual 

chamber type reactor is similar to the one previously described for the single chamber type 

reactor. 

 

The pumping speed of the reactor is determined to be 0.9 L/s which correspond to a reactor 

time constant of 0.8ms (CSTR).  

 

 
Fig. VII-6 :: Scheme of the dual chamber electrochemical reactor. 1: reference compartiment; 2: 

working compartiment, 3 : sample 4: holes ensuring electrical and thermocouple connections, 5 : 

holes ensuring free gas circulation 6 : top hole facing the entrance of the sniffer (MS detection), 7 

CO inlet gasline, 8 : O2 inlet gasline.  
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During experiments involving electrochemical measurements, worth is to notice that in this 

reactor, the actual measured potential difference ΔUWR does not correspond to the cell 

overpotential η because the oxygen partial pressure present in the two compartments are 

differents. To get the value of η, the potential of the reference electrode has to be corrected 

using the Nernst equation VII-4. 

WR
2

2
2

O
O

O
 ( ) ln4

working
working

reference

pRTU p F p

⎛ ⎞
⎜ ⎟η = Δ +
⎜ ⎟
⎝ ⎠

 VII-4 

where ΔUWR(pO2) is the experimental potential difference between the working and the 

reference electrodes exposed to different pO2 and η is the working electrode overpotential. 

 

VII.2.5 Preparation of the Pt/YSZ samples 

Commercial YSZ 8%mol pellet (Technox 802, Dynamic Ceramic Ltd) were used as substrate 

on which platinum electrode was deposited by magnetron sputtering in inert atmosphere 

(Ar) at room temperature. Direct current (dc) mode was used with a discharge of 330 V at an 

argon pressure of 10−2 mbar. Under these conditions, a 1 μm thick Pt electrode was 

deposited with a deposition rate of 0.09 nm s−1 on the YSZ pellet, as determined by 

profilometric measurement (Alphastep, Model 500) of the film deposited on smooth silicon 

samples processed simultaneously.  

For electrochemical investigation (single chamber configuration) a Pt/YSZ/Pt cell is 

constructed so platinum counter and reference electrodes have been deposited on the 

reverse side of the pellet using the same sputtering procedure (Fig. VII-7).  
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Fig. VII-7 : Placement and dimensions of the Pt electrodes prepared by sputtering. WE: working 

electrode; CE: counter electrode; RE: reference electrode. 

 

On the contrary, catalytic measurements (dual chamber configuration) are performed over a 

Pt/YSZ/Au system. This ensures the catalytic inertness of gold counter and reference 

electrodes which are deposited on the other side of the pellet by application of metalorganic 

paste (Gwent Electronic Materials Ltd. - C70219R4) followed by calcination at 550°C. 

Before any investigation, the cells have been treated at 700°C in 20 kPa O2 during 4 hours in 

order to stabilize the platinum films. 

 

The electrode size is 7 x 5 mm giving a geometric surface of 0.35 cm2. The working and 

counter electrodes were located in a symmetrical face-to-face arrangement on the opposite 

sides of the YSZ pellet. This geometry ensured a symmetrical current and potential 

distribution in the cell. 

 

V I I . 3  R e s u l t s  

VII.3.1 Heating system 

Upon increasing temperature, the heating system revealed a good homogeneous heating of 

the sample (Fig VII-8) with little deviation from the imposed temperature, i.e. Treactor. One 
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should mention that in consequence, during the heating , the open circuit potential of the 

Pt/YSZ/Pt cell remained at 0V.  

 

 
Fig. VII-8: Linear dependence of temperature of the sample on the temperature of the copper 

reactor. Dashed line is experimental linear regression while solid line displays the ideal case 

where Treactor= Tsample.  

 

VII.3.2 QMS gas analyzer calibration 

The online analysis of the gas composition consist of measuring the ionic current of each gas 

with the quadrupole mass spectrometer. The ion current intensity, Ic, being directly 

proportional to the gas pressure, sniffer
Xp , in the sniffer, one may write: 

Sniffer
X X XI K p=  VII-5 

where KX is a constant containing all mass spectrometer settings and ionization probability.  

 

Calibration of the mass spectrometer, i.e. determination of K, can be performed by removing 

the electrochemical reactor from the sniffer gas inlet and stop the differential pumping to 
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insure a homogeneous pressure in the whole HV chamber and in the “sniffer”. In this 

conditions, the relationship between ion current, IX, and analysed gas pressure, HV
Xp ,  in the 

HV chamber is given as:  
0 HV

X X XI K p=  VII-6 

where the constant KX0 coefficient, similar to K, contains all MS parameters under stationary 

conditions and can be estimated experimentally (Fig. VII-9, Table VII-1). 

 

 
Fig. VII-9: Linear relation between the HV chamber pressure and the measured ionic current 

intensity of the calibrated gas. (1) O2(g), (2) CO(g) and (3) CO2(g)  

 

2

0
OK  4.5.10-8 A Pa-1 

0
COK  8.10-8 A Pa-1 

2

0
COK  5.10-8 A Pa-1 

Table VII-1 : Calibration coefficient KX0 for O2(g), CO(g) and CO2(g) 
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VII.3.3 SEMS calibration 

The gas analysis of the working compartiment is performed through an additive 3mm 

diameter hole placed on the top face of the reactor. Under anodic polarization O2- ions 

migrate to the Pt/YSZ interface where they electrochemically react according to reaction 

VII-7 at the Pt/YSZ interface and according to reaction VII-8 at the triple phase boundary: 
2
( ) ( )( ) 2s sO Pt s PtO e− −+ → +  VII-7

2
( ) 2( )2 4s gO O e− −→ +  VII-8

However, only O2(g) is released into the gas phase during this process, i.e. O2(g) is the only 

product wich may be sampled by the MS. In addition reaction VII-8 dominates largely at 

high overpotential [13]. In this domain, assuming 100% current effieciency for the oxygen 

evolution reaction taking place at the tpb, the electrochemical oxygen flow produced by an 

anodic polarization of the working electrode is related to the faradaic current flowing 

through the Pt/YSZ/Pt cell as follows: 

2 4
fsample

O

I
J

F
=  VII-9 

where If is the faradaic current imposed to the cell, 
2

sample
OJ is the flow of electrochemically 

formed oxygen flow and F the Faraday constant.  

Nevertheless, only a fraction of the gas coming out of the working compartiment goes in the 

“sniffer”. One defines the total efficiency N by the ratio of the amount of species detected 

by the MS to the total amount of species produced electrochemically.  

 

2 2

sniffer sample
O OJ NJ=  VII-10 

where JO2sniffer is the oxygen flow entering the sniffer, N the transfer effieciency and JO2sample 

the electrochemically produced oxygen flow.  

 

Considering the relation between the oxygen pressure in the sniffer and the sniffer incoming 

oxygen flow :  
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22O

sniffer sniffer
O

RTp J
PS

=  VII-11 

and so 

2 2 2

0 sniffer
O O O

RTI K J
PS

=  VII-12 

Combining equations VII-10 and VII-12 one can finally write equation VII-13. 

22

0

4O

f
O

IRTI NK
PS F

=  VII-13 

where, IO2 is the oxygen ion current intensity measured by MS, If is the faradaic current 

imposed to the cell by the galvanostat, K0 the MS calibration constant, F the Faraday 

constant and N is the total efficiency.  

A plot of IO2 vs If allows the determination of N, which is estimated to be 0.098 for this 

setup (Fig. VII-10).  

 

 
Fig. VII-10: Dependence of oxygen ionic current intensity on the applied faradaic current. 

Application of the current is performed during 60s under background oxygen partial pressure of 

10-7 mbar at T=400°C. Single chamber reactor (1) dual chamber reactor (2). 

(1) 

(2) 
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One should notice that the total effieciency N is composed of a collection efficiency, C, and 

a detection effieciency, D.  

The collection efficiency reflects the ratio of product flow guided to the “sniffer” entrance, 

2

ReTop actor
OJ , to the total electrochemically formed oxygen flow

2

sample
OJ .  

2

2

Re

0.2
Top actor
O

sample
O

J
C

J
= =  VII-14 

This factor depends on the reactor time constant, i.e. on its design. 

 

The detection efficiency reflects the ratio of the mass spectroscopically detected oxygen flow 

in the “sniffer” 
2

sniffer
OJ  to the product flow guided to the “sniffer” entrance, 

2

ReTop actor
OJ : 

 

2

2

Re 0.49
Sniffer
O

Top actor
O

J
D

J
= =  VII-15 

This factor depends on the detection time constant of the “sniffer” and of its distance to the 

top hole of the reactor. 

 

A similar calibration is performed for the dual chamber type reactor, e.g. under background 

pressure of oxygen in both compartments (pO2 = 10-7 mbar). Doing so, the oxygen ionic 

current recorded with the MS IO2 is related to the faradaic current imposed with the 

galvanostat If, allowing to determine the total detection efficiency N=0.069 for the dual 

chamber type reactor composed of the collection efficiency C= 0.14 and the detection 

efficiency D= 0.48. 

 

V I I . 4  D i s c u s s i o n  

The elaboration of a new probe accessory for the investigation of solid state electrochemical 

systems under HV condition leads to the development of two differential solid 

electrochemical mass spectrometry apparatus. The main characteristic of these devices are 
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summarized in Table VII-2 which gives the relevant parameters of the different constituting 

parts of each configuration, i.e. vaccum system, heating system,  mass spectrometry analysis, 

reactant gas supply and electrochemical reactor. 

The heating system was carefully designed in order to avoid any temperature gradient in the 

YSZ electrolyte, i.e. to insure that in the single chamber reactor OCV = 0V. In fact because 

of the HV conditions, the only heat transport mechanism which can be used to heat the 

sample is radiation (convection being inexistent under HV and thermal conductivity of YSZ 

being too low, i.e. 2.5 W.m-1.K-1 [22]). The use of a single filament placed in the vicinity of 

the working electrode, as commonly seen in most UHV/TPD experimental setups [3-11], 

would create a large temperature gradient between the two sides of the sample. Herein, the 

sample was heated indirectly by the reactor which acts as a radiative heat source allowing to 

supply a homogeneous heating for the sample up to 500°C. Worth to mention that, as a 

consequence, adding openings at the reactor sides, e.g. to decrease the reactor time constant, 

decreases dramatically the performance of the heating system. Another important limitation 

of the heating system concerns the oxygen partial pressure in the HV chamber, which should 

be kept below 10-5 mbar to avoid the combustion of the tungsten filament, i.e. the break of 

the heat source. 

The two electrochemical reactors realized, single and dual chamber type, features low-

volume of reactants and very small time constant (about 1ms) allowing a fast sampling of the 

electrochemical products. Because of their microreactor properties, these two reactors 

presented a low collection efficiency (0.2 for the single chamber type and 0.14 for the dual 

chamber type). However, this collection efficiency parameter, which might be easily 

improved by sealing some openings on the sides of the reactors, should be intentionally kept 

low because of the MS analysis limitations. 

Similarly, because of the limitation of the QMS detector which should not be exposed to 

high pressure (<10-5mbar), only a small fraction of the electrochemical product must be 

submitted to the MS gas flow analysis to prevent the break of MS filament, i.e. the collection 

effieciency of the reactor must be small. 
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  Single chamber 

configuration 

Dual chamber 

configuration 

Vacuum system 

 Volume 10 L 10 L 

Pumping speed 520 L.s-1 520 L.s-1 

Time constant 20 ms 20 ms 

Minimum attainable pressure 10-7 mbar 10-7 mbar 

Heating system 

 Tsample=k0Treactor k0=0.93 k0=0.9 

Main power supply 7V/3A 7V/3A 

Tunning electrical potential 500V 550V 

Tsamplemax 500°C 500°C 

Maximum oxygen pressure  10-5 mbar 10-5 mbar 

MS analyser 

 Ionisation volume 0.38 L 0.38 L 

Pumping speed 0.63 L s-1 0.63 L s-1 

Time constant 500 ms 500 ms 

Potential applied to the filament 800 V 800 V 

Limit detection pressure  10-5 mbar 10-5 mbar 

2

0
OK  4.5×10-8 A Pa-1 4.5×10-8 A Pa-1 

0
COK  - 8.10-8 A Pa-1 

2

0
COK  - 5.10-8 A Pa-1 

Reactant gas supply 

 O2 (46) garbagas certified HV chamber Reactor (both sides)

CO (60) garbagas certified - Working compartiment

Electrochemical reactor Single chamber Dual chamber

 Working compartiment volume 7×10-4 L 7×10-4 L 

Reference compartiment volume 5×10-4 L 5×10-4 L 

Pumping speed 0.64 L s-1 0.9 L s-1 

Time constant 1 ms 0.8 ms 

Collection efficiency 0.2 0.14 

Total efficiency 0.098 0.069 

Applied/measured potential ΔUWR = η ΔUWR ≠ η 

Table VII-2 : Main parameters and characteristics for each configuration. 
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V I I . 5  C o n c l u s i o n  

A new probe device, coupling electrochemistry and mass spectroscopy techniques, is 

developed for the investigation of a solid electrochemical cell under high vacuum conditions 

(HV). Two configurations are proposed, single and dual chamber type reactors, for the 

investigation of both the electrochemical and electrocatalytical behavior of the Pt/YSZ 

system. At this molecular level, the fast detection response of the herein built solid 

electrochemical mass spectrometry (SEMS) device allowed to observe on line the 

electrochemically formed oxygen during an anodic polarization with a total efficiency of 

0.11. Worth to mention that this low efficiency is related to a poor collection efficiency 

induced by the low time constant of the electrochemical microreactors designed. 
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CHAPTER VIII -   Pt/Y SZ ELECTROCHEMICAL 

INVES T IGATION UNDER HV 

In this chapter, the Pt/YSZ interface is investigated under high vacuum (HV) conditions in 

absence of oxygen (pO2=10-7mbar) at 400°C. Transient and steady state electrochemical 

techniques are coupled to mass spectrometric gas analysis using the single chamber type 

configuration of the previously described SEMS monitoring device. 

Under anodic polarization, both platinum oxidation and oxygen evolution reaction are 

identified. It turns out that PtO was present at both Pt/YSZ and Pt/gas interface according 

to two different mechanisms. The PtO formation taking place at the Pt/YSZ interface is 

electrochemical process and follows a parabolic growth law while the other one involves 

diffusion of PtO formed at the triple phase boundary toward the Pt/gas interface. In fact, it 

is proposed that the side oxygen evolution reaction stabilizes thermodynamically the PtO 

diffusion toward the gas exposed interface during the anodic polarization. 

Under cathodic polarization, the lack of oxygen in the gas phase induced the reduction of 

the YSZ solid electrolyte which acts as oxygen source for the formation of O2- ions 

migrating to the anode. In fact, the reaction front of zirconia reduction moves in direction of 

the anode and creates an electron conductive zone in the YSZ subsurface at the cathode. 
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V I I I . 1  I n t r o d u c t i o n  

In this work a new electrochemical technique has been developed for the electrochemical 

investigation of the Pt/YSZ interface under HV condition. In this technique an 

electrochemical perturbation is imposed to the Pt/YSZ interface. This perturbation can lead 

to the formation of O2(g) which is analyzed online by MS. The aim of the experiment is to 

obtain information on the stability of YSZ solid electrolyte toward cathodic reduction and 

on the kinetics of the involved redox couples (O2/O2-, PtO/Pt). The response time of the 

system is 0.5s.  

Two main perturbation-MS analysis systems have been used : 

● Perturbation of the Pt/YSZ interface by cyclic voltammetry (CV) with sweep rates ν 

ranging from 20mV s-1 to 250mV s-1 and analysis of the formed O2(g) (if any) by MS. This 

system has been reported as CV-MS 

● Perturbation of the Pt/YSZ interface by double step chronopotentiometry (DSCP) for 

different applied currents and perturbation times followed by analysis of the formed O2(g) (if 

any) by MS. This system is reported as DSCP-MS 

In both systems the potential (E) has been reported relative to YSZ/Pt,O2(pO2), where pO2 is 

the working oxygen partial pressure. 

 

V I I I . 2  C y c l i c  v o l t a m m e t r y  c o m b i n e d  w i t h  m a s s  

s p e c t r o m e t r y  ( C V - M S )  

VIII.2.1 The Pt/YSZ interface 

The cyclic voltammogram (CV) and the corresponding rate of oxygen evolution reaction 

measured by MS (CV-MS measurements) in the potential region of YSZ stability is given in 

Fig.  VIII-1. A surface redox couple in the potential region of 100mV to 600mV is obtained. 

The separation between the anodic and cathodic peak (ΔE = 200mV) indicates that the 
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process is largely irreversible. This redox couple is certainly related to the 

oxidation/reduction of Pt at the Pt/YSZ interface (equation VIII-1) 
2

/ 2Pt YSZPtO e Pt O− −+ +R  VIII-1 

 

The insert of Fig.  VIII-1 shows furthermore that the onset potential of O2(g) evolution 

(equation VIII -2) is about 300mV 

 
2

2( )2 4gO O e− −→ +  VIII-2 

This reaction takes places certainly at the three phase boundary (tpb). 
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Fig.  VIII-1 : Typical CV-MS measurements obtain at Pt/YSZ interface under HV composed of 

the cyclic voltammogram (left) and corresponding MS results (right). T=400oC, pO2=10-7mbar, 

v=50mV s-1. Insert : Magnification of the MS response in the -200 to 800mV domain. 

 



 Pt/YSZ electrochemical investigation under HV 

175 

VIII.2.2 Investigation of the electrochemical stability of YSZ 

The influence of cathodic potential limit and partial oxygen pressure (pO2) on the 

electrochemical stability of YSZ has been investigated. 

 

VIII.2.2.1 Influence of the cathodic potential limit Ec  

Fig.  VIII-2 shows the effect of the lower cathodic potential limit, Ec, on the CV-MS 

measurements obtained on the Pt/YSZ interface. For Ec values lower than -250mV a 

reduction current is observed in the CV during the forward scan. This current increases with 

decreasing Ec reaching a value of -250 μA for Ec = -1100mV.  
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Fig.  VIII-2 : CV-MS measurements :Effect of cathodic potential limit  Ec (from -200 to -1100mV 

by steps of 100mV) on cyclic voltammograms of Pt/YSZ interface under HV (left) and 

corresponding MS results of O2 evolution (right). Insert : Charges estimated by integration of the 

anodic peak as a function of cathodic potential limit. T=400oC, pO2=10-7mbar, v=50mVs-1 
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In the reverse scan, an anodic peak is observed which grows and shifts to less negative 

potentials with decreasing cathodic limit Ec. The fact that the involved anodic charge is 

almost the same as the cathodic charge indicates that during the cathodic polarization an 

electrical charge is stored at the Pt/YSZ interface certainly due to YSZ reduction (equation 

VIII -3) 
2

2 22ZrO e ZrO Oδδ δ− −
−+ +R VIII-3 

This stored charge is estimated by integration of the involved cathodic or anodic charge and 

found to increase almost linearly with the cathodic potential limit Ec (insert of Fig.  VIII-2). 

The involved stored charge (more than 1mC/cm2) indicates that the stored charge is not 

limited at the Pt/YSZ interface but penetrates several monolayers inside of the YSZ solid 

electrolyte. This penetration of charge inside of the YSZ can be explained by the electronic 

conductivity of the recduced YSZ which creates a new interface (YSZ)reduced/YSZ allowing 

electron transfer through the reduced YSZ. 

As is shown in the MS response, no oxygen evolution is involved in this potential domaine (-

200mV to -1100mV). 

 

VIII.2.2.2 Influence of the anodic potential limit Ea  

Fig.  VIII-3 shows the influence of the upper potential limit, Ea, on the CV-MS 

measurements. This figure shows clearly that the anodic potential limit does not affect the 

electrochemical behavior of the YSZ solid electrolyte but has a strong effect on the 

development of the Pt/PtO redox couple. In fact, increasing Ea results in an increase of the 

involved cathodic charge related to the reduction of PtO and a potential shift to more 

positive potential of the reduction peak. The stored charge related to this reduction process 

is estimated by integration of the cathodic peak, and is found to increase linearly with the 

anodic reverse potential (right insert in Fig.  VIII-3). The electrochemical process involved in 

this potential domain is attributed to the electrochemical formation/reduction of a PtO layer 

at the Pt/YSZ interface, according to reaction VIII -1. 
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The involved stored charge (≈ 0.1mC/cm2) indicates that in this case the penetration is very 

much limited and the stored charge is mainly located at the Pt/YSZ interface under the 

investigated conditions. 
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Fig.  VIII-3 : CV-MS measurements: Effect of anodic potential limit Ea (from 400mV to 1000mV 

by steps of 100mV) on the cyclic voltammogram of Pt/YSZ interface under HV (left) and 

corresponding MS results of O2 evolution (right). T=400oC, PO2=10-7mbar, v=50mV s-1. Right 

insert : Charges estimated by integration of the cathodic peak as a function of anodic potential 

limit, Left insert: . Magnification of the MS response in the 300 to 800mV domain. 

 

As is shown in the MS response, the rate of oxygen release, rO2, increases as the potential 

exceeds 300mV. This is attributed to the oxygen evolution reaction (OER) taking place at 

the triple phase boundary (tpb) according to reaction VIII -2: 

When the potential is reversed, this reaction slows down and rO2 decrease in a quasi-

reversible way until 700mV (confirming a response time < 1s) then remains higher than the 

forward scan forming a plateau between 750mV and 500mV (rO2 = 30 pmolO s-1) before 

decreasing to zero at 300mV. This process of oxygen release does not seem to be related to 
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any electrochemical process but rather to the desorption of oxygen species lying at the 

Pt/gas interface according to reaction VIII -4: 

2( )
1
2 gPt O O Pt→ +i  

VIII-4 

VIII.2.2.3 Influence of the oxygen partial pressure pO2 

By increasing the oxygen partial pressure in the system, the MS detector was useless. In fact, 

the high oxygen background ionic current does not allow to measure the electrochemically 

formed O2. Hence in this part, only cyclic voltammorgams recorded at different pO2 are 

presented (Fig.  VIII-4).  
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Fig.  VIII-4 : CV-MS measurements: Effect of O2 partial pressure (pO2) on cyclic voltammograms 

of Pt/YSZ interface under HV , T=400oC, v=50mV.s-1, pO2= 10-7mbar, 5.10-7mbar, 1.10-6mbar, 

3.10-6mbar, 5.10-6mbar, 7.10-6mbar and 9.10-6mbar. Insert gives the charge estimated by integration 

of the anodic peak. 
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Fig.  VIII-4 shows that increasing pO2 affects both the stability of YSZ solid electrolyte and 

the kinetics of the surface PtO/Pt redox couple. In fact increasing pO2 results in a strong 

decrease of the stored charge during cathodic polarization at Ec = -1100 mV indicating an 

increase of YSZ stability against electrochemical reduction. Furthermore, the cathodic PtO 

reduction peak shifts to less positive values with increasing pO2. 

 

V I I I . 3  D o u b l e  s t e p  c h r o n o p o t e n t i o m e t r y  c o m b i n e d  w i t h  

m a s s  s p e c t r o m e t r y  ( D S C P - M S )  

The reactions involved in the Pt/YSZ system (reactions VIII -1, VIII -2, VIII -3 and VIII -

4) have been further investigated by DSCP-MS measurements. The double step 

chronopotentiometry (DSCP) perturbation includes a pretreatment step and two 

measurement steps. The pretreatment step consists of a constant cathodic current step of -

30μA applied for 10s (this insures that the Pt/YSZ interface is in the same initial state before 

each experiment). The measurement step consists in a constant anodic current (Ia) step 

during a time th (charging) followed by a cathodic current Ic (discharging) step. The influence 

of the anodic current, Ia, and of the anodic polarization time th are investigated. 

 

Fig.  VIII-5 shows a typical DSCP-MS (-30μA in the pretreatment, +30μA in the anodic 

step and -30μA in the cathodic step). 

Four main domains can be distinguished in this figure (Fig.  VIII-5): 

● Domain I (from 0-10s) where the potential reaches a plateau at about -400mV. In this 

domaine there is no oxygen evolution and the main reaction is the oxidation of reduced YSZ 

produced during the pretreatment step (reverse of equation VIII -3). 

● Domain II where the potential increases rapidily from -400mV to almost the open circuit 

potential. In this domain both the PtO formation (reverse of equation VIII -1) and oxygen 

evolution (equation VIII -2) take place. However, the former reaction seems to predominate.  
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Fig.  VIII-5 : Typical DSCP-MS responses obtained at Pt/YSZ interface under HV composed of 
chornopotentiometric perturbation (a) and corresponding MS measurements of O2 evolution (b). 

T=400oC, Ia=30μA, Ic=-30μA, pO2=10-7mbar. 
Domain I : YSZ reoxidation, Domain II : PtO formation, Domain III : O2 evolution, Domain IV : 

PtO reduction. 
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● Domain III where the potential increases slowly. In this domain both PtO formation and 

O2 evolution take place, however the O2 evolution (equation X-2) seems to dominate. 

● Domain IV where the potential decrease slowly reaching almost the initial value. In this 

domain the reduction of PtO (equation X-1) dominates.  

 

VIII.3.1  Influence of the applied anodic current, Ia 

Fig.  VIII-6 displays the influence of the anodic current Ia on the chronopotentiometric 

curves and on the corresponding oxygen evolution monitored by MS (DSCP-MS 

measurements). The anodic charging step is performed by applying increasing anodic current 

from 10μA to 100μA by steps of 10μA during 60s. The current is then reverse to -30μA 

(discharging step) until the measured potential reaches its initial value (-600mV).  

 

The general features of the responses obtained are similar to those presented in Fig.  VIII-5. 

However, increasing the applied current results in the following modifications: 

● Both domains I and II are strongly shortened as expected with increasing Ia.  

● Domain IV increases with increasing Ia. This is related with the increasing amount of 

formed PtO with increasing Ia. The release of O2 in this domain (Fig.  VIII-6 b) under 

cathodic polarization is very intriguing. This process should involve an oxygen containing 

species located far from the electroactive Pt/YSZ interface. As suggested in the CV-MS 

investigation (§ VIII-2 ), this may involve desorption of oxygen species lying at the Pt/gas 

interface according to reaction VIII-4. In fact it is speculated that during the anodic 

polarization step, the oxygen discharged at the tpb diffuses slowly toward the gas exposed 

interface.  
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Fig.  VIII-6 : DSCP-MS measurements : Current reverse chornopotentiometric transients for 

anodic polarization with increasing current from 10μA to 100μA by steps of 10μA; cathodic 

current is kept at -30μA (a) and corresponding MS results of O2 evolution (b). T=400oC, PO2=10-

7mabr.  
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VIII.3.2 Influence of the anodic polarization time, th 

Fig.  VIII-7 displays the influence of the anodic holding time th on the DSCP-MS 

measurements. During the charging step, an anodic current of 50μA is applied for increasing 

holding time (60s to 300s by steps of 60s). The current is then reversed to -50μA until the 

potential decreases to its initial value -700mV (discharging step).  

 

The general feature of the results obtained here are similar to those reported in Fig.  VIII-5 

and Fig.  VIII-6. However, on the obtained E-t curves (Fig.  VIII-7 a) in domain IV, the 

applied cathodic current induce the reduction of PtO (formed in domain I and II) to metallic 

platinum. The potential of the electrode returns to the initial potential (E=-700mV at t=0) 

due to the decrease of PtO surface concentration. The process can be regarded as titration 

of PtO present at the electrode surface at the end of the anodic polarization by the applied 

cathodic current. The E-t curves observed in the domain IV are similar to those obtained for 

a potentiometric titration (E as function of titrant added, Ic•t). When the PtO surface 

concentration drops to zero at the electrode surface, the potential achieves its initial value. In 

this domain, the time needed for the potential to reach its initial value is reported as the 

titration time τ. It is related to the surface concentration of PtO. The variation of τ with the 

anodic polarization time is given in insert of Fig.  VIII-7. The titration time, τ, first increases 

with polarization time th, and then saturates at large anodic polarization times (insert Fig.  

VIII-7 a). Further analysis of the DSCP-MS measurements (Fig.  VIII-7) shows that in 

domain III both O2 evolution and PtO formation occur simultaneously.  

 



Double step chronopotentiometry combined with mass spectrometry (DSCP-MS) 

184 

    

 
Fig.  VIII-7 : DSCP-MS measurements : effect of anodic polarization time on the current reverse 

chronopotentiometric transients (a) and corresponding MS results of O2 evolution (b). T=400°C, 

pO2=10-7mbar, Ia=50μA, Ic=-50μA, ta=60s, 120s, 180 240s and 300s. Insert : Dependence of τ on 

the polarization time. 
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One can define the current effieciency of the oxygen evolution reaction ηO2 (equation VIII -

5), PtO formation at the Pt/YSZ interface, ηPtO, (equation VIII -6) and Pt•O formation at 

the Pt/gas interface, ηO, (equation VIII -7). 

2

2

O
O

Total

Q
Q

η =  
VIII-5 

PtO
PtO

Total

Q
Q

η =  
VIII-6 

O
O

Total

Q
Q

η =  
VIII-7 

where QO2 is the amount of oxygen evolved during the anodic polarization step, determined 

from the MS results (Fig.  VIII-7 b), QPtO is the amount of PtO reduced electrochemically 

during the cathodic polarization (Fig.  VIII-7 a), QO is the amount of oxygen released during 

the cathodic polarization determined from the MS results (Fig.  VIII-7 b) and QTotal is the 

total applied anodic charge (Ia•th). 

 

Fig.  VIII-8 and Fig.  VIII-9 shows the influence of Ia (ta =60s) and polarization time ta (Ia 

=50μA) on ηO2, ηPtO and ηO. Increasing Ia and polarization time results in a strong decrease 

of ηPtO with a concomitant increase in ηO2. As previously reported at atmospheric pressure 

(Chapter VI ), these results confirm that with increasing anodic holding time, the initially 

high current efficiency, ηPtO, decreases rapidly with a concomitant increase of ηO2. In fact, 

the formation of a PtO layer at the Pt/YSZ double phase boundary appears as a barrier to 

further oxide growth (auto-inhibiting reaction) without affecting the oxygen evolution 

reaction. Worthy to notice that ηO increases with the applied anodic current Ia but remains at 

a constant value independently of the anodic polarization time. This is an indication that 

saturation of adsorbing sites at the gas exposed Pt is rapidly achieved. 
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Fig.  VIII-8 :Effect of increasing anodic polarization current Ia on the current effienciencies ηO2 

(left), ηPtO (left) and ηO (right) determined from steady state DSEMS experiment (Fig.  VIII-6) 

 

 
Fig.  VIII-9 : Effect of increasing anodic polarization time th on the current effienciencies ηO2 

(left), ηPtO (left) and ηO (right) determined from steady state DSEMS experiment (Fig.  VIII-6) 
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V I I I . 4  D i s c u s s i o n  

The electrochemical investigation of the Pt/YSZ system, performed in HV under low 

oxygen partial pressure at 400°C by both CV-MS and DSCP-MS measurements revealed that 

the O2- ions present in the solid electrolyte are involved in three main different 

electrochemical processes upon anodic/cathodic polarization: 

● Zirconia oxidation/reduction (reaction X-3) 

● Platinum oxidation/reduction (reaction X-1) 

● Oxygen evolution (reaction X-2) 

 

VIII.4.1 Zirconia reduction/oxidation reaction 

The electrochemical process observed in the negative potential domain of the voltamograms 

is attributed to the progressive reduction/oxidation of YSZ in the vicinity of the Pt/YSZ 

interface (reaction VIII-3). Because of the absence of oxygen in the gas phase, upon cathodic 

polarization, zirconia acts as a oxygen source for the formation of O2- ions according to  

 
2

2 22ZrO e ZrO Oδδ δ− −
−+ → +  VIII-8 

 

This induces a non-stochiometric depletion of oxygen, δ, in the YSZ solid electrolyte lattice 

which is known in litterature as YSZ blackening [1-5]. This process is comonly reported to 

be dependent on the oxygen activity in the solid electrolyte, on the temperature and on the 

oxygen partial pressure [4].  

Worth to notice that upon elapsing cathodic polarization time, the reaction front of zirconia 

reduction advances toward the inside of the solid electrolyte. In fact, in the vicinity of the 

cathode, YSZ is suggested to behave as a mixed ionic and electronic conductor allowing the 

electron supply from the platinum cathode to the reactive sites situated at the YSZ 

subsurface.  
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VIII.4.2 Platinum oxidation/reduction and oxygen evolution reaction 

Under anodic polarization of the Pt/YSZ interface, two reactions take place in parallel: PtO 

formation (reaction VIII -1) and oxygen evolution (reaction VIII -2). The determination of 

the current efficiency for each reaction demonstrates that platinum oxidation reaction, taking 

place at the Pt/YSZ interface, is rapidly limited by an auto-inhibited oxide growth 

mechanism (Fig.  VIII-9) without affecting the oxygen evolution reaction (OER) at the triple 

phase boundary (tpb). However during the anodic polarization, a fraction of the oxygen 

discharged at the tpb seems to migrate toward the Pt/gas interface.  

 

One should notice that, according to the thermodynamic investigation proposed by Berry [6] 

and Vayenas [7], at the low oxygen partial pressure applied here (pO2=10-5 Pa), PtO is 

thermodynamically unstable. In fact, at 400°C the partial pressure of oxygen should increase 

up to 1Pa in order to stabilize PtO [6,7]. However, the massive release of gaseous oxygen at 

the tpb induced by the oxygen evolution reaction (reaction VIII -2) creates a huge local 

increase of pO2 at the platinum gas exposed surface. The species formed at the tpb by O2- 

discharge are then proposed to populate the Pt/gas interface during the anodic polarization 

forming PtO at the gas exposed interface (PtOPt/gas). This oxide seems to be stable only 

under conditions of O2 evolution. 

 

The effective rate of PtO formation at the binary Pt/YSZ interface and at the Pt/gas 

interface are estimated according to equation VIII -9 and VIII -10 respectively : 

 

eR
2
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PtO PtO

I
F

η=  
VIII-9 
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2

ff
O O

I
F

η=  
VIII-10 

where I is the applied current during the anodic polarization, ηPtO and ηO are the current 

efficiency of the PtO formation at the Pt/YSZ interface and at the Pt/gas interface 

respectively. 
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Fig.  VIII-10 : Effective rate of PtO formation at the Pt/YSZ double phase boundary (1) and at 

the Pt/gas surface (2) as a function of the square root of anodic polarization time determined 

from DSCP-MS experiment (Fig.  VIII-6) 

 

As shown in Fig.  VIII-10, parabolic time dependence is obtained for eR ff
PtO suggesting a 

parabolic PtO formation at the Pt/YSZ. This kinetic law for the electrochemical PtO 

formation appears similar to that reported at atmospheric pressure (Chapter VI) and is in 

agreement with the high temperature metal oxidation theory proposed by Wagner and its 

electrochemical interpretation given by Hoar & Price [8]. 

 

VIII.4.3  Proposed model 

The mechanism of platinum oxidation previously proposed for a sputtered platinum 

electrode at atmospheric condition (Chapter VI), involving several oxygen storage locations 

is confirmed here under HV conditions. Both CV-MS and DSCP-MS measurements 

revealed a similar oxygen storage mechanism as that previously observed under atmospheric 

(1) 

(2) 
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pressure. However, in HV conditions at low oxygen pressure, one should consider that YSZ 

becomes electrochemically active endowing the electrolyte with a mixed ionic electronic 

conducting character in the vicinity of the counter and working electrodes.  

Initially one can consider that the system is composed of a homogeneous stochiometric YSZ 

solid electrolyte supporting pure metallic platinum electrodes. Under polarization, platinum 

oxidation and oxygen evolution reaction take place at the anode and, because of the lack of 

gaseous oxygen, zirconia is reduced at the cathode. 

 

Cathode 2
2 2ZrO e ZrO O− −+ → +  VIII-11 

 

Solid 

electrolyte 

 

O2- constant solid migration 
 

 

Anode 2 2Pt O PtO e− −+ → +  
 

VIII-12 

 2
2( )

1 2
2 gO O e− −→ +  VIII-13 

 /tpb Pt gasPtO PtO→ VIII-14 

 

At the cathode, the lack of gaseous oxygen induces the reduction of zirconia which acts as 

oxygen source for O2- ions formation and subsequent migration to the anode. Despite this 

mixed ionic and electronic conductive character, the YSZ solid electrolyte is expected to 

mainly behave as an ionic conductor under the experimental conditions. The O2- ion supply 

to the Pt anode through YSZ is then supposed to be of a constant rate r=I/2F during 

galvanostatic polarization. 

In the first moment of the anodic polarization, the efficiency of PtO formation is close to 1 

and that of OER is close to zero, and rapidily a monolayer of PtO is formed at the Pt/YSZ 

interface. However this PtO formation, which takes place according to a parabolic growth 

law, is an auto-inhibited reaction and ηPtO decreases with elapsing time while ηO2 increases. 

In fact, the dominant oxygen evolution reaction is suggested to create a dramatic increase of 
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oxygen partial pressure in the vicinity of the Pt/gas interface. Under such conditions, the 

formation of PtO at the gas exposed interface becomes thermodynamically favored and a 

fraction of atomic oxygen electrochemically formed at the triple phase boundary slowly 

migrates toward the Pt/gas interface forming PtO exposed to the gas interface. 

 
Fig.  VIII-11 : Schematic representation of the oxidation and reduction processes during anodic 

polarization of the Pt/YSZ/Pt system under HV. 

 

V I I I . 5  C o n c l u s i o n  

In this chapter, the electrochemical investigation of a sputtered platinum electrode deposited 

on YSZ polycrystalline substrate was performed under high vacuum conditions (pO2=10-7 

mbar) at 400°C. The coupling of both transient and steady state electrochemical techniques 

to mass spectrometery (CV-MS and DSCP-MS measurements) allowed to impose a 

current/potential perturbation while monitoring online the O2(g) formation taking place. 
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Main findings on the electrochemical behavior of Pt/YSZ system revealed by this original 

approach are summarized in the following : 

● Under cathodic polarization, YSZ is reduced in the vicinity of the Pt/YSZ interface acting 

as an oxygen source for the formation of O2- ions. This implies YSZ blackening which gives 

mixed ionic/electronic character to the solid electrolyte. In fact, this allows electron supply 

from the platinum electrode to the reactive sites involved which are situated at the YSZ 

subsurface. As consequence the reaction front moves forward to the inside of the YSZ solid 

electrolyte. 

● Under anodic polarization, first a PtO layer is formed at the Pt/YSZ interface according 

to a parabolic growth law similar to that proposed in the Wagner oxidation theory. Based on 

this model, a mechanism involving O2- diffusion process across the oxide scale is proposed 

as rate limiting step. 

● Under anodic polarization, at a later stage, oxygen evolution reaction (OER) takes place at 

the triple phase boundary inducing a dramatic increase of oxygen partial pressure in the 

vicinity of the Pt/gas interface. As a consequence, the thermodynamic stability of PtO rise 

up allowing the migration of oxygen, discharged at the tpb, toward the gas exposed Pt 

surface. Worth to mention that this Pt•O species is decomposed when the OER stop and 

the initial oxygen partial pressure is restored in the vicinity of the Pt/gas interface. 
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CHAPTER IX-   ELECTROCHEMICAL OX IDATIO N 

OF  CO OV ER Pt/Y S Z CATALY ST  UNDER HV  

 

In this chapter, the electrocatalytic behavior of Pt/YSZ system was investigated for CO 

oxidation at 400°C under high vacuum (HV) conditions. The SEMS device of dual chamber 

reactor configuration was used to impose a single anodic galvanostatic step to the sample in 

various gas mixture compositions while sampling online the O2 and CO2 formation rates 

(SSCP-MS measurements). 

For both oxygen lean (pO2 = 10-7 mbar and pCO = 6,6.10-5 mbar) and oxygen rich (pO2 = 3.10-

4 mbar and pCO = 6,6.10-5 mbar) conditions, the CO oxidation reaction is found to be 

composed of a chemical contribution and an electrochemical contribution without any 

interaction. As a consequence, the CO electrooxidation process observed under HV is 

faradaic (Λ<1). CO2 formation was found to be limited by mass transfer of CO from the gas 

phase to the tpb in agreement with a simple model of pore diffusion toward the Pt electrode 

of macroporous structure. However, at current interruption, a remarkable effect is observed 

as the catalyst remains, for a limited period, in a promoted state before to restore its initial 

catalytic activity. This remaining enhancement of the catalyst activity is proposed to be 

related to the P-EPOC phenomenon observed at atmospheric pressure. 

 

 

 



  

196 

 



                                 Electrochemical oxidation of CO over Pt/YSZ catalyst under HV 

197 

I X . 1  I n t r o d u c t i o n  

In this chapter, the investigation of CO electrooxidation on Pt/YSZ interface is performed 

by coupling an electrochemical perturbation (single step chronopotentiometry) to online MS 

gas analysis (SSCP-MS measurements) under HV in the dual chamber configuration setup (§ 

VII.2.4.2). The electrochemical perturbation imposed here consisted of a single galvanostatic 

step at constant anodic current Ia for a given holding time th. At current interruption, the 

Pt/YSZ interface is left under open circuit condition during the whole period of relaxation. 

Experiments are performed at 400°C in high vacuum conditions and the reactant gases feeds 

(CO and O2) are fed separately to the reactor working chamber while the reactor reference 

chamber is maintained under constant high oxygen pressure pO2ref = 10-2 mbar avoiding the 

YSZ reduction reported in the previous chapter. 

 

I X . 2  E l e c t r o c h e m i c a l  b e h a v i o r  o f  P t / Y S Z  i n  O 2  ( p O 2  = 1 0 - 7  

m b a r )  u s i n g  S S C P - M S  m e a s u r e m e n t s  

Fig. IX-1 displays the influence of Ia on the galvanostatic step applied at the Pt/YSZ 

interface in presence of low concentration of O2 (pO2 = 10-7mbar). As shown, upon current 

imposition, oxygen is released to the gas phase according to reaction IX -1 and rO2 reaches a 

steady state value after about 30s.  
2

2( )2 4gO O e− −→ +  IX-1 

 

Upon current interruption, the rate of oxygen evolution reaction (OER) decreases rapidly 

back to zero.  
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Fig. IX-1: SSCP-MS measurement: Effect of increasing anodic current (from 30 to 100 μA by 

steps of 10μA and 120μA) of the 90s galvanostatic step on the Pt/YSZ interface under HV, 

pO2=10-7 mbar, T=400°C. 

 

As previously described in Chapter VII, under anodic polarization of the Pt/YSZ interface 

two reactions take place: the oxygen evolution reaction (reaction IX -1) and the formation of 

PtO (reaction IX -2).  
2 2O Pt PtO e− −+ → +  IX-2 

The current efficiency of each of these process (ηO2 and ηPtO respectively) is determined 

according to : 

2

2

O
O

Total

Q
Q

η =  
IX-3 

2
1PtO Oη η= −  IX-4 

where QO2 is the amount of oxygen (in Coulomb) evolved during the anodic polarization 

step, determined from the MS measurements (Fig. IX-1) and QTotal is the total charge (I•t) 

passed during the anodic step. 

Increasing Ia

Increasing Ia
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Fig. IX-2 reports the influence of the applied current on the current efficiency of each 

process. Once again, one see that increasing Ia leads to an increase of ηO2 with a concomitant 

decrease of the auto-inhibited PtO formation reaction taking place at the Pt/YSZ interface.  
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Fig. IX-2: Effect of increasing the anodic polarization current Ia on the the current efficiencies 

ηO2 and ηPtO from SSCP-MS measurements of Fig. IX-1  

 

I X . 3  O x i d a t i o n  o f  C O  o n  P t / Y S Z  i n d u c e d  b y  c u r r e n t  

a p p l i c a t i o n  u s i n g  S S C P - M S  m e a s u r e m e n t s  

A typical SSCP-MS transient observed for CO oxidation over Pt/YSZ catalyst at 400°C 

under HV (pO2 = 10-7 mbar, pCO= 6,6.10-5 mbar) during an anodic polarization step is 

displayed in Fig. IX-3. Initially, the catalytic reaction rate of CO2 formation under open 

circuit conditions (reaction IX -5) is 170pmol s-1.  

O2 

PtO 
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2 2
1
2

PtO CO CO+ ⎯⎯→  
IX-5 

At current application (Ia=120μA), gaseous oxygen is released and the rate of CO2 formation 

increases simultaneously (Fig. IX-3).  
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Fig. IX-3: SSCP-MS measurement: Effect of galvanostatic polarization at 120μA during 90s on the 

catalytic oxidation of CO over Pt/YSZ catalyst under HV, pCO= 6.6.10-5 mbar, pO2=10-7 mbar, 

T=400°C. 

 

After 50s of polarization, both rate transients reach steady state (rO2 = 100pmol s-1 and rCO2 

=250 pmol s-1). At current interruption, the oxygen release rapidly stops while the CO2 

formation rate first decreases following O2 decrease then remains at a constant value (190 

pmol s-1) for 30s before returning to its initial unpromoted value. 

τrelax Polarization step
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2
2 2O CO CO e− −+ → +  IX-6 

Worth to notice that concerning the CO2 fomation, the current application leads to a rate 

enhancement factor of ρ = 1.5 with a faradaic efficiency of Λ < 1, i.e. corresponds to a 

classical electrochemical process (reaction IX-6). However, the increase in rate observed 

after current interruption is attributed to the chemical reaction of CO with O2 from the gas 

phase (initial decrease) or with PtO (reaction IX-7) formed during the current application 

step.  

2CO PtO CO+ →  IX-7 

 

The current efficiency for O2, CO and PtO formation during anodic polarization is define 

as: 

2

2

O
O

Total

Q
Q

η =  
IX-8 

2

2

CO
CO

Total

Q
Q

η =  
IX-9 

2 2
1PtO O COη η η= − −  IX-10 

where QO2 and QCO2 are the amount of O2 and CO2 evolved during the anodic polarization 

step, determined from the MS results and QTotal is the total charge passed during the anodic 

step. 

 

IX.3.1 Influence of the gas composition 

Fig. IX-4 reports two experiments carried out at two different pCO (3.10-5 and 1,6.10-4 mbar) 

and invariant pO2 ( 10-7 mbar) in the working compartment of the reactor. At open circuit, 

the increase of pCO leads to a decrease in the rate of CO2 formation. However, upon current 

imposition, the rate of CO2 increases more rapidly and reaches higher promoted steady state 

with increasing CO partial pressure in the system. In parallel, one should notice that the rate 

of oxygen release diminishes drastically with increasing pCO.  
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Fig. IX-4: Effect of pCO in the reactor working compartment on the catalytic oxidation of CO over 

Pt/YSZ catalyst under HV during a galvanostatic polarization at 120μA of 90s, (1) pCO= 3.10-5 

mbar , (2) pCO= 16.10-5 mbar ,pO2=10-7 mbar, T=400°C. 

 

Upon current interruption, the rate of oxygen released to the gas phase drops quickly back 

to zero while the rate of CO2 formation exhibits a more complex transient. rCO2 first 

decreases to an intermediate value before to return to its initial unpromoted value. Worth to 

notice that the relaxation time, τrelax, needed for the catalyst to return to the unpromoted 

state depends on the gas mixture composition i.e. becomes shorter with increasing pCO.   

The current efficiency has been determined for each process and plotted in Fig. IX-5. One 

can observe that increasing pCO in the reactor working compartment results in a decrease of 

(1) 

(1) 

(2) 

(2) 



                                 Electrochemical oxidation of CO over Pt/YSZ catalyst under HV 

203 

ηO2 and a ηCO2 linear increase. However, ηPtO seems to be unaffected by the gas mixture 

composition. 
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Fig. IX-5: Effect of CO pressure pCO on the current efficiencies ηO2 , ηCO2  and ηPtO from CP-MS 

measurements of Fig. IX-4. 

 

IX.3.2 Influence of the anodic current Ia 

IX.3.2.1 In absence of O2(g) feed 

The gas mixture composition is kept constant (pO2 = 10-7 mbar and pCO = 6,6 10-5mbar) and 

the applied anodic current is increased from 30μA up to 120μA by intervals of 10μA then 

up to 520μA by steps of 100μA (Fig. IX-6). Upon current application, both CO2 and O2 are 

formed. For low anodic current (<120μA), the rate of O2 formation reaches a steady state 

after 20s of polarization and for higher applied anodic current (>300μA), rO2 passes through 

a maximum.  

 

CO2 
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Fig. IX-6: SSCP-MS measurement : Effect of anodic current on the oxidation of CO over Pt/YSZ 

catalyst under HV. Ia =30 μA to 120 μA by steps of 10 μA (a) then up to 520μA by steps of 100μA 

(b). pCO= 6.6.10-5 mbar, pO2=10-7 mbar, T=400°C. 

 

In parallel to this oxygen evolution, the CO2 formation rate, initially at rCO20 = 170 pmol s-1, 

also increases with increasing anodic current. rCO2 increases rapidly in the first time of 

polarization and then reaches a steady state depending on the applied anodic current. 

For all applied anodic current the rate increase observed is faradaic (Λ<1), with rate 

enhancement ratio, ρ, varying from 1 to 1.7 for increasing anodic current (Fig. IX-6). 

At current interruption, the rate of oxygen released to the gas phase quickly drops to zero 

while the rate of CO2 formation decreases first to the value of 200pmol s-1 where it forms a 
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plateau before to return to its initial value. The time period of this plateau increases with 

increasing anodic current. As shown in Fig. IX-7, increasing Ia results in a decrease of ηCO2 

and ηPtO while ηO2 increases. 
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Fig. IX-7: Effect of increasing the anodic polarization current Ia on the the current effienciencies 

ηO2 , ηCO2  and ηPtO from CP-MS measurements of Fig. IX-6. 

 

IX.3.2.2 In presence of O2(g) feed 

In these experiments an excess of oxygen has been used relative to CO (pO2 = 30.10-5mbar 

and pCO = 6.10-5mbar) and the current applied during the anodic galvanostatic step is 

increased from 30μA up to 100μA by intervals of 10μA (Fig. IX-8). Only the CO2 formation 

rate was monitored is this experiments as the MS was not sensible to the modification of pO2 

imposed by the applied current. 
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Fig. IX-8: CP-MS measurements : Effect of increasing anodic current of the 90s galvanostatic 

polarization step on the catalytic oxidation of CO over Pt/YSZ catalyst under HV. Ia =30 μA to 

120 μA by steps of 10 μA then up to 520μA by steps of 100μA. pCO= 6.10-5 mbar, pO2=30.10-5 mbar, 

T=400°C. 

 

The initial rate of CO2 formation (under open circuit conditions) is 730pmol s-1. Upon 

current application the reaction increases within the first 30s and then reaches a steady state. 

This steady state rate, rCO2p increases with increasing anodic current and exhibits a faradaic 

behavior (Λ<1). At current interruption, rCO2 drops rapidly to an intermediate value 

(750pmol s-1) where it remains for a certain period of time before to return back to its initial 

value. For increasing anodic current, the relaxation time needed for the catalyst to return to 

its initial active state increases. 

 

Worth to notice that adding O2 feed in the reactor has a dramatic influence on the initial 

CO2 formation rate rCO20 but a rather limited impact on Δr (Δr1= Δr2 in Fig. IX-9).  

Increasing Ia

Increasing Ia
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Fig. IX-9: SSCP-MS measurements : Effect of O2 feed on the catalytic oxidation of CO over 

Pt/YSZ catalyst under HV. (1) pO2=10-7 mbar and pCO= 6.6.10-5 mbar, (2). pO2=30.10-5 mbar and 

pCO= 6.10-5 mbar, Ia =520 μA, T=400°C. 

 

In fact, the catalytic CO oxidation reaction taking place at the Pt/YSZ system under anodic 

polarization is suggested to be composed of two contributions: the catalytical CO oxidation 

taking place at the Pt/gas interface, which is dramatically affected by the presence of excess 

oxygen in the gas mixture, and the electrocatalytic CO oxidation taking place at the tpb, 

which is independent of it. 

 

I X . 4  D i s c u s s i o n  

Fig. IX-2 shows clearly that in absence of CO, under anodic polarization, PtO is formed at 

the Pt/YSZ interface (reaction XI-2) according to an auto-inhibited process (decrease in rate 

due to PtO formation) and in parallel O2 is evolved (reaction XI-1) at the tpb. The 

formation of O2 leads to an increase of the oxygen partial pressure (pO2) at the Pt/gas 

(1) 

(2) 
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interface, this increase in pO2 induces the migration of oxygen species to the Pt/gas exposed 

surface (discussed in Chapter VIII).  

 

As CO is fed in the working compartment of the reactor (3.10-5 mbar<pCO<16.10-5 mbar) in 

oxygen lean conditions (pO2 = 10-7 mbar), CO2 is catalytically formed (reaction XI-5) at the 

Pt/gas interface. At current imposition, three additional electrochemical reactions take place 

:  

● PtO formation at the Pt/YSZ interface (reaction XI-2)  

● O2 evolution at the tpb (reaction XI-1)  

● CO electrooxidation at the tpb (reaction XI-6)  

The ηCO2 of CO2 formation (reaction XI-6) lies between 10-40%, it increases with pCO and 

decreases with increasing anodic current Ia. This dependency on both CO concentration and 

Ia gives strong indications that transport of CO toward the tpb is limiting. In fact, two fluxes 

can be defined in this process:  

□ The flux of CO from the gas phase to the tpb, JCO, depending on CO concentration. 

According to the molecular flow theory and considering inner diffusion [1], the CO free-

molecule flux through the Pt film to the reactive sites, JCO, is given by : 

( )*8 tpbCO
CO CO CO

MJ w p p
RTπ

= −  
IX-11 

Where w is a dimensionless probality factor depending on the electrode geometry, R is the 

gas constant, T is the temperature, MCO the CO molecular mass, pCO
tpb and pCO* the CO 

pressure at the tpb and in the bulk gas phase respectively. 

□ The flux of O2- from YSZ to the tpb [2], JO
2-, depending on Ja, the applied current density. 

JO
2- is supplied electrochemically to the Pt/YSZ interface at constant rate JO

2-= Ja/2F.  

As soon as oxygen evolution takes place at the tpb, it is suggested that JO
2-> JCO and that 

steady state CO concentration drops dramatically at the electrode surface. In this case, the 

mass transfer of CO to the tpb is the limiting step and assuming that all CO molecules 

reaching the Pt surface react to form CO2 according to reaction XI-6 (zero surface 
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concentration), the probability factor w may be determined from the slope of the linear 

relation between ΔrCO2 and pCO. From the results presented in Fig. IX-5, one estimates w = 

5,6.10-2. Considering a simple geometry for this pore diffusion process w may be estimated 

by : 

2
3

rw
L

=  
IX-12 

where r and L are the pore radius and length respectively. The thickness of the Pt electrode 

being of 1μm, this corresponds to pores of 170nm diameter in agreement with observations 

made by SEM images (§ VI.3). 

 

One should notice that increasing the oxygen partial pressure pO2 in the gas mixture (from 

pO2 = 10-7 mbar to pO2 = 30.10-5 mbar) had a large influence on the initial open circuit 

reaction rate of CO2 formation (reaction XI-5) but at current imposition, the electrocatalytic 

oxidation of CO at the tpb (reaction XI-6) is not affected (Fig. IX-9). This suggests that the 

total reaction rate of CO2 formation taking place under anodic galvanostatic polarization is 

simply the sum of the rate of two independent processes : the catalytic partial CO oxidation 

taking place at the Pt/gas interface (reaction XI-5) and the electrocatalytic CO oxidation 

occurring at the tpb (reaction XI-6). This absence of synergy between these two processes 

shows clearly that under the investigated conditions at current imposition, we are not dealing 

with a promotional effect of the CO catalysis (no EPOC behavior) but with a classical 

faradaic enhancement of the CO oxidation [3-7]. 

However, worthy to note that at current interruption, the reaction rate of CO2 formation 

firstly decreases and then remains enhanced for a limited period of time before to return to 

its initial value (Fig. IX-3). This is suggested to be related to oxygen storage (certainly the 

above mentioned PtO layer) formed during the anodic polarization.  

 

The ratio ΛPtO, which express the amount of stored oxygen consumed after current 

interruption, is defined as the ratio of the amount of oxygen consumed by CO oxidation 
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after current interruption NCO2, to the amount of oxygen stored as PtO during the anodic 

polarization NPtO. 

2CO
PtO

PtO

N
N

Λ =  
IX-13 

with 

2
h

PtO PtO
ItN
F

η=  
IX-14 

Where ηPtO is the current efficiency for the PtO formation, I the applied current and th the 

holding time of the galvanostatic step. 
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Fig. IX-10: Effect of the anodic polarization current Ia on ΛPtO from SSCP-MS measurements of 

Fig. IX-6 (solid line) and Fig. IX-8 (dashed line). Insert gives results from Fig. IX-4 

 

As shown in Fig. IX-10, a small fraction (< 30%) of the oxygen stored during the anodic 

polarization is involved in the CO2 formation taking place after current interruption. This 

suggests that the oxygen released at current interruption does not act as promoter as 
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reported at high pressure (Chapter III). This behavior is certainly related to the fact that this 

process is diffusion controlled. 

 

I X . 5  C o n c l u s i o n  

In this chapter, the electrocatalytic behavior of Pt/YSZ system was investigated for CO 

oxidation at 400°C under HV conditions. The new probe device in dual chamber reactor 

configuration (depicted in chapter VII) was used to impose a single anodic galvanostatic step 

to the sample in various gas mixture compositions while sampling online the O2 and CO2 

formation rates (SSCP-MS measurements). 

● In absence of CO (pO2 = 10-7 mbar), under anodic polarization, PtO formation and 

parrallel oxygen evolution reaction occurring at the Pt/YSZ interface and at the tpb 

respectively were observed in agreement with previous discussion (Chapter VIII). 

● In presence of CO (pCO>3.10-5 mbar) for both oxygen lean (pO2 = 10-7 mbar) and oxygen 

rich (pO2 = 30.10-5 mbar) conditions, under anodic polarization, it turns out that the CO 

oxidation reaction is composed of a chemical contribution and an electrochemical 

contribution without any interaction. As a consequence, the CO electrooxidation process 

observed under HV is faradaic (Λ<1). CO2 formation was found to be limited by mass 

transfer of CO from the gas phase to the tpb in agreement with a simple model of pore 

diffusion within the macroporous Pt electrode. This can explain the low faradaic efficiency. 

● However, at current interruption, a remarkable effect is observed as the catalyst remains, 

for a limited period, in a promoted state before returning to its initial catalytic activity. This 

remaining enhancement of the catalyst activity after current interruption is proposed to be 

due to the formation of a PtO layer at the Pt/YSZ interface which was highlighted in 

Chapter VIII and related to the P-EPOC phenomenon observed at atmospheric pressure. 
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CHAPTER X-   GEN E R A L  D I SCU SS I O N  AND  

P ROPOSED MODEL 

 

This PhD thesis is part of the research works started several years ago in the “NEMCA 

group” of Prof. Comninellis at the EPFL. Its subject concerns the permanent 

electrochemical promotion of Pt catalyst (P-EPOC) supported on YSZ solid electrolyte. 

Both electrocatalytical and electrochemical approaches are proposed under both atmospheric 

pressure and high vacuum conditions. Atmospheric investigations are performed in an 

existing setup widely used for EPOC investigations. The irreversible character of the 

electrochemical promotion of C2H4 combustion over Pt/YSZ catalyst is ascertained to 

increase in polarization time and the electrochemical investigation of O2(g),Pt/YSZ system 

reveals a process of PtO formation at the Pt/YSZ interface. HV studies have necessitated 

the construction of a new setup which allows imposing an electrochemical perturbation (CV 

or CP) and monitoring at the same time the electrochemical products released in the gas 

phase. This new electrochemical technique allows to propose an original P-EPOC model 

involving two different types of promoters where the electrochemical modification of the 

Pt/YSZ interface is directly related to the observed modification of the Pt/gas catalyst 

activity.  
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X . 1  G e n e r a l  d i s c u s s i o n  a n d  p r o p o s e d  m o d e l  

The review of EPOC literature (Chapter II) reminds first the principle of electrochemical 

promotion which is characterized by the rate enhancement and the faradaic enhancement 

factors (ρ and Λ). This reversible modification of the catalyst activity, observed during the 

polarization step, is explained by the rapid migration of sacrificial promoter at the catalyst 

surface [1]. However, after long term polarization, several systems have exhibited complex 

open-circuit relaxation transients of reaction rate called Permanent or Persistent EPOC 

phenomenon (P-EPOC or Pers-EPOC) [2-4]. To quantify this unexpected irreversible 

character one should introduce new parameters like γ, the permanent enhancement factor 

(for P-EPOC), or ΛOS, the oxygen storage efficiency (for Pers-EPOC).  

 

The experimental results obtained, under atmospheric pressure during the investigation of 

C2H4 combustion over Pt/YSZ at 375°C (Chapter III), let suppose that the electrochemical 

promotion (EPOC and P-EPOC) is related to both a rapid and a slow process of promoter 

formations. In this work, a model is proposed where two different active oxygen states, Oδ1- 

and Oδ2-, are created on the gas exposed catalyst (Pt/gas) interface during the imposed 

anodic polarization. 

- Oδ1- is a highly mobile sacrificial promoter with a moderate reactivity and 

moderate dipole moment (POδ1). Its rapid migration from the triple phase 

boundary to the Pt/gas interface is considered to be controled by the applied 

current and to be temperature dependent. At 375°C under a polarization of 

0.5mA, Oδ1- is estimated to have an average lifetime at the catalyst surface of 

about 30 seconds upon current interruption. This promoter is responsible for the 

EPOC phenomenon. 

- Oδ2-, is a very stable promoter presenting a large dipole moment (POδ2>POδ1) with 

an infinite lifetime at the catalyst surface (non-reactive promoter). The presence 

of this type of promoter is expected to be limited by a slow diffusion process, i.e. 
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temperature dependent but independent of the applied current. This promoter is 

responsible for the P-EPOC phenomenon. 

 
Fig.  X-1  : Schematic representation of a typical electrochemical promotion (EPOC and P-

EPOC) transient. (0) Open circuit reaction rate r0. (1) dramatic reaction rate increase upon 

current application  (1’) actual steady state of the Oδ1 promoters (EPOC) (2) apparent steady 

state observed during long anodic polarization (3) holding time dependent slow relaxation of 

duration τRelax upon current interruption and (4) final new permanently enhanced reaction rate 

(P-EPOC) 

 

Fig.  X-1 shows a schematic representation of typical electrochemical promotion (EPOC and 

P-EPOC) transient according to this model. Before polarization (0 in Fig.  X-1), ethylene 

combustion occurs over Pt/YSZ catalyst at the open circuit reaction rate r0. Upon current 

application, electrogenerated promoter migrates from the tpb to the Pt gas exposed catalyst 

surface, creating both Oδ1- and Oδ2- promoters. However, in the initial time of polarization 

(1 in Fig.  X-1) only the mobile Oδ1- promoters may populate rapidly the catalyst active 
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surface while the slow diffusion controlled Oδ2- promoters populate the catalyst surface 

much later. As a consequence, considering equations III-20 and III-21, the rapid increase of 

θOδ1 leads to a rapid increase of the catalyst work function ΔΦ1 with a concomitant dramatic 

incresase in the reaction rate (1 in  Fig.  X-1) .  

( )1 11
0

M
O O

eN P δ δθ
ε

ΔΦ =  X-1 

where POδ1 is the dipole moment and θOδ1 the coverage of the Oδ1- promoters. 

Oδ1- migration being current controlled, one may assume a supply rate of Oδ1- promoter 

equal to I/2F. Considering NPt/gas active sites at the catalyst surface, this process should be 

saturated after 2FNPt/gas/I seconds, i.e. about 34s (I=0.5mA and NPt/gas =109nmol). So this 

enhancement process is rapidly limited and the steady state is rapidly reached after few 

minutes of polarization (1’ in  Fig.  X-1). Nontheless, the stable Oδ2- promoters are then 

expected to gradually diffuse toward the Pt/gas interface and so rise the catalyst work 

function according to equation III-21 with concomitant increase in the reaction rate (2 in  

Fig.  X-1) : 

( )2 22
0

M
O O

eN P δ δθ
ε

ΔΦ =  X-2 

where POδ2 is the dipole moment and θOδ2 the coverage of the Oδ2- promoters. 

 

Worth to notice that, because of the usual very large time constants of Oδ2- promoters, 

during a classical EPOC experiment (short polarization time), the change in θOδ2 is expected 

to be rather small, leading to a very slow reaction rate increase in this regime which may then 

be seen as an apparent steady state with regard to the experiment duration. However, even in 

case of limited presence of Oδ2- at the catalyst surface, it is expected that the dipole moment, 

POδ1, of Oδ1- promoter already present at the Pt/gas interface should be affected by the 

increasing value of θOδ2. During this apparent steady state period, the slow diffusion of Oδ2-  

promoter is then expected to increase the average lifetime of Oδ1- promoter present at the 

catalyst surface. 
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At current interruption (3 in  Fig.  X-1 ), the flux of electrogenerated oxygen promoter stops 

and so ends the creation of fresh Oδ1- and Oδ2- promoters. θOδ1 will then decrease back to 

almost zero after τD related to the stability of these promoters, while the highly stable Oδ2- 

promoters are expected to remain at the catalyst surface. Finally, after long relaxation time (4 

in  Fig.  X-1), Oδ2- promoters will then keep the catalyst in a new promoted state even after 

current interruption, i.e. Oδ2- is responsible for P-EPOC. Worth to recall that increasing 

polarization time rises up the Oδ1- dipole moment and so increases the stability of Oδ1- 

promoter at the Pt/gas surface (increase of τD). This fact should then lead to decreasing 

values of Oδ1- consumption rate after current interruption in agreement with the 

experimental relation found between the Oδ1- average lifetime (τD) at the catalyst surface and 

the square root of the polarization time (Fig.  III-15). 

In this model, Oδ1- promoter species, whoes population at the Pt/gas interface rises quickly 

to steady state, must be related to the sacrificial promoter presented in the state-of-the-art of 

EPOC (e.g. highly mobile, reactive presenting a moderate lifetime at the catalyst surface and 

formation at the tpb). On the opposite, the second type of promoter Oδ2- , i.e. highly stable 

at the catalyst surface, may be related to the electrochemical formation of platinum oxide 

which subject to controversy.  

 

The electrochemical investigations of the O2(g),Pt/YSZ system demonstrate that upon an 

anodic polarization two parallel reactions take place, i.e. platinum oxidation (equation VI-2) 

at the binary Pt/YSZ interface and oxygen evolution (OER) (equation VI-1) at the triple 

phase boundary (tpb). The current efficiencies of these two reactions ηPtO and ηO2 were 

determined (equation VI-3 and VI-4) suggesting that PtO formation is an auto-inhibited 

reaction at the Pt/YSZ interface (ηPtO initially close to one, decreases with elapsing time). In 

fact, the limiting step of the PtO formation is related to the transport of O2- across the oxide 

scale (Wagner model) [5,6] or incorporation into the oxide scale (place exchange mechanism) 

[7]. 
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In addition, further investigation, performed under high vacuum (HV) conditions, described 

in Chapters VII and VIII, allowed to develop new electrochemical techniques (CV-MS and 

DSCP-MS measurements) used for the electrochemical and electrocatalytic studies under 

HV. With this technique, the oxygen evolution reaction taking place at the tpb, in parallel to 

the formation of PtO at the Pt/YSZ interface, is observed by MS. The dramatic oxygen 

release observed during the polarization is proposed to increase the partial pressure of 

oxygen nearby the Pt/gas interface which stabilizes thermodynamically the oxidized state of 

platinum (PtO) [8,9]. As a consequence, oxygen discharged at the tpb, which is strongly 

bonded to platinum, can diffuse toward the gas exposed interface during anodic polarization. 

This process appears to be limited (ηO < 0.3), however, ηO is found to increase with 

increasing current and is independent of the polarization time (Fig VIII-8 and Fig VIII-9). 

 

All these results allow to propose a general model for the electrogeneration of Oδ2 

promoters during an anodic polarization involving three processes: 

● The rapid formation of a thin PtO submonolayer at the Pt/YSZ interface.  

● A deeper oxidation of platinum toward the Pt bulk according to the Wagner model 

at low holding potential and according to a place exchange mechanism at higher 

holding potential. 

● The slow diffusion, toward the Pt/gas interface, of strongly bonded oxygen, 

(equation VIII-14), i.e. population of Pt/gas interface by Oδ2- promoters. 

 

Worth to notice that the third process, which is directly related to P-EPOC, is highly 

influenced by the experimental conditions because thermodynamic stability of PtO at the gas 

exposed surface is of major importance (Chapter VIII). This will explain that P-EPOC is 

observed at low temperature where PtO is thermodynamically favoured and that Pers-EPOC 

is observed at higher temperature. 

This model of electrochemical PtO formation can be related to the electrocatalytic behavior 

of Pt/YSZ for CO oxidation under HV (Chapter IX). For both oxygen lean (§ IX-3.2.1) and 

oxygen rich (§ IX-3.2.1) conditions, the CO oxidation reaction is found to be composed of a 
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chemical contribution (reaction IX-5) and a faradaic electrochemical contribution (reaction 

IX-6) without any synergic effect. In addition, CO2 formation is found to be limited by CO 

mass transfer across the macroporous structure of the Pt electrode. At current interruption 

the catalyst remains, for a limited period, in an enhanced state before returning to its initial 

state. Again, this remaining enhancement of the catalyst activity is proposed to be related to 

the previously mentioned oxygen storage (PtO) which is consumed afterwards by the 

catalytic reaction. 
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List of Symbols 

 

1 Acronyms 

AFM 

CE 

CV 

DEMS 

DSCP 

ERS 

EPOC 

GC 

HV 

Me 

MIEC 

ML 

MS 

NEMCA 

OCV 

OER 

PEEM 

P-EPOC 

Pers-EPOC 

QMS 

RDS 

RE 

SEM 

SEMS 

SPEM 

Atomic Force Microscopy

Counter Electrode 

Cyclic Voltammetry 

Differential Electrochemical Mass Spectrometry 

Double Step Chronopotentiometry 

Electrochemical Reaction Site 

Electrochemical Promotion Of Catalysis 

Gas Chromatography 

High Vacuum 

Metal 

Mixed Ionic Electronic Conductor 

Monolayer 

Mass Spectrometry 

Non faradaic Electrochemical Modification of Catalyst Activity 

Open-circuit potential 

Oxygen Evolution Reaction 

PhotoElectron Emission Microscopy 

Permanent Electrochemical Promotion Of Catalysis 

Persistent Electrochemical Promotion Of Catalysis 

Quadrupole Mass Spectrometer 

Rate Determining Step 

Reference Electrode 

Scanning Electron Microscopy 

Solid Electrochemical Mass Spectrometry 

Scanning Photoelectron Microscopy 
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SOFC 

STM 

SSCP 

TOF 

tpb 

TPD 

WE 

XPS 

XRD 

YSZ 

Solid Oxide Fuel Cell

Scanning Tunneling Microscopy 

Single Step Chronopotentiometry 

Turn Over Frequency 

Triple phase boundary 

Temperature Programmed Desorption 

Working Electrode 

X-ray Photoelectron Spectroscopy 

X-Ray Diffraction 

Yttria Stabilzed Zirconia 
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2 Roman Symbols 

Symbol                                Meaning          Units 

A Electrode surface area [cm2]

C Collection efficiency [-]

Ci Concentration of i species [mol L-1]

Cox* Bulk concentration of ox species [mol L-1]

D Detection efficiency [-]

Di Diffusion coefficient of i species [cm2 s-1]

Dox Diffusion coefficient of ox species [cm2 s-1]

E Potential [V]

Ea Anodic upper potential limit [V]

Ec Cathodic lower potential limit [V]

EH Anodic holding potential [V]

Em Hopping energy [kJ]

EOC Open-circuit potential [V]

F Faraday constant [C]

Fi Flux of i species [mol V-1 s-1]

G Free Enthalpy [kJ mol-1]

ΔG Free Enthalpy change [kJ mol-1] 

h Planck constant  [J s]

H Enthalpy [kJ mol-1]

ΔH Enthalpy change [kJ mol-1] 

I Current [A]

Ia Anodic holding current [A]

Ic Cathodic holding current [A]

I0 Exchange current [A]

Ieff Effective current for oxide formation [A]

If Faradaic current [A]

Ip Peak current [A]
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IX Ionic current of X species [A]

JXSample Gas flow of X released from sample surface [mol s-1]

JXSniffer Gas flow of X entering in the sniffer [mol s-1]

JXTopreactor Gas flow of X exiting from the reactor detection hole [mol s-1]

k Reaction rate constant [mol s-1]

K Clausing factor [-]

K0 Equilibrium rate constant [-]

KCO0 MS calibration coefficient for CO [A.Pa-1]

KCO20 MS calibration coefficient for CO2 [A.Pa-1]

KO20 MS calibration coefficient for O2 [A.Pa-1]

kad Adsorption rate constant [mol s-1]

kL Linear rate constant [mol s-1]

kLog Logarithymic rate constant [mol s-1]

kp Parabolic rate constant [mol s-1/2]

kp0 Parabolic rate constant at zero overpotential [mol s-1]

kb Boltzmann constant [J/K]

L Distance [m]

Lt Critical tunneling distance [m]

Mx Molecular mass of X species [kg mol-1]

me Electron mass [kg]

N Total MS efficiency [-]

N0 Amount of adsorbed oxygen [mol]

NF Maximum amount of promoters supplied [mol]

NM Surface atom density [mol]

NPt/gas Amount of reactive sites at the catalyst surface [mol]

NR Amount of oxygen atoms consumed after current interruption [mol]

pC2H4 Ethylene partial pressure [Pa], [mbar]

pCO Carbon monoxide partial pressure [Pa], [mbar]

pO2 Oxygen partial pressure [Pa], [mbar]
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pO2reference 
Oxygen partial pressure in the reference compartment of the 

reactor 
[Pa], [mbar] 

pO2working 
Oxygen partial pressure in the working compartment of the 

reactor 
[Pa], [mbar] 

pHV Pressure in the HV main chamber [Pa], [mbar]

pSniffer Pressure in the Sniffer [Pa], [mbar]

Pj Dipole moment of j species [D]

PS Pumping speed [L s-1]

QNiO Amount of NiO anodically formed [C]

QO Amount of O released after current interruption [C]

QPtO Amount of PtO anodically formed [C]

QTotal Equivalent amount of charge passed during anodic polarization [C]

R Ideal gas constant [J mol-1 K-1]

Rp Polarization resistance [Ω] 

r Reaction rate [mol s-1]

r0 Initial reaction rate (Before polarization) [mol s-1]

r’ Final reaction rate (After polarization) [mol s-1]

rel Faradaic rate [mol s-1]

rCO2 CO2 formation rate [mol s-1]

rO2 O2 formation rate [mol s-1]

Reff Effective oxide formation rate [mol s-1]

Si Section of sniffer entrance [m]

S Entropy [kJ K-1 mol-1]

ΔS Entropy change [kJ K-1 mol-1]

T Temperature [C]

tD Desorption time [s]

te Electron transference number [-]

th Hole transference number [-]

tH Holding time [s]
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tion Ionic transference number [-]

TOF0 Open-circuit turn over frequency [s-1]

TOFp Closed-circuit turn over frequency [s-1]

ui Mobility of I species [cm2 V-1 s-1]

ΔUe 
Energy difference between the Fermi level and the metal 

conduction band 
[eV] 

ΔUWR Potential difference between working and reference electrode [V] 

Vox Number of moles of metal to form 1 mole of oxide [-]

V0 Volume of the sniffer [cm3]

Vreference Volume of the reference compartment of the reactor [cm3]

Vworking  Volume of the working compartment of the reactor [cm3]

W Probability [-]

z Charge of ionic species [-]
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3 Greek Symbols 

Symbol                                Meaning          Units 

αa Anodic charge transfer coefficient [-]

αc Cathodic charge transfer coefficient [-]

γ Permanent rate enhancement factor [-]

ε0 Permittivity of free space [C2 N-1 m-2]

η Overpotential [V]

ηact Activation overpotential [V]

ηNiO Current efficiency for NiO formation [-]

ηPtO Current efficiency for PtO formation at the Pt/YSZ 

interface 

[-]

ηO Current efficiency for PtO formation at the Pt/gas 

interface 

[-]

ηO2 Current efficiency for O2 formation [-]

θΟ Promoter coverage [-]

θΟδ1 Oδ1 promoter coverage [-]

θΟδ2 Oδ2 promoter coverage [-]

Λ Faradaic enhancement factor [-]

ΛOS Oxygen storage efficiency [-]

μi Chemical potential [J mol-1]

μi∗ Electrochemical potential [J mol-1]

ρ Rate enhancement factor [-]

σ Conductivity [S m−1] 

τ Time constant detection [s]

τD Promoter lifetime [s]

τRelax Open circuit relaxation time [s]

Φ Galvani potential [V]
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ΔΦw Work function change [eV]

ν Vibrationnal frequency

Scan rate 

[s]

[V s-1] 

Ω Volume of oxide per metal ion [m3]
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