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Abstract In order to overcome problems stemming from possi-
bly large reconstruction errors, Ong [6] proposed a semi
We present a semi-automatic approach to solve occlu-interactive approach to solve occlusion: the occluding ob-
sion in AR systems. Once the occluding objects have beelfects are segmented by hand in selected views called key-
segmented by hand in selected views called key-frames, thbtames. These silhouettes are used to build the 3D model
occluding boundary is computed automatically in the in- of the occluding object. The 2D occluding boundary is
termediate views. To do that, the 3D reconstruction of the then obtained by projecting the 3D shape in the intermediate
occluding boundary is achieved from the outlined silhou- frames. However, due to the uncertainty on the computed
ettes. This allows us to recover a good prediction of the interframe motion, the recovered 3D shape do not project
2D occluding boundary which is refined using region-based exactly onto the occluding objects in the key-frames nor in
tracking and active contour models. As a result, we get an the intermediate frames.
accurate estimation of the occluding objects. In this paper, we also use the concept of key-views but
Various results are presented demonstrating we do not attempt to build the 3D model of the occluding
occlusion resolution on real video sequences. objects from all the key-frames. The novelty in this paper
Results and videos are available at the URL: is twofold: (i) we do not attempt to recover the 3D model
http://www.loria.fr/"lepetit/Occlusions of the occluding objects from all the key-views. We only
compute the 3D occluding boundary from two consecutive
key views. The projection of this 3D curve is a good pre-
diction of the actual 2D occluding boundary in the interme-
diate frames. (ii) we recover the actual occluding boundary
. . : . with a good accuracy using deformable region-based track-
The objective of augmented reality (AR) is to add vir- ing followed by an adjustment stage basedsoakes This

tual objects to real video sequences, allowing computer- . . :
. . . . allows us to compensate easily for the interframe motion er-
generated objects to be overlaid on the video in such a man-

i . . ror. We then obtain an accurate estimation of the occluding
ner as to appear part of the viewed 3D scene. Applications
: . : boundary over the sequence.
include computer-aided surgery, tele-operations, and spe-
cial effects for the film and the broadcast industries. This )
paper concentrates on the particular application of video2. Overview of the system
post-production.

Realistic image composition requires that the augmented Theoretically, the 3D shape of the occluding object can
patterns be correctly occluded by foreground objects. How-be computed from its silhouettes detected in an image se-
ever, solving the occlusion problem for AR is challenging quence. For AR applications however, the interframe cam-
when little is known about the real world we wish to aug- era motion is computed from image/model correspondences
ment. Theoretically, resolving occlusion amounts to com- or with 2D/2D correspondences over time [4, 7]. The errors
pare the depth of the virtual objects to that of the real scene.resulting from this inaccurate registration makes the 3D re-
However, computing dense and accurate depth maps frontonstruction untractable. That is the reason why we only
images is difficult [9]. This explains why the accuracy of attempt to recover the 3D occluding boundary from two
the obtained occluding boundary is generally poor. More- consecutive key-frames instead of recovering the 3D shape
over, in most AR applications, the interframe motion is not of the occluding object from the whole sequence. Fig. 1
a priori known but must be computed. Inacurate motion es- explains the way we compute a first estimation of the 2D
timation thus results in possibly large reconstruction errors. occluding boundary in each frame of the sequence. First,

1. Introduction
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the user points out key-frames which correspond to views

where aspect changes of the occluding object occur. These ¢(p) = 1 LS~ dist? (ma, proj(Mi) + 5= ST
key-frames are framed in black in Fig. 1. The user also out- dzstQ(qk+1, eprr1(qh)) + dist* (g, epr(gii1))
lines the occluding object on these key-frames (in white). (1)

It is well known that the 3D occluding boundary depends
on the camera viewpoint. However, the starting point for 3.2. 3D reconstruction

our method is to build a good approximation of the 3D oc-

cluding boundary which will be used for all the frames be- ~ We will now take some time to examine the 3D recon-
tween two kew-views. This 3D curve is built using stereo- struction process of the OCCIUding bOUndaryin a little detail.
triangulation from the two silhouettes outlined by the user LetC1 andC; be the silhouettes detected in the key-frames.
provided that the translation between the two frames is not!n order to reconstruct thei r corresponding 3D curve, we
null (Fig. 1.a and b). The projection of this approximated first have to match the points 6, andC>. Letc; a point
occluding boundary on the intermediate frames thus pro-0f Ci. To find its correspondant, we determine the points
vides a fair estimation of the 2D occluding boundary (Fig. 1z ---c5} of C2 which lie on the epipolar line associated to
1.cand 1.d). c1, and the pointg§ct . .. ¢*} of C; which lie on the epipo-

Due to the uncertainty on the computed interframe mo- lar line passing by (see figure 2). Ifx # m, something
tion, this prediction can be relatively far from the actual gone wrong (due to epipolar geometry imprecision) and we
occluding boundary for at least two reasons (see for in- don't attribute any correspondantdp. If n = m, the con-
stance Fig. 7.a): (i) the computed 3D occluding bound- straint order along the epipolar lines says that there is an
ary is only an approximation of the real one because stereoindexi such as| = ¢; andcj = c,. Then, we can recover
triangulation is performed from two occluding contours. (ii) the 3D point which reprojects an andc,.
more importantly, errors on the camera parameters induce
reconstruction errors on the 3D curve and consequently er-
rors on its projection in the considered frame.

One of the main contributions of this paper is to show
that the error on the computed camera parameters can be
estimated. The uncertainty on the 3D occluding boundary
can then be deduced. This allows us to define a region
of interest around the predicted contour which is likely to
contain the actual occluding boundary (section 3). The re-
finement stage (section 4) is then carried out within this re-
gion: region-based tracking is first used to recover the re- Figure 2. Matching of (' and C
gion whose size and texture only differ from the predicted
shape with an affine transformation. Finally, active contour
models are used to adjust the occluding boundary.

As some parts of'; do not heave 3D counterpart {if-£
m), we still have to estimate the corresponding 3D curve by
interpolation. LetC” be a set of points that do not have 3D
) i corresponding points in the reconstruction process, and let
3. Reconstructing the 3D occluding boundary c11 andegs be its extremities, previously reconstructed as

C1; and(C4,. Estimating the corresponding 3D curve by
3.1. Computing the camera parameters the segmentC;; C12] would not be a good idea, because
the reprojection ofC11C42] is not generallyC’. A better

In this section we first briefly recall how we compute estimation is shown in figure 3: the corresponding 3D point
the camera motion over the sequence. Our approach td. of a pointc on C’ is computed as the nearest point to
motion computation takes advantage of 3D knowledge onthe segmentC;;C12] which belongs to the lingO¢;) (O
the scene as well as 2D/2D correspondences over time [7]the center of the camera). This way the estimated curve
Given the viewpoinfRy, t;] computed in a given frame  reprojection iC".
k, we compute the viewpoint in the next framek + 1 Note that if the key views correspond to very different
using the 3D model pointd/; whose projections are de- aspects of the occluding object, the reconstruction may fail
tected in framek 4+ 1. In addition, we use interest points because the number of intersections of the epipolar line with
[5] (q., q;H)lggm that are automatically extracted and the two outlines shapes are different for numerous points on
matched between framésandk + 1. The quality of the  the curves. That is the reason why the user has to choose
viewpoint can be assessed by the distance betvq;iggrand carefully the key-views in order to avoid this kind of prob-
the epipolar lineepy11(g;,). The viewpoint is therefore re-  lems. For an example, consider the case ofdbe se-
covered by minimizing: guencen section 5.2.
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Figure 1. Overview of the system.

proximated® by means of its Taylor equation:
1
2 ®(p) = O(p7) + VO(p*)'op+ 5p' Hp")op ()

O’é where H* is the hessian ob computed ap = p*. More
details on the computation éf * are given in Annex A.
As p* is the minimum of®, the gradient is null at the
Cu optimumV®(p*) = 0 and equation (2) becomes

* 1 *
®(p) ~ ®(p") + 50p"H(p")op
Figure 3. Estimation of the unreconstructed
parts of the 3D contour Thee indifference region is then defined by:

|6p" H (p*)dp| < 2€

3.3. Taking into account the error on the estimated

, which is the equation of a 6-dimensional ellipsoid.
motion

Fig.4 shows these indifference regions computed along
» ) ) . the Stanislas sequence (we use 1). The building in the
The critical role of motion error in scene reconstruction background is the 3D model used for registration. For each

has been pointed out in [8]. In this paper, we usedhe  frame of the sequence, we drew thiedifference region for
indifference region [1] to investigate the reliability of the na translation parameters.

estimated camera parameters and to deduce the uncertainty \we can now compute the reconstruction error on the oc-

on the 3D occluding boundary. o ~ cluding boundary from these indifference regions. If point
The fact that we have elected to minimize a function ¢qrespondences were available, the reconstruction error
®(p) means that we set some store by obtaining a low valueq iq he recovered in an analytical way from viewpoint un-
of this function. It is reasonablg to suppose that values of -grtainties [8]. Unfortunately, as we only have curve corre-
® almost as low a®" would satisfy us almost as much as  gnondences, the matched points depends on the viewpoint
®*. This gives rise to an indifference region irp spaceé  gng are computed as the intersection of the epipolar line
described by the equation: of the point withC,. We therefore resort to an exhaus-
eregion = {p such that|®(p) — d(p*)] < €} tive app_roach. We con_sidert_bgtre_ma_l viewpointst_hat are
the vertices of the 6-dimensional indifference ellipsoid. Let
In a sufficiently small neighborhood @f we may ap-  {p},...,pi2} (resp{pi, ..., pi?}) the extremal viewpoints in



Figure 5. Computation of the spatial uncer-
Figure 4. The indifference regions for the tainty on the predicted occluding boundary.
translation parameters over the Stanislas se-
guence.

4. Refining the occluding boundary

As a result of the prediction stage we get an estimate
of the occluding boundary along with its 2D uncertainty in
the considered frame. In addition we compute not only the
boundary but also the texture of the occluding object so as
to get apredicted templatef the occluding object. The
texturel;empiate IS cCOmputed from the nearest key-view by
using 2d local image transformation.

the two key-views. Letn; be a point onC;. Given an ex-
tremal viewpoint, we can compute the2 possible recon-
structions ofn; with the12 extremal views in key-frame 2.
Using thel2 extremal viewpoints in key-frame 1, we then
obtain12? extremal reconstructions of, according to the
uncertainty computed on the two key-views. The convex

hull of thesel44 points is a good approximation of the 3D We still have to determine the occluding object from the

reconstruction error om; . predicted templateDue to the error on the computed mo-
We can now predict the position of the 2D occluding tion and also because reconstruction is achieved from oc-
boundary in the in-between frames by simply reprojecting cluding contours, the template boundary can be relatively
the 3D occluding boundary. To estimate the 2D uncertainty far from the actual occluding object and their shapes can
on the projected boundary, we have to take into account ga|so differ (see for instance Fig. 7.a). However, it is im-
the 3D reconstruction error and the uncertainty on the con-portant to note that the actual boundary belongs to the com-
sidered viewpoint. We again resort to an exhaustive method:puted uncertainty region. Following previous works on de-
for each pointm; on C, the 12* possible extremal recon-  formable structures [2] we use a hierarchical algorithm; we
structions are projected onto the current frame using2he  first compute a global estimation of the shape deformation
extremal viewpoints of this frame. We define the spatial un- petween the key-frame and the current frame. Then we use
certainty on the predicted occluding boundary associated tog fine tuning deformation to adjust the details. As affine
m; as the convex hull of these2® image points. This area  transformations seem to be appropriate to describe shape
is denoted\; in the following. variations due to motion uncertainties, the affine motion that
The main stages for computing the 2D uncertainty on best matches the occluding template on the considered im-
the predicted occluding boundary are illustrated in Fig. 5: age is searched for:
Fig. 5.a exhibits a point on the predicted boundary and Fig.
5.b shows the projection of the corresponding 3D extremal transfq,(m) = {
points using the extremal viewpoints and the convex hull
A;. Finally, Fig. 7.a shows the 2D uncertainty computed The optimal parameter is defined as the one that yields
for each point of the predicted boundary (dotted line). The the best fit between the predicted templ&tg, ..+ and the
points are drawn with black circles or crosses and the un-currentimagd. The best match is defined as the minimum
certainty is drawn in white. The reader can notice that someof the correlation measure:

a1mg + agMmy + as
ayMy + asMy + ag

points on the steps have no associated spatial uncertainty. . .

Indeed, because the key silhouettes do not match exactly, ¥(a) = Zw“(z) (3)
the epipolar line computed with some extremal viewpoints '

does not always intersect,. If more than 50% of the at =W

epipolar lines computed with the2? extremal viewpoints ~ Ya()) = Y (Liemptate (mitd)—I(trans fo(mi+d)))*
do not intersects, the spatial uncertainty is not defined at dc,d¥ =-W

this point. (m; +d) € Re



where the predicted curvg is defined by the set of ver- Fig. 7 clearly proves the efficiency of incorporating mo-
tices{m;}i<i<n, d = (d*,d¥), W is the size of the cor-  tion errorinto our process. The uncertainty on the predicted
relation window andR; is the region inside”. Note that curve is drawn in white. The points;; that are outside
only the points which are inside the occluding objects are the uncertainty regiop; after the region based tracking are
considered in the estimation. This way, points belonging to shown black crosses, whereas the points inside the region
the changing background do no affect the matching processare drawn with black circles. For both images, the predicted

In addition, we have slightly modified the correlation 2D curve is shown in dotted lines. If the 2D uncertainty is
measure in order to take into account the 2D uncertaintynot considered (Fig. 7.a), the recovered boundary is erro-
on the predicted curve. A penalty term is used to ensureneous, especially near the steps. On the contrary, if points
that the matched point belongs Ag. The penalty has the are constrained to be in the uncertainty region, the occlud-
form aT¥2 wherea is a constant value. The function to be ing boundary is successfully recovered (Fig. 7.b).
minimized is therefore defined as:

S (Tremptate (mi + d) — I(trans fa(m; + d)))? 5.2. The cow sequence

Yali) = {if transfu(m:) € Ay | |
aW? otherwise. This sequence consists of 120 frames. The camera un-

_ _ _ _ _ dergoes various motions: translation along the optical axis

Note that if A; is not defined, or equivalently ih; = and also rotating motions. In this sequence, we want to

oo, the first item ofy, is used because the assumption add a brown cow just behind the black and white cow. The
transfo(m;) € A; is fullfiled. These points are therefore key views used to recover the 3D occluding boundaries as
considered in the correlation function without further con- well as the outlined boundaries are shown in Fig. 8. Note

straints. Finally, fine tuning adjustement of the occluding that some key views are very close (frames 30, 31, 40, 41).

boundary is performed with snakes franuns fo (C). This is because the aspect graph of the occluding object is
very complicated especially due to the legs of the cow: in
5. Results and discussion frame 30, only 3 legs are visible whereas the four legs are

visible in frame 31. Also between frame 40 and 41, three

The effectiveness of our approach is demonstrated onlegs are visible (two of them are pressed) whereas the four
three sequences: the Stanislas sequence, the cow Sequen@é;s are visible in frame 41. Fours legs are visible whereas
and the Loria sequence. Each of these sequence demoriwo of them are pressed in the next frame. The topology
strates the hability of our algorithm to handle occlusions in ©f the occluding boundary is then different between these
various situations. We want to prove that our algorithm is W0 frames. This leads us to define two key-views in or-
efficient even in some cases which are well known to be der that the 3D reconstruction and especially the matching
difficult both for viewpoint recovery and 3D reconstruction. Stage succeeds. The 3D occluding boundaries built from the
In the considered examples we especially adress the caskey-views are shownin Fig. 9 (firstrow). Also shown in the
of camera motions along the optical axes which are diffi- figure are zooms on the computed 2D occluding boundary
cult for the tracking task and the 3D reconstruction (see for frames 20, 35 and 110 so that the user can appreciate the
the cow sequence and the Loria sequence). We also con@ccuracy of the occluding boundary. Finally, some shap-
sider in the Loria sequence a camera path which goes to-Shots of the augmented scene are shown in Fig. 10. When
wards the occluding object and goes beyond it. Note thatlooking at the full video, the reader can notice that the com-

the original and the augmented videos can be seen at ouPOsition is very stable and realistic, even on the foreground
URL http://www.loria.fr/ lepetit/Occlusions of the scene, and that the added objects really appear part of

the 3D scene.

5.1. The Stanislas Sequence
5.3. The Loria sequence

The Stanislas sequence was shot from a car which turned
around the square. Our aim is to incrust a virtual plane pass- This sequence consists of 500 frames and was shot
ing behind the statue. Here, the 3D model of the opera isaround our laboratory, the LORIA. The dominant motion
used for registration (the building in the back of the scene) of the camera is a translation along the optical axis. Such
while the 3D model of the statue is unknown. The three key- a motion is known to be difficult both for motion recov-
frames chosen by the user are shown in Fig. 6 (frames 66ery and for 3D reconstruction. Indeed, the line of sight of
118, 150). Fig. 6 exhibits the recovered occluding boundary 3D points which lie in front of the camera are nearly par-
in the frames 15, 66 and 130. The overall visual impressionallel and small localization error on the corresponding 2D
is very good though the predicted boundary is sometimespoints may lead to large errors on the reconstructed point.
relatively far from the actual one. Besides this, another difficulty of this sequence originates



Figure 6. (first row) : The key-views along with the user-defined silhouette: frame 60, 118 and 150.
(second row): The recovered occluding boundary in the frames 15, 66,130 and the augmented scene.

Figure 7. The recovered occluding boundary without (a) and with (b) the use of the 2D uncertainty.
The predicted curve is shown with dotted lines. The points that belong to the uncertainty Aegioz shown with black
circles, whereas the points outsidlgare drawn with black crosses.



Figure 9. The cow sequence:
(first row) : The 3D occluding boundary built from the key views: (a) from frames 0 and 30, (b) from

frames 31 and 40, (c) from frames 41 and 120.
(last row) : The computed occlunding boundary (bold lines) in frames 20, 35 and 110 superimposed

on the original images.



Figure 10. Snapshots of the augmented scene : frames 5, 15, 35, 60, 80, 110.

in the place of the virtual object in the scene. The virtual 6. Conclusion

object stands near the camera path and is occluded by the

white post. As the camera moves, the size of the occluding We have presented a new approach for resolving occlu-

object increases. This can cause trouble both on the reconsion for AR tasks. The key concept is that fine detection

struction process and on the region based refinement stagef occluding boundary can be achieved with moderate user

In addition, the occluding boundary must be outlined with interaction. One of the main strengths of our algorithm con-

a good acuracy because the added object lies in the foreeerns its ability to handle uncertainties on the computed

ground of the scene and small errors are easily detected bynotion between two frames. Through judicious choice of

the human vision. key-frames, our approach seems to be more convenient and
more accurate than most existing approaches.

In this sequence, we only use two key-views (frames 0
and 327) because the aspect of the occluding object does
not change very much. Though the motion is a translation
along the optical axis, the viewpoint is correctely recovered puted at the minimum* of . @ is definedaésb(p) _
and the 3D reconstruction of the white post is quite good 1 S r2 4 A 2 where
(Fig. 11). The last row of Fig. 11 shows the result of the ™ “~"=' am =1
refinement stage for several frames. The predicted occluded ri = distQ(m;’yproj(Mi))v ) ,
boundary is drawn with dashed lined whereas the results of ~ vi° = dist? (qis1, eprra(ar)) + dist® (i, epr(disa))
the region based refinment stage is shown with bold lines. r2 andv;2 can be expressed as an analytical function
Although some predlctlon is sometlm_es relatively far from ¢ tho 6-dimensional vectar = (av, 8,7, s, t,, ) Using
the actual occluding boundary, the refinement stage succeeg,o t,ndamental matrix. Because the analytic expression
in recovering the actual boundary in nearly all cases. HOw- ¢ ihe second derivatives of2 with respect tg are really
ever, some problems arise at the end of the sequence WheQiniractable, we use an approximation to the first oréers
the light post is going to leave the image. This is because N \ oo\ (o0,
small errors on the viewpoint sometimes results in large re-2 2 ( 8pL> ( a,;‘) +om 2 ( aﬁ) ( op )
projection errors on the object and the prediction can be far
form the actual boundary (see Fig. 11.e). References

Annex A: Computing the HessianH*
The computation off* originates in [3],
H* is the value of the Hessia# = 2 (%2)! com-

2m

Finally, the scene has been augmented withoesche [1] V. Bard. Nonlinear Parametric EstimationAcademic Press,
which is parked in front of the building (Fig. 12). 1974,



Figure 11. The Loria sequence:

(first row) : The key-views (frame 0 and 327) and the 3D occluded boundary.

(second row) : Zoom on the predicted occluding boundary (dashed lines) and the recovered occlud-
ing boundary (bold lines) for frames 156, 216, 414, 441, 465.

= o

Figure 12. The augmented scene for the Loria sequence (frames 0, 100, 300, 400).
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