
Handling Occlusion in Augmented Reality Systems: A Semi-Automatic Method

Vincent Lepetit and Marie-Odile Berger
LORIA/INRIA Lorraine

BP 101, 54602 Villers les Nancy, France
{lepetit,berger}@loria.fr

Abstract

We present a semi-automatic approach to solve occlu-
sion in AR systems. Once the occluding objects have been
segmented by hand in selected views called key-frames, the
occluding boundary is computed automatically in the in-
termediate views. To do that, the 3D reconstruction of the
occluding boundary is achieved from the outlined silhou-
ettes. This allows us to recover a good prediction of the
2D occluding boundary which is refined using region-based
tracking and active contour models. As a result, we get an
accurate estimation of the occluding objects.

Various results are presented demonstrating
occlusion resolution on real video sequences.
Results and videos are available at the URL:
http://www.loria.fr/˜lepetit/Occlusions.

1. Introduction

The objective of augmented reality (AR) is to add vir-
tual objects to real video sequences, allowing computer-
generated objects to be overlaid on the video in such a man-
ner as to appear part of the viewed 3D scene. Applications
include computer-aided surgery, tele-operations, and spe-
cial effects for the film and the broadcast industries. This
paper concentrates on the particular application of video
post-production.

Realistic image composition requires that the augmented
patterns be correctly occluded by foreground objects. How-
ever, solving the occlusion problem for AR is challenging
when little is known about the real world we wish to aug-
ment. Theoretically, resolving occlusion amounts to com-
pare the depth of the virtual objects to that of the real scene.
However, computing dense and accurate depth maps from
images is difficult [9]. This explains why the accuracy of
the obtained occluding boundary is generally poor. More-
over, in most AR applications, the interframe motion is not
a priori known but must be computed. Inacurate motion es-
timation thus results in possibly large reconstruction errors.

In order to overcome problems stemming from possi-
bly large reconstruction errors, Ong [6] proposed a semi
interactive approach to solve occlusion: the occluding ob-
jects are segmented by hand in selected views called key-
frames. These silhouettes are used to build the 3D model
of the occluding object. The 2D occluding boundary is
then obtained by projecting the 3D shape in the intermediate
frames. However, due to the uncertainty on the computed
interframe motion, the recovered 3D shape do not project
exactly onto the occluding objects in the key-frames nor in
the intermediate frames.

In this paper, we also use the concept of key-views but
we do not attempt to build the 3D model of the occluding
objects from all the key-frames. The novelty in this paper
is twofold: (i) we do not attempt to recover the 3D model
of the occluding objects from all the key-views. We only
compute the 3D occluding boundary from two consecutive
key views. The projection of this 3D curve is a good pre-
diction of the actual 2D occluding boundary in the interme-
diate frames. (ii) we recover the actual occluding boundary
with a good accuracy using deformable region-based track-
ing followed by an adjustment stage based onsnakes. This
allows us to compensate easily for the interframe motion er-
ror. We then obtain an accurate estimation of the occluding
boundary over the sequence.

2. Overview of the system

Theoretically, the 3D shape of the occluding object can
be computed from its silhouettes detected in an image se-
quence. For AR applications however, the interframe cam-
era motion is computed from image/model correspondences
or with 2D/2D correspondences over time [4, 7]. The errors
resulting from this inaccurate registration makes the 3D re-
construction untractable. That is the reason why we only
attempt to recover the 3D occluding boundary from two
consecutive key-frames instead of recovering the 3D shape
of the occluding object from the whole sequence. Fig. 1
explains the way we compute a first estimation of the 2D
occluding boundary in each frame of the sequence. First,
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the user points out key-frames which correspond to views
where aspect changes of the occluding object occur. These
key-frames are framed in black in Fig. 1. The user also out-
lines the occluding object on these key-frames (in white).
It is well known that the 3D occluding boundary depends
on the camera viewpoint. However, the starting point for
our method is to build a good approximation of the 3D oc-
cluding boundary which will be used for all the frames be-
tween two kew-views. This 3D curve is built using stereo-
triangulation from the two silhouettes outlined by the user
provided that the translation between the two frames is not
null (Fig. 1.a and b). The projection of this approximated
occluding boundary on the intermediate frames thus pro-
vides a fair estimation of the 2D occluding boundary (Fig.
1.c and 1.d).

Due to the uncertainty on the computed interframe mo-
tion, this prediction can be relatively far from the actual
occluding boundary for at least two reasons (see for in-
stance Fig. 7.a): (i) the computed 3D occluding bound-
ary is only an approximation of the real one because stereo-
triangulation is performed from two occluding contours. (ii)
more importantly, errors on the camera parameters induce
reconstruction errors on the 3D curve and consequently er-
rors on its projection in the considered frame.

One of the main contributions of this paper is to show
that the error on the computed camera parameters can be
estimated. The uncertainty on the 3D occluding boundary
can then be deduced. This allows us to define a region
of interest around the predicted contour which is likely to
contain the actual occluding boundary (section 3). The re-
finement stage (section 4) is then carried out within this re-
gion: region-based tracking is first used to recover the re-
gion whose size and texture only differ from the predicted
shape with an affine transformation. Finally, active contour
models are used to adjust the occluding boundary.

3. Reconstructing the 3D occluding boundary

3.1. Computing the camera parameters

In this section we first briefly recall how we compute
the camera motion over the sequence. Our approach to
motion computation takes advantage of 3D knowledge on
the scene as well as 2D/2D correspondences over time [7].
Given the viewpoint[Rk, tk] computed in a given frame
k, we compute the viewpointp in the next framek + 1
using the 3D model pointsMi whose projections are de-
tected in framek + 1. In addition, we use interest points
[5] (qik, q

i
k+1)1≤i≤m that are automatically extracted and

matched between framesk andk + 1. The quality of the
viewpoint can be assessed by the distance betweenqik+1 and
the epipolar lineepk+1(qik). The viewpoint is therefore re-
covered by minimizing:

Φ(p) = 1
n

∑n

i=1
dist2(mi, proj(Mi) + λ

2m

∑m

i=1

dist2(qik+1, epk+1(qik)) + dist2(qik, epk(qik+1))
(1)

3.2. 3D reconstruction

We will now take some time to examine the 3D recon-
struction process of the occluding boundary in a little detail.
LetC1 andC2 be the silhouettes detected in the key-frames.
In order to reconstruct thei r corresponding 3D curve, we
first have to match the points ofC1 andC2. Let c1 a point
ofC1. To find its correspondantc2, we determine the points
{c12 . . . cn2} ofC2 which lie on the epipolar line associated to
c1, and the points{c11 . . . cm1 } of C1 which lie on the epipo-
lar line passing byc1 (see figure 2). Ifn 6= m, something
gone wrong (due to epipolar geometry imprecision) and we
don’t attribute any correspondant toc1. If n = m, the con-
straint order along the epipolar lines says that there is an
indexi such asci1 = c1 andci2 = c2. Then, we can recover
the 3D point which reprojects onc1 andc2.

C1

C2

2c
1c

Figure 2. Matching of C1 and C2

As some parts ofC1 do not heave 3D counterpart (ifn 6=
m), we still have to estimate the corresponding 3D curve by
interpolation. LetC′ be a set of points that do not have 3D
corresponding points in the reconstruction process, and let
c11 andc22 be its extremities, previously reconstructed as
C11 andC12. Estimating the corresponding 3D curve by
the segment[C11C12] would not be a good idea, because
the reprojection of[C11C12] is not generallyC′. A better
estimation is shown in figure 3: the corresponding 3D point
Ic of a pointc on C′ is computed as the nearest point to
the segment[C11C12] which belongs to the line[Oc1) (O
the center of the camera). This way the estimated curve
reprojection isC′.

Note that if the key views correspond to very different
aspects of the occluding object, the reconstruction may fail
because the number of intersections of the epipolar line with
the two outlines shapes are different for numerous points on
the curves. That is the reason why the user has to choose
carefully the key-views in order to avoid this kind of prob-
lems. For an example, consider the case of thecow se-
quencein section 5.2.
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Figure 3. Estimation of the unreconstructed
parts of the 3D contour

3.3. Taking into account the error on the estimated
motion

The critical role of motion error in scene reconstruction
has been pointed out in [8]. In this paper, we use theε
indifference region [1] to investigate the reliability of the
estimated camera parameters and to deduce the uncertainty
on the 3D occluding boundary.

The fact that we have elected to minimize a function
Φ(p) means that we set some store by obtaining a low value
of this function. It is reasonable to suppose that values of
Φ almost as low asΦ∗ would satisfy us almost as much as
Φ∗. This gives rise to anε indifference region inp space
described by the equation:

εregion = {p such that|Φ(p)− Φ(p∗)| ≤ ε}

In a sufficiently small neighborhood ofp∗ we may ap-

proximateΦ by means of its Taylor equation:

Φ(p) ≈ Φ(p∗) +∇Φ(p∗)tδp+
1
2
δptH(p∗)δp (2)

whereH∗ is the hessian ofΦ computed atp = p∗. More
details on the computation ofH∗ are given in Annex A.

As p∗ is the minimum ofΦ, the gradient is null at the
optimum∇Φ(p∗) = 0 and equation (2) becomes

Φ(p) ≈ Φ(p∗) +
1
2
δptH(p∗)δp

Theε indifference region is then defined by:

|δptH(p∗)δp| ≤ 2ε

which is the equation of a 6-dimensional ellipsoid.
Fig.4 shows these indifference regions computed along

the Stanislas sequence (we useε = 1). The building in the
background is the 3D model used for registration. For each
frame of the sequence, we drew theε indifference region for
the translation parameters.

We can now compute the reconstruction error on the oc-
cluding boundary from these indifference regions. If point
correspondences were available, the reconstruction error
could be recovered in an analytical way from viewpoint un-
certainties [8]. Unfortunately, as we only have curve corre-
spondences, the matched points depends on the viewpoint
and are computed as the intersection of the epipolar line
of the point withC2. We therefore resort to an exhaus-
tive approach. We consider theextremal viewpoints, that are
the vertices of the 6-dimensional indifference ellipsoid. Let
{p1

1, ..., p
12
1 } (resp{p1

2, ..., p
12
2 }) the extremal viewpoints in



Figure 4. The indifference regions for the
translation parameters over the Stanislas se-
quence.

the two key-views. Letm1 be a point onC1. Given an ex-
tremal viewpointp1, we can compute the12 possible recon-
structions ofm1 with the12 extremal views in key-frame 2.
Using the12 extremal viewpoints in key-frame 1, we then
obtain122 extremal reconstructions ofm1 according to the
uncertainty computed on the two key-views. The convex
hull of these144 points is a good approximation of the 3D
reconstruction error onm1.

We can now predict the position of the 2D occluding
boundary in the in-between frames by simply reprojecting
the 3D occluding boundary. To estimate the 2D uncertainty
on the projected boundaryC, we have to take into account
the 3D reconstruction error and the uncertainty on the con-
sidered viewpoint. We again resort to an exhaustive method:
for each pointmi on C, the 122 possible extremal recon-
structions are projected onto the current frame using the12
extremal viewpoints of this frame. We define the spatial un-
certainty on the predicted occluding boundary associated to
mi as the convex hull of these123 image points. This area
is denotedΛi in the following.

The main stages for computing the 2D uncertainty on
the predicted occluding boundary are illustrated in Fig. 5:
Fig. 5.a exhibits a point on the predicted boundary and Fig.
5.b shows the projection of the corresponding 3D extremal
points using the extremal viewpoints and the convex hull
Λi. Finally, Fig. 7.a shows the 2D uncertainty computed
for each point of the predicted boundary (dotted line). The
points are drawn with black circles or crosses and the un-
certainty is drawn in white. The reader can notice that some
points on the steps have no associated spatial uncertainty.
Indeed, because the key silhouettes do not match exactly,
the epipolar line computed with some extremal viewpoints
does not always intersectC2. If more than 50% of the
epipolar lines computed with the122 extremal viewpoints
do not intersectC2, the spatial uncertainty is not defined at
this point.

a. b.

Figure 5. Computation of the spatial uncer-
tainty on the predicted occluding boundary.

4. Refining the occluding boundary

As a result of the prediction stage we get an estimate
of the occluding boundary along with its 2D uncertainty in
the considered frame. In addition we compute not only the
boundary but also the texture of the occluding object so as
to get apredicted templateof the occluding object. The
textureItemplate is computed from the nearest key-view by
using 2d local image transformation.

We still have to determine the occluding object from the
predicted template. Due to the error on the computed mo-
tion and also because reconstruction is achieved from oc-
cluding contours, the template boundary can be relatively
far from the actual occluding object and their shapes can
also differ (see for instance Fig. 7.a). However, it is im-
portant to note that the actual boundary belongs to the com-
puted uncertainty region. Following previous works on de-
formable structures [2] we use a hierarchical algorithm; we
first compute a global estimation of the shape deformation
between the key-frame and the current frame. Then we use
a fine tuning deformation to adjust the details. As affine
transformations seem to be appropriate to describe shape
variations due to motion uncertainties, the affine motion that
best matches the occluding template on the considered im-
age is searched for:

transfa(m) =
{
a1mx + a2my + a3

a4mx + a5my + a6

The optimal parametera is defined as the one that yields
the best fit between the predicted templateItemplate and the
current imageI. The best match is defined as the minimum
of the correlation measure:

Ψ(a) =
∑
i

ψa(i) (3)

ψa(i) =
dx,dy=W∑

dx, dy = −W
(mi + d) ∈ RC

(Itemplate(mi+d)−I(transfa(mi+d)))2



where the predicted curveC is defined by the set of ver-
tices{mi}1≤i≤n, d = (dx, dy), W is the size of the cor-
relation window andRC is the region insideC. Note that
only the points which are inside the occluding objects are
considered in the estimation. This way, points belonging to
the changing background do no affect the matching process.

In addition, we have slightly modified the correlation
measure in order to take into account the 2D uncertainty
on the predicted curve. A penalty term is used to ensure
that the matched point belongs toΛi. The penalty has the
formαW 2 whereα is a constant value. The function to be
minimized is therefore defined as:

ψa(i) =


∑
d(Itemplate(mi + d)− I(transfa(mi + d)))2

if transfa(mi) ∈ Λi,
αW 2 otherwise.

Note that if Λi is not defined, or equivalently ifΛi =
∞, the first item ofψa is used because the assumption
transfa(mi) ∈ Λi is fullfiled. These points are therefore
considered in the correlation function without further con-
straints. Finally, fine tuning adjustement of the occluding
boundary is performed with snakes fromtransfa(C).

5. Results and discussion

The effectiveness of our approach is demonstrated on
three sequences: the Stanislas sequence, the cow sequence
and the Loria sequence. Each of these sequence demon-
strates the hability of our algorithm to handle occlusions in
various situations. We want to prove that our algorithm is
efficient even in some cases which are well known to be
difficult both for viewpoint recovery and 3D reconstruction.
In the considered examples we especially adress the case
of camera motions along the optical axes which are diffi-
cult for the tracking task and the 3D reconstruction (see
the cow sequence and the Loria sequence). We also con-
sider in the Loria sequence a camera path which goes to-
wards the occluding object and goes beyond it. Note that
the original and the augmented videos can be seen at out
URL http://www.loria.fr/˜lepetit/Occlusions

5.1. The Stanislas Sequence

The Stanislas sequence was shot from a car which turned
around the square. Our aim is to incrust a virtual plane pass-
ing behind the statue. Here, the 3D model of the opera is
used for registration (the building in the back of the scene)
while the 3D model of the statue is unknown. The three key-
frames chosen by the user are shown in Fig. 6 (frames 66,
118, 150). Fig. 6 exhibits the recovered occluding boundary
in the frames 15, 66 and 130. The overall visual impression
is very good though the predicted boundary is sometimes
relatively far from the actual one.

Fig. 7 clearly proves the efficiency of incorporating mo-
tion error into our process. The uncertainty on the predicted
curve is drawn in white. The pointsmi that are outside
the uncertainty regionΛi after the region based tracking are
shown black crosses, whereas the points inside the region
are drawn with black circles. For both images, the predicted
2D curve is shown in dotted lines. If the 2D uncertainty is
not considered (Fig. 7.a), the recovered boundary is erro-
neous, especially near the steps. On the contrary, if points
are constrained to be in the uncertainty region, the occlud-
ing boundary is successfully recovered (Fig. 7.b).

5.2. The cow sequence

This sequence consists of 120 frames. The camera un-
dergoes various motions: translation along the optical axis
and also rotating motions. In this sequence, we want to
add a brown cow just behind the black and white cow. The
key views used to recover the 3D occluding boundaries as
well as the outlined boundaries are shown in Fig. 8. Note
that some key views are very close (frames 30, 31, 40, 41).
This is because the aspect graph of the occluding object is
very complicated especially due to the legs of the cow: in
frame 30, only 3 legs are visible whereas the four legs are
visible in frame 31. Also between frame 40 and 41, three
legs are visible (two of them are pressed) whereas the four
legs are visible in frame 41. Fours legs are visible whereas
two of them are pressed in the next frame. The topology
of the occluding boundary is then different between these
two frames. This leads us to define two key-views in or-
der that the 3D reconstruction and especially the matching
stage succeeds. The 3D occluding boundaries built from the
key-views are shown in Fig. 9 (first row). Also shown in the
figure are zooms on the computed 2D occluding boundary
for frames 20, 35 and 110 so that the user can appreciate the
accuracy of the occluding boundary. Finally, some snap-
shots of the augmented scene are shown in Fig. 10. When
looking at the full video, the reader can notice that the com-
position is very stable and realistic, even on the foreground
of the scene, and that the added objects really appear part of
the 3D scene.

5.3. The Loria sequence

This sequence consists of 500 frames and was shot
around our laboratory, the LORIA. The dominant motion
of the camera is a translation along the optical axis. Such
a motion is known to be difficult both for motion recov-
ery and for 3D reconstruction. Indeed, the line of sight of
3D points which lie in front of the camera are nearly par-
allel and small localization error on the corresponding 2D
points may lead to large errors on the reconstructed point.
Besides this, another difficulty of this sequence originates



Figure 6. (first row) : The key-views along with the user-defined silhouette: frame 60, 118 and 150.
(second row): The recovered occluding boundary in the frames 15, 66,130 and the augmented scene.

a.

regionsΛ i

b.

Figure 7. The recovered occluding boundary without (a) and with (b) the use of the 2D uncertainty.
The predicted curve is shown with dotted lines. The points that belong to the uncertainty regionΛi are shown with black
circles, whereas the points outsideΛi are drawn with black crosses.



Figure 8. The key-frames for the cow sequence: frames 0, 30, 31, 40, 41, 120.

b c

120414031300

a

20
35

110

Figure 9. The cow sequence:
(first row) : The 3D occluding boundary built from the key views: (a) from frames 0 and 30, (b) from
frames 31 and 40, (c) from frames 41 and 120.
(last row) : The computed occlunding boundary (bold lines) in frames 20, 35 and 110 superimposed
on the original images.



Figure 10. Snapshots of the augmented scene : frames 5, 15, 35, 60, 80, 110.

in the place of the virtual object in the scene. The virtual
object stands near the camera path and is occluded by the
white post. As the camera moves, the size of the occluding
object increases. This can cause trouble both on the recon-
struction process and on the region based refinement stage.
In addition, the occluding boundary must be outlined with
a good acuracy because the added object lies in the fore-
ground of the scene and small errors are easily detected by
the human vision.

In this sequence, we only use two key-views (frames 0
and 327) because the aspect of the occluding object does
not change very much. Though the motion is a translation
along the optical axis, the viewpoint is correctely recovered
and the 3D reconstruction of the white post is quite good
(Fig. 11). The last row of Fig. 11 shows the result of the
refinement stage for several frames. The predicted occluded
boundary is drawn with dashed lined whereas the results of
the region based refinment stage is shown with bold lines.
Although some prediction is sometimes relatively far from
the actual occluding boundary, the refinement stage succeed
in recovering the actual boundary in nearly all cases. How-
ever, some problems arise at the end of the sequence when
the light post is going to leave the image. This is because
small errors on the viewpoint sometimes results in large re-
projection errors on the object and the prediction can be far
form the actual boundary (see Fig. 11.e).

Finally, the scene has been augmented with aporsche
which is parked in front of the building (Fig. 12).

6. Conclusion

We have presented a new approach for resolving occlu-
sion for AR tasks. The key concept is that fine detection
of occluding boundary can be achieved with moderate user
interaction. One of the main strengths of our algorithm con-
cerns its ability to handle uncertainties on the computed
motion between two frames. Through judicious choice of
key-frames, our approach seems to be more convenient and
more accurate than most existing approaches.

Annex A: Computing the HessianH∗

The computation ofH∗ originates in [3],
H∗ is the value of the HessianH = ∂

∂z (∂Φ
∂z )t com-

puted at the minimump∗ of Φ. Φ is defined asΦ(p) =
1
n

∑n

i=1
ri

2 + λ
2m

∑m

i=1
vi

2 where

ri
2 = dist2(mi, proj(Mi))

vi
2 = dist2

(
qik+1, epk+1(qik)

)
+ dist2

(
qik, epk(qik+1)

)
ri

2 andvi2 can be expressed as an analytical function
of the 6-dimensional vectorp = (α, β, γ, tx, ty, tz) using
the fundamental matrix. Because the analytic expression
of the second derivatives ofvi2 with respect top are really
untractable, we use an approximation to the first order:H ≈
2
∑

1
n

(
∂ri
∂p

)t(
∂ri
∂p

)
+ λ

2m

∑(
∂vi
∂p

)t(
∂vi
∂p

)
.
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Figure 11. The Loria sequence:
(first row) : The key-views (frame 0 and 327) and the 3D occluded boundary.
(second row) : Zoom on the predicted occluding boundary (dashed lines) and the recovered occlud-
ing boundary (bold lines) for frames 156, 216, 414, 441, 465.

Figure 12. The augmented scene for the Loria sequence (frames 0, 100, 300, 400).
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