
Generic Construction of Consensus Algorithms for Benign and Byzantine Faults

Olivier Rütti Zarko Milosevic André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

{olivier.rutti,zarko.milosevic,andre.schiper}@epfl.ch

Abstract

The paper proposes a generic consensus algorithm that
highlights the basic and common features of known consen-
sus algorithms. The parameters of the generic algorithm
encapsulate the core differences between various consensus
algorithms, including leader-based and leader-free algo-
rithms, addressing benign faults, authenticated Byzantine
faults and Byzantine faults. This leads to the identification
of three classes of consensus algorithms. With the proposed
classification, Paxos and PBFT indeed belong to the same
class, while FaB Paxos belongs to a different class. Interest-
ingly, the classification allowed us to identify a new Byzan-
tine consensus algorithm that requires n > 4b, where b is
the maximum number of Byzantine processes.

1 Introduction

Consensus is a fundamental and difficult problem in fault
tolerant distributed computing. This explains the numerous
consensus algorithms that have been published, with dif-
ferent features and for different fault models. Considering
these numerous algorithms, it would be helpful to classify
them, in order to identify the basic mechanisms on which
they rely. This would allow a better understanding of con-
sensus algorithms, particularly for a classification encom-
passing benign faults and malicious (Byzantine) faults.

The paper provides such a classification by proposing a
generic consensus algorithm, which highlights the basic and
common features of known consensus algorithms. The pa-
rameters of the generic algorithm encapsulate the core dif-
ferences between various consensus algorithms, including
leader-based and leader-free algorithms, addressing benign
faults, authenticated Byzantine faults and Byzantine faults.
Instantiations of the parameters allow us to obtain these var-
ious algorithms. The generic algorithm also allows us to
discuss randomized consensus algorithms.

The generic algorithm consists of successive phases,
where each phase is composed of three rounds: a selection

round, a validation round and a decision round. The val-
idation round may be skipped by some algorithms, which
introduces a first dichotomy among consensus algorithms:
those that require the validation round, and the others for
which the validation round is not necessary. We further sub-
divide the former class in two, based on the state variables
required. This lead us to identify three classes of consen-
sus algorithms, and tradeoffs between these classes. With
this classification, Paxos [11] (benign faults) and PBFT [4]
(Byzantine faults) indeed belong to the same class, while
FaB Paxos [16] belongs to a different class. Interestingly,
the classification allowed us to identify a new Byzantine
consensus algorithm that requires n > 4b (inbetween the
requirement n > 5b of FaB Paxos and n > 3b of PBFT).1

Our generic algorithm is based on four parameters: the
FLV function, the Selector function, the threshold param-
eter TD , and the flag FLAG (∗ or φ). The functions FLV
and Selector are characterized by abstract properties; TD

is defined with respect to n (number of processes), f (max-
imum number of benign faults) and b (maximum number
of Byzantine processes). We can prove correctness of the
generic consensus algorithm by referring only to the ab-
stract properties of our parameters. The correctness proof
of any specific instantiated consensus algorithm consists
simply in proving that the instantiations satisfy the abstract
properties of the corresponding functions.

The paper is not the first one to propose a generic con-
sensus algorithm, but it goes beyond previous approaches.
Mostéfaoui et al. [18] propose a consensus framework re-
stricted to benign faults, which allows unification of leader
oracle, random oracle and failure detector oracle. Guer-
raoui and Raynal [9] propose a generic consensus algo-
rithm, where generality is encapsulated in a function called
Lambda. The Lambda function encapsulates both our se-
lection and our validation rounds. This does not allow the
authors of [9] to identify the differences between two of
our three classes of consensus algorithms. Moreover, as
for [18], the paper is restricted to benign faults. Later, Guer-
rraoui and Raynal [10] propose a generic version of Paxos in

1b is the maximum number of Byzantine processes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

which communication (using shared memory, storage area
networks, message passing channels or active disks) is en-
capsulated in the Omega abstraction. The paper is also re-
stricted to benign faults. Apart from this work, several other
authors proposed abstractions related to Paxos-like proto-
cols, e.g., [13] and [14]. Recently, Song et al. [20] proposed
building blocks that allow the construction of consensus al-
gorithms. They consider both benign and Byzantine faults.
However, they ignore some seminal consensus algorithms
such as PBFT and FaB Paxos, and their framework there-
fore has a somehow limited scope.

The rest of the paper is organized as follows. Section 2
is devoted to the system model and to definitions. Section 3
introduces the generic consensus algorithm and its param-
eters. Section 4 presents three classes of instantiations for
these parameters, and classifies consensus algorithms such
as Paxos, FaB Paxos, PBFT into these classes. Section 5
gives examples of instantiations of the generic algorithm.
In Section 6 we show how the generic algorithm can be
adapted to include randomized consensus algorithms, and
Section 7 concludes the paper.

2 Model and Definitions

2.1 System Model

We consider a variant of a partially synchronous sys-
tem [7]: we assume that the system alternates between good
periods (during which the system is synchronous) and bad
periods (during which the system is asynchronous). We
differentiate honest processes that execute algorithms faith-
fully, from Byzantine processes [12], that exhibit arbitrary
behavior. Honest processes can be correct or faulty. An
honest process is faulty if it eventually crashes, and is cor-
rect otherwise. Among the n processes in our system, we
assume at most b Byzantine processes and at most f faulty
(honest) processes. The set of all processes is denoted by
Π, the set of honest processes by H and the set of correct
processes by C.

Round Model. Distributed algorithms can be expressed as
a sequence of rounds. In each round r, a process p sends a
message to a subset of processes according to a “sending”
function Srp , and at the end of this round, computes a new
state according to a “transition” function T rp that takes as
input the vector of messages it received at round r and its
current state. Note that this implies that a message sent in
round r can only be received in round r (rounds are closed).

Honest processes cannot be impersonated: if an honest
process receives v from p in round r, and p is honest, then
p sent v in round r. The state of process p in round r is de-
noted by srp; the message sent by an honest2 process is de-

2Note that referring to the state of a Byzantine process does not make

noted by Srp(srp); messages received by process p in round r
are denoted by ~µrp (~µrp[q] is the message received from q) .

Communication Predicates. During good periods of our
partially synchronous system, we assume the following two
communication predicates that are sufficient to solve con-
sensus: Pgood and Pcons. The predicate Pgood ensures that
correct processes receive every message sent by a correct
process:

Pgood(r) ≡ ∀p, q ∈ C : ~µrp[q] = Srq (srq)

An implementation of Pgood on top of the basic par-
tially synchronous system model with benign and Byzan-
tine faults has been proposed in [7].

The predicate Pcons provides the same guarantees as the
predicate Pgood , but additionally ensures that each correct
process receives the same set of messages. In the benign
fault model (i.e., b = 0), this predicate can be implemented
using the implementation of Pgood described in [7] if we as-
sume that no crash occurs in good periods. In the Byzantine
fault model (i.e., b 6= 0), several implementations of Pcons
have been proposed [17, 2]:

Pcons(r) ≡ Pgood(r) ∧ ∀p, q ∈ C : ~µrp = ~µrq

Based on these definitions, we define the notion of a
good phase. A phase is a sequence of rounds. A good
phase φ of k rounds is defined as a phase such that Pcons
holds in the first round, and Pgood holds in the remaining
k − 1 rounds.

2.2 Unifying Byzantine Faults

Two different models for Byzantine faults have been
considered in literature [7]: (1) authenticated Byzantine
faults, where messages can be signed by the sending pro-
cess (with the assumption that signatures cannot be forged
by any other process), and (2) Byzantine faults, where there
is no mechanism for signatures (but the receiver of a mes-
sage knows the identity of the sender).3

As shown in [17], the predicate Pcons allows the uni-
fication of these two fault models: (i) Pcons allows us to
express a generic consensus algorithm that is the same for
both fault models, and (ii) Pcons can be implemented out of
Pgood in the two fault models. The implementation in the
authenticated Byzantine fault model is simpler and requires
two rounds; three rounds are needed in the Byzantine fault
model. To summarize, the predicate Pcons allows us to de-
scribe consensus algorithms without making difference be-
tween authenticated Byzantine faults and Byzantine faults.
Therefore, in the paper we use the term Byzantine faults for
both fault models, except if explicitly mentioned.

sense.
3In [12], these models are respectively called (1) Byzantine faults with

signed messages, and (2) Byzantine faults with oral messages.

2.3 The Consensus Problem

In the consensus problem, each process starts with a
given initial value, and later possibly decides on a value.
The problem is specified by the following properties:

• Agreement: No two honest processes decide differently;

• Termination: All correct processes eventually decide;

• Validity: If all processes are honest and if an honest pro-
cess decides v, then v is the initial value of some process;

• Unanimity [20]: If all honest processes have the same ini-
tial value v and an honest process decides, then it decides v.
Unanimity (which extends validity) is optional, and only
makes sense with Byzantine processes.

Locked Value. In the context of a consensus algorithm, we
refer below to the notion of locked value.4 This notion has
similarities with the notion of univalent configuration de-
fined in [8], but is actually different (see below). A value v
is locked in round r if:

1. An honest process has decided v in round r′ < r, or

2. All honest processes have the same initial value v.

Item 2 is meaningful only if unanimity must be ensured,
or if all processes are honest. In all other cases, item 2 can
be ignored. From this definition it follows that, if v is locked
in the context of a consensus algorithm then the configura-
tion is v-valent. However, the opposite is not true (e.g., if
a configuration is v-valent in round r, and the first honest
process p decides v in round r′ ≥ r, then v is not locked in
round r, but only in round r′ + 1 > r).

3 A Generic Consensus Algorithm

We now present a generic algorithm (see Algorithm 1),
from which well-known consensus algorithms can be in-
stantiated (see Section 5). Generality is obtained by
parametrization of Algorithm 1: parameters appear in a box.

3.1 Generic Algorithm

The generic Algorithm 1 consists of a sequence of
phases that can be seen as successive trials to decide on
a value. Each phase φ consists of three rounds, respec-
tively called selection round (r = 3φ−2), validation round
(r = 3φ − 1), and decision round (r = 3φ). We will see
that some values of the parameters allow us to skip the val-
idation round. We first describe process states, and then the
three rounds.

4Note that the definition of the term locked value in some other works
differs from our definition.

Process State. The state of each process p is defined by
three variables. Some instantiations of the generic Algo-
rithm 1 do not need all three variables.

Variable votep represents the value considered for deci-
sion by process p. This variable is initialized with the initial
value initp of process p. Variable tsp represents the most
recent phase in which the vote of process p has been val-
idated during the validation round. Variable historyp is a
list of pairs (v, φ), each pair denoting that votep has been
set to v in the selection round of phase φ. In the context of
Byzantine processes, variable historyp is used to prove that
some value v may have been validated in some phase φ; in
the context of benign faults, the variable historyp can be
ignored. The size of variable historyp is unbounded,5 and
both tsp and historyp can be ignored in some instantiations
of our generic algorithm.

The Selection Round (r = 3φ − 2). The selection round
has two roles. First, it allows processes to elect a set of
processes, called validators, that have a special role in the
next validation round. The election is based on the proposal
of each process, which is locally returned by the function
Selector(p, φ). The function Selector(p, φ) outputs a set
of processes S ⊆ Π and is formally defined in Section 3.2.

The second role of the selection round is for validators
to select a value that will be considered for the decision.
The selection is implemented by the function FLV (~µrp)
(stands for ”F ind the Locked V alue”), where ~µrp is the set
of messages 〈votep, tsp, historyp,−〉 received in the selec-
tion round. When a value v is locked, no value v′ 6= v can
be returned by FLV (~µrp). On the other hand, if any value
can be selected, then FLV (~µrp) may return ?. If no enough
information is provided to FLV (~µrp) (which may occur, for
instance, if a validator does not receive any message during
a selection round), then null is returned. A formal defini-
tion of FLV (~µrp) can be found in Section 3.2.

The selection round is executed as follows. Each pro-
cess p first sends its state and the set S of processes output
by function Selector(p, φ) to the processes in S (line 7).
Based on the set of messages received, each honest process
selects a value (line 9). If any value can be selected (i.e.,
FLV (~µrp) returns ?), the selected value is deterministically
chosen among ~µrp (lines 10-11). When a value has been se-
lected (i.e., selectedp 6= null), process p sets its vote to
the selected value, and logs the selected value in the history
(lines 12-14). At the end of the selection round the set of
validators for the next round is elected. Line 15 guarantees
that all honest processes that consider a non-empty set of
validators, have the same set of validators.

For termination, the selection round must ensure that all
correct validators have selected the same value. This is en-

5Bounding the size of the variable historyp requires an additional
round of communication. More details can be found in [3].

Algorithm 1 Generic Algorithm
1: Initialization:
2: votep := initp /* value considered for consensus */
3: tsp := 0 /* last phase in which votep has been validated */
4: historyp := {(initp, 0)} /* updates to the variable votep */

5: Selection Round r = 3φ− 2: /* round in which Pcons must eventually hold */
6: Sr

p :

7: send 〈votep, tsp, historyp, Selector(p, φ) 〉 to Selector(p, φ)

8: T r
p :

9: selectp ← FLV (~µ
r
p)

10: if selectp = ? then
11: selectp ← choose deterministically a value in

{
v : 〈v,−,−,−〉 ∈ ~µr

p

}
12: if selectp 6= null then
13: votep ← selectp
14: historyp ← historyp ∪ {(votep, φ)}

15: validatorsp ← S if exists the set S such that more than n+b
2 messages 〈−,−,−, S〉 have been received else ∅

16: Validation Round r = 3φ− 1: /* round in which Pgood must eventually hold */
17: Sr

p :

18: if p ∈ validatorsp then
19: send 〈selectp, validatorsp〉 to all
20: T r

p :
21: validatorsp ← S if exists the set S such that b+ 1 messages 〈−, S〉 has been received else ∅

22: if there is a value v such that |
{
q ∈ validatorsp :~µr

p[q] = 〈v,−〉
}
| > |validatorsp|+b

2 then
23: votep ← v
24: tsp ← φ
25: else
26: votep ← v such that (v, tsp) ∈ historyp /* revert the value of votep to ensure consistency with tsp */

27: Decision Round r = 3φ: /* round in which Pgood must eventually hold */
28: Sr

p :
29: send 〈votep, tsp〉 to all

30: T r
p :

31: if received at least TD messages with the same value 〈v, FLAG 〉 then
32: DECIDE v

sured wheneverPcons holds,6 since all correct processes ex-
ecute the function FLV (~µrp) on the same set of messages.

Optimization: The selection round can be suppressed in the
first phase. This requires to initialize the variable selectedp
with initp, and validatorsp with the same set S on each
process p. Note that it is safe to select initp at the first round
for the following reason. If no value is initially locked,
then any value may be selected by honest selectors. If some
value v is initially locked, then by definition all honest se-
lectors have initp = v, and all honest selectors select v.

The Validation Round (r = 3φ−1). The role of this round
is for every honest process p to determine which value se-
lected by validators in the selection round is a valid value.
Among all honest processes, at most one value may be con-
sidered to be valid.

The validation round is executed as follows. Each val-
idator first sends the value selected in the selection round
together with the set of validators (line 19). Then, each

6Pcons is defined in [17] for rounds in which all processes send to all
processes. We assume here variant ofPcons that does not require all-to-all
message exchange. The adaptation is trivial.

honest process p computes the set of validators as follows:
validatorsp is the set S such that p receives b+1 messages
〈−, S〉, or ∅ if no set satisfies this condition (line 21). Based
on this set, each process tries to determine a valid value v.
If it observes that a majority of correct validators have se-
lected the same value v, then v is a valid value. In that case a
process p sets its vote votep to v, and updates its timestamp
tsp to the current phase φ (lines 22-24). Otherwise, the vote
is reverted to the value corresponding to tsp (line 26).7

Optimizations: If the function Selector(p, φ) returns the
same set of processes on each process p and in all phases φ,
then validatorsp at line 15 can be set to Selector(p, φ),
and line 21 can be suppressed. As a result, the sets
Selector(p, φ) and validatorp do not need to be sent re-
spectively at lines 7 and 19.

The same holds with benign faults when
|Selector(p, φ)| = 1 on each process p and in all
phases φ: validatorsp at line 21 is the process from which
the validation round message is received.

7Line 26 is not mandatory, but it allows us to simplify the instantiation
of function FLV (~µr

p).

The Decision Round (r = 3φ). The decision round de-
termines the conditions that must hold for a process to de-
cide. Concretely, each process starts by sending its vote
and its timestamp (line 29). A process then decides if it
receives a threshold number TD of identical votes which
satisfy some criteria defined by the flag FLAG . To our
knowledge, only two criteria have been considered in liter-
ature: (1) FLAG = φ: only votes that have been validated
in the current phase φ are considered, and (2) FLAG = ∗:
all votes are considered. In the latter case, the validation
round can be suppressed. As a consequence, variables tsp
and historyp are no more necessary. Moreover, the set
Selector(p, φ) does not need to be sent at line 7, and line 15
can be suppressed.
Optimization: The decision round of phase φ can be exe-
cuted concurrently with the selection round of phase φ+ 1.

3.2 Parameters

We identify two categories of parameters. The first cat-
egory is related to the decision round, and contains the pa-
rameters TD and FLAG . As shown in Section 4, these
two parameters influence the properties of the instantiated
algorithm (i.e., n, process state, and number of rounds
per phase). The second category contains the functions
Selector(p, φ) and FLV (~µrp) which define the selection and
the validation rounds.

FLAG: The parameter FLAG defines which votes are
taken into account in the decision round: all votes (if
FLAG = ∗), or only the votes that are valid in the current
phase (if FLAG = φ). In the former case, the validation
round can be suppressed.
TD : The parameter TD defines the number of identical
votes that is required to decide. To ensure termination, the
votes of faulty (honest) and Byzantine processes must not
be required to decide. Hence, TD ≤ n− b− f .

Selector(p, φ): The function Selector(p, φ)8 returns a set
of processes S ⊆ Π that represents p’s suggestion for the
set validators in phase φ. It must satisfy the following two
properties:
• Selector -validity: If |Selector(p, φ)| > 0, then
|Selector(p, φ)| > b.
• Selector -liveness: There exists a good phase φ0 such

that:
SL1: ∀p, q ∈ C : Selector(p, φ0) = Selector(q, φ0),

SL2: if FLAG = ∗, then |Selector(p, φ0) ∩ C| ≥ TD ,

SL3: if FLAG = φ, then |Selector(p, φ0) ∩ C| >
|Selector(p,φ0)|+b

2 .

8Selector is not really a function. It is rather a problem defined by
properties. However, calling it a function is somehow more intuitive. The
same comment applies to FLV .

FLV (~µrp): The function FLV (~µrp) must satisfy the follow-
ing three properties:

• FLV -validity: If FLV (~µrp) returns v such that v 6= ?
and v 6= null, then v ∈

{
vote : 〈vote,−,−〉 ∈ ~µrp

}
.

• FLV -agreement: If value v is locked in round r, only
v or null can be returned.
• FLV -liveness: If ∀q ∈ C : ~µrp[q] 6= ⊥, then null

cannot be returned.

3.3 Correctness of the Generic Algorithm

Correctness of our generic alogrithm is based on the fol-
lowing two lemmas from which Theorem 1 can be proved.
All proofs can be found in [19].

Lemma 1. If Selector -validity holds, then the following
property holds on every honest process h and in every
phase φ: if process h set voteh to v and tsh to φ at lines 23-
24, then at least one honest process has sent 〈v,−〉 at
line 19.

Lemma 2. In every phase φ, if (i) Selector -validity holds,
(ii) an honest process p updates votep to v and tsp to φ, and
(iii) another honest process q updates voteq to v′ and tsq to
φ (lines 23-24), then v = v′.

Theorem 1. If (i) function FLV (~µrp) satisfies FLV -validity
and FLV -agreement, (ii) function Selector(p, φ) satisfies
Selector -validity, (iii-a) FLAG = φ and TD > b or (iii-
b) FLAG = ∗ and TD > n+b

2 , then Algorithm 1 ensures
validity, unanimity and agreement.

Termination holds if (iv) TD ≤ n − b − f , (v) function
FLV (~µrp) satisfies FLV -liveness, and (vi) there is a good
phase φ0 in which Selector -liveness holds (SL1, SL2, SL3).

4 Instantiations of the Parameters and Clas-
sification

We present now instantiations of the functions FLV and
Selector . We identify three instantiations of FLV func-
tion. The first instantiation uses only the variable votep, the
second uses the variables votep and tsp, and the last one
uses all three variables votep, tsp and historyp. This leads
to three classes of consensus algorithms, as shown in Ta-
ble 1. Algorithms that belong to the same class have the
same values for the parameters FLAG and TD . Therefore
algorithms from the same class have the same constraint on
n (follows from n ≥ TD + b+ f) and have the same num-
ber of rounds (follows from the value of FLAG , see Section
3.2).

One can observe a tradeoff among these three classes.
For instance, when FLAG = ∗, TD > n+3b+f

2 , only two
rounds per phase are needed and the process state is the

Table 1. The three classes of consensus algorithms.

FLAG TD n Process state Rounds Examples
per phase

1 ∗ > n+3b+f
2 > 5b+ 3f (votep) 2 OneThirdRule [6] (b = 0)

FaB Paxos [16] (f = 0)
2 φ > 3b+ f > 4b+ 2f (votep, tsp) 3 Paxos [11], CT [5] (b = 0)

MQB (f = 0) (new alg)
3 φ > 2b+ f > 3b+ 2f (votep, tsp, historyp) 3 (Paxos, CT) (b = 0)

PBFT [4] (f = 0)

smallest, but it requires the largest n (n > 5b + 3f). The
“Examples” column of Table 1 shows which known algo-
rithms correspond to a given class. These examples are dis-
cussed in Section 5.

We can make the following comments. First, if b = 0
(benign faults), classes 2 and 3 are identical, since historyp
can be ignored with benign faults. Therefore Paxos and
CT 9, which belong to class 2, also trivially belong to class
3, case b = 0. Second, to the best of our knowledge, no
existing algorithm corresponds to the class 2 for the case
f = 0 (Byzantine faults). We call this new algorithm MQB
(Masking Quorum Byzantine consensus algorithm).10 Fi-
nally, Table 1 shows that despite its name, the FaB Paxos
algorithm does not belong to the same class as the Paxos
algorithm.

We now present the three instantiations of the FLV func-
tion that lead to the three classes of consensus algorithms.
Instantiations of the Selector function are discussed later.

4.1 Instantiations of FLV (~µrp)

We give here the intuition of the instantiations. The
proofs that the properties defined in Section 3.2 hold can
be found in [19].

4.1.1 FLV (~µrp) for class 1

We start the discussion with the FLV function for class 1
(FLAG = ∗ and TD > n+3b+f

2), see Algorithm 2.
Line 1 is for FLV -agreement. We now explain its role

with a simple example. Let v1 be locked in round r. For
simplicity, let us reason only on the following case: some
honest process p has decided v1 in round r − 1. By Algo-
rithm 1, p has received in the decision round r − 1 at least
TD votes v1. At least TD − b votes v1 are from honest
processes, i.e., at most n− (TD − b) processes have votep

9CT refers to the Chandra-Toueg consensus algorithm with the failure
detector ♦S.

10The quorums used in this algorithm satisfy the property of masking
quorums [15]. Note that with respect to the definitions in [15], algorithms
of class 1 use opaque quorums, and algorithms of class 3 use dissemination
quorums.

Algorithm 2 FLV (~µrp) for class 1

1: correctV otesp←
{
v : |

{
(v,−,−,−) ∈ ~µr

p

}
| > n−TD +b

}
2: if |correctV otesp| = 1 then
3: return v s.t. v ∈ correctV otesp

4: else if |~µr
p| > 2(n− TD + b) then

5: return ?
6: else
7: return null

equal to v2 6= v1 (*). Therefore, the condition of line 1
can only hold for v1, i.e., among the values different from ?
and null, FLV can only return v1. For FLV -agreement to
hold, Algorithm 3 must also prevent ? to be returned when
v1 is locked. The condition of line 4 ensures this. Here is
why. Assume that the condition of line 4 holds. This means
that ~µrp contains more than 2(n− TD + b) messages. With
(*), any set of more than 2(n − TD + b) messages con-
tains more than n − TD + b messages equal to v1 (this is
illustrated in Figure 1 with the case n = 6, b = 1, f = 0
and TD = 5). By line 1, we have v1 ∈ correctV otesp,
and as explained above, only v1 can be in correctV otesp.
Therefore, the condition of line 2 holds: Algorithm 2 cannot
return ? when v1 is locked.

V1 V1V1 V1 V2 V2

TD - b n - TD + b

D

D

Figure 1. Illustration for FLV for class 1 (n = 6,
b = 1, f = 0, TD = 5)

Property FLV -liveness is ensured by lines 4, 5. This
is because when TD > n+3b+f

2 , we have n − b − f >
2(n − TD + b). Therefore, receiving a message from all
correct processes (i.e., |~µrp| ≥ n − b − f) implies that the
condition of line 4 holds. Property FLV -validity is ensured
by lines 1-3.

4.1.2 FLV (~µrp) for class 2

The FLV function for class 2 (FLAG = φ and TD >
3b+ f) is shown in Algorithm 3, where {# . . .#} at line 1
denotes a multiset. Note that when TD ≤ n+3b+f

2 which
can be the case for instantiations of classes 2 and 3, detect-
ing the locked value only based on votes, as done by Algo-
rithm 2, does not work. Therefore, an additional mechanism
is needed: timestamps.

Algorithm 3 FLV (~µrp) for class 2
1: possibleV otesp ← {# (vote, ts,−,−) ∈ ~µr

p :

|{(vote′, ts′,−,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}|

> n− TD + b#}
2: correctV otesp ← {(vote,−,−,−) ∈ possibleV otesp :
|{(vote′,−,−,−) ∈ possibleV otesp : vote = vote′}| > b}

3: if |correctV otesp| = 1 then
4: return v s.t. (v,−,−,−) ∈ correctV otesp

5: else if |~µr
p| > n− TD + 2b then

6: return ?
7: else
8: return null

Lines 1 and 2 are for FLV -agreement. We now ex-
plain their role with a simple example. Let v1 be locked
in round r that belongs to phase φ1 + 1. For simplicity,
let us reason only on the following case: some honest pro-
cess p has decided v1 in round r − 1 that belongs to phase
φ1. By Algorithm 1, p has received TD messages 〈v1, φ1〉
in the decision round r − 1. Therefore, at least TD − b
honest processes have votep = v1 and tsp = φ1, i.e., at
most n − TD honest processes have votep = v2 6= v1 (*).
Because only one value can be validated by honest pro-
cesses in phase φ1 (see Lemma 2), all honest processes with
votep = v2 6= v1 have tsp < φ1. It follows that for every
honest process p, we have votep = v1 or tsp < φ1 (**).
Together with (*), no message 〈v2 6= v1,−,−,−〉 sent by
an honest process can satisfy the condition of line 1. In
other words, the set possibleV otesp may contain at most
b messages 〈v2 6= v1,−,−,−〉, i.e., the messages sent by
Byzantine processes. Line 2 prevents such messages to be
in correctV otesp. This shows that among the values dif-
ferent from ? and null, only v1 can be returned.

(V1 , Φ1) (V1 , Φ1)(V1 , Φ1) (V2 , Φ2 > Φ1)(V2 , Φ2’ < Φ1)

TD - b n - TD + b

D

Figure 2. Illustration for FLV for class 2 (n = 5,
b = 1, f = 0, TD = 4)

For FLV -agreement to hold, Algorithm 3 must also pre-
vents ? to be returned when v1 is locked. The condition of

line 5 ensures this. Here is why. Assume that the condi-
tion of line 5 holds. This means that ~µrp contains more than
n−TD +2bmessages. With (*), the set ~µrp contains at least
b + 1 messages 〈v1, φ1,−,−〉 from honest processes (this
is illustrated in Figure 2 for the case n = 5, b = 1, f = 0,
TD = 4). With (**) and the fact that ~µrp contains more than
n−TD + b messages from honest processes (see Figure 2),
the b + 1 messages 〈v1, φ1,−,−〉 satisfy the condition of
line 1. By line 2, 〈v1, φ1,−,−〉 is in correctV otesp. More-
over, as discussed above, only v1 can be in correctV otesp.
Therefore, the condition of line 3 holds: Algorithm 3 cannot
return ? when v1 is locked.

Property FLV -liveness is ensured by lines 5, 6. This
is because when TD > 3b + f , we have n − b − f >
n− TD + 2b. Therefore, receiving a message from all cor-
rect processes (i.e., |~µrp| ≥ n− b− f) ensures that the con-
dition of line 5 holds. Property FLV -validity is ensured
by lines 1-4.

4.1.3 FLV (~µrp) for class 3

The FLV function for class 3 (FLAG = φ and TD > 2b+
f) is shown in Algorithm 4. Observe that for instantiations
of class 3, TD can be ≤ 3b + f . Therefore, detecting the
locked value only based on votes and timestamps, as done
by Algorithm 3, does not work. Therefore, an additional
mechanism is needed: the history log.

Algorithm 4 FLV (~µrp) for class 3
1: possibleV otesp ← { (vote, ts,−,−) ∈ ~µr

p :

|{(vote′, ts′,−,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}|

> n− TD + b }
2: correctV otesp ← {v : (v, ts,−,−) ∈ possibleV otesp ∧

|{(vote′, ts′, history′,−) ∈ ~µr
p : (v, ts) ∈ history′}| > b }

3: if |correctV otesp| = 1 then
4: return v s.t. (v,−,−,−) ∈ correctV otesp

5: else if |correctV otesp| > 1 then
6: return ?

7: else if |
{

(vote, ts,−,−) ∈ ~µr
p : ts = 0

}
| > n− TD + b then

8: if there is a value v such that ~µr
p contains a majority of messages (v,−,−)

then /* only for unanimity */
9: return v
10: else
11: return ?
12: else
13: return null

Similarly to Algorithm 3, lines 1 and 2 are for FLV -
agreement. Their role can be explained with a simple ex-
ample. Consider that value v1 is locked in round r that be-
longs to phase φ1 +1. For simplicity, let us first assume that
some honest process p has decided v1 in round r−1 that be-
longs to phase φ1. Consider Figure 3. For the same reason
as for Algorithm 3, at least TD − b honest processes have
votep = v1 and tsp = φ1 (*), i.e., at most n − TD honest
processes have votep = v2 6= v1. Furthermore, for every
honest process p, we have votep = v1 or tsp < φ1 (**). To-
gether with (*), no message 〈v2 6= v1,−,−,−〉 sent by an

honest process can satisfy the condition of line 1. Said dif-
ferently, apart from messages 〈v1,−,−,−〉, only messages
〈v2 6= v1, φ2,−,−〉 sent by Byzantine processes can be in
the set possibleV otesp. Because honest processes can only
update history at line 14 of Algorithm 1, no honest process
has a pair (−, φ2 > φ1) in its history in the sending step of
round r. It follows that only messages 〈v1,−,−,−〉 can be
in correctV otesp at line 2. Therefore, when a value v1 is
locked, lines 1 and 2 prevent any value v 6= v1 or v= ? to
be returned at lines 4 and 6. By (*) together with φ1 > 0,
condition of line 7 never holds in our example.

To understand the role of lines 8-11, we have to con-
sider another example. Let all honest processes have ini-
tially votep = v1. With the same arguments as above, it
follows that no value different from v1 or null can be re-
turned at lines 4 and 6. However, the condition of line 7
might hold. In this case, ~µrp contains more than n − TD

messages 〈v1, 0,−,−〉 from honest processes, and at most
b messages 〈v2 6= v1, 0,−,−〉 from Byzantine processes.
Because TD ≤ n − b − f , we have n − TD ≥ b, and v1
is returned at line 9. In other words, line 9 ensures FLV -
agreement when unanimity is considered.

Let us now discuss FLV -liveness. For this property to
hold, we need a stronger variant of Selector -validity:11

• Selector -strongValidity: If |Selector(p, φ)| > 0, then
|Selector(p, φ)| > 3b+ 2f .

This requirements can be explained as follows. Let ~µrp
contains the messages from all the n − b − f correct pro-
cesses. There are two cases to consider: (1) correct pro-
cesses sent only 〈−, 0,−,−〉, (2) at least one correct pro-
cess sent 〈−, ts > 0,−,−〉. Note that TD > 2b+f ensures
n− b− f > n− TD + b (*). In case (1), by (*) the condi-
tion of line 7 holds, and null cannot be returned at line 13.
In case (2), let ν denote the subset of messages in ~µrp that
are from correct processes, and let tsν be the highest times-
tamp in ν. By Lemma 2 and Algorithm 1, there is a unique
value vν such that 〈vν , tsν ,−,−〉 ∈ ν. Together with (*),
this ensures that the set possibleV otesp is not empty, and
contains 〈vν , tsν ,−,−〉. The Selector -strongValidity al-
lows us to get a stronger variant of Lemma 1: it ensures
that if process h set voteh to v and tsh to φ at lines 23-
24, then at least b + 1 correct processes have sent 〈v,−〉 at
line 19. As a result, any correct process that validates vν
in the validation round 3 tsν − 1 received vν from at least
b + 1 correct processes. Therefore, at least b + 1 correct
processes have selected vν in round 3 tsν − 2, and these
processes have (vν , tsν) is their history. This implies that
the set correctV otesp is non empty, and a non-null value
is returned at line 4 or 6.

11This stronger variant was not introduced in Section 3.2, since the proof
of the generic Algorithm 1 does not require the stronger variant. In the
proof of Algorithm 1, the stronger variant is hidden in the FLV -liveness
property.

(V1 , Φ1 , history2)

TD - b n - TD + b

(V2 , Φ2’ < Φ1 , history3) (V2 , Φ2 > Φ1 , history4)(V1 , Φ1 , history1)

Figure 3. Illustration for FLV for class 3 (n = 4,
b = 1, f = 0, TD = 3)

4.2 Instantiations of Selector(p, φ)

A trivial instantiation of the Selector function consists
in always returning the whole set of processes Π. This
trivially satisfies Selector -validity, Selector -strongValidity
and Selector -liveness. To our knowledge, this instantiation
is used in all algorithms for Byzantine faults. However, an-
other possible instantiation can be considered in the Byzan-
tine fault model: it consists in returning the same set S of
b + 1 processes at every process, with S being different in
every phase.

In the benign fault model, it is sufficient that the Selector
function always returns a single process rather than a set
of processes. One such instantiation of the Selector func-
tion is the well known rotating coordinator function used
in [5]. Another example is the leader election function used
in [11].

5 Instantiation examples

In this section we show several well-known consen-
sus algorithms obtained from Algorithm 1. Note that be-
cause the instantiated algorithms are expressed in the round
model, some details of the original algorithms (retransmis-
sion rules, leader election, message acceptance policies,
etc.) are hidden.

5.1 Class 1 - OneThirdRule and FaB Paxos

OneThirdRule [6] The OneThirdRule algorithm, which
assumes benign faults only, is obtained from Algorithm 1
with the following parametrization: TD = d 2n+1

3 e,
12

FLAG = ∗, Selector(p, φ) returning always Π and Algo-
rithm 2 with TD = d 2n+1

3 e as a FLV instantiation. It can
be noticed that the instantiation leads to a (small) improve-
ment of the original OneThirdRule algorithm. Details can
be found in [19].
FaB Paxos [16] FaB Paxos algorithm is designed for the
Byzantine fault model (f = 0) and requires n > 5b to
tolerate b Byzantine faults. The algorithm is expressed

12TD is chosen such that the same number of messages allow the con-
dition at line 31 of Algorithm 1 and the condition at line 4 of Algorithm 2
to hold.

in the context of ”proposers”, ”acceptors” and ”learners”.
For simplicity, in our framework, consensus algorithms are
expressed without considering these roles. We get FaB
Paxos algorithm from Algorithm 1 by applying the follow-
ing parametrization: TD = d(n+ 3b+ 1)/2e, FLAG = ∗,
Selector(p, φ) returning always Π, and Algorithm 5 as an
instantiation of FLV function (Algorithm 2 with TD =
d(n+ 3b+ 1)/2e).

We now compare the instantiated version of FaB Paxos
with the original algorithm. Since TD = d(n+3b+1)/2e, it
is easy to see that the deciding condition is the same in both
algorithms. However, the selection condition of the two al-
gorithms have (minor) differences. With the original FaB
Paxos, the selection rule is applied when n − b messages
are received. In that case, a value v is selected if it appears
at least d(n − b + 1)/2e times in the set of received mes-
sages; otherwise any value can be selected.13 Therefore, if
a number of received messages is smaller than n − b, FaB
Paxos will not select any value, while Algorithm 5 may still
select a value by line 3. In this sense, the instantiation of
Algorithm 1 is a (small) improvement of the original FaB
Paxos algorithm.

The original FaB Paxos algorithm uses a coordinator-
based implementation of the Pcons predicate, based on
signed messages [17]. By using the coordinator-free and
signature-free implementation of Pcons [2], we can obtain
coordinator-free and signature-free variant of FaB Paxos.

Algorithm 5 FLV for class 1 with TD = d(n+ 3b+ 1)/2e
1: correctV otesp ←

{
v : |

{
(v,−,−) ∈ ~µr

p

}
| > n−b−1

2

}
2: if |correctV otesp| = 1 then
3: return v s.t. v ∈ correctV otesp

4: else if |~µr
p| > n− b− 1 then

5: return ?
6: else
7: return null

5.2 Class 2 - MQB

MQB is our new Byzantine consensus algorithm that re-
quires n > 4b. Compared to PBFT, it has the advantage
not to need the (unbounded) variable historyp, at the cost
of requiring n > 4b instead of n > 3b (for PBFT). We
get MQB from Algorithm 1 with the following parametriza-
tion:14 TD = dn+2b+1

2 e, FLAG = φ, Selector(p, φ) = Π
and Algorithm 3 with TD = dn+2b+1

2 e as a FLV instan-
tiation. Depending on the implementation of the Pcons

13Note that the condition at line 1 of Algorithm 5 for selecting a value v
requires smaller number of messages to be received than in the original
algorithm. For example, when n = 7 and b = 1, FaB Paxos requires at
least 4 messages equal to v to be received (at least d(n−b+1)/2e(= 4)),
while Algorithm 5 requires 3 messages (more than n−b−1

2
(= 2)).

14See footnote 12, here with reference to line 5 of Algorithm 3 instead
of line 4 of Algorithm 2.

predicate (coordinator-based or coordinator-free), we get
coordinator-based or coordinator-free variants of MQB.

5.3 Class 3 - Paxos and PBFT

We discuss Paxos as part of class 3 (rather than as part of
class 2) to show the similarities between Paxos and PBFT,
namely that the selection round for Paxos and PBFT are de-
rived from the FLV function for class 3. Paxos and PBFT
are algorithms that solves a sequence of instances of con-
sensus (state machine replication). We consider here the in-
stantiation of a single instance of consensus that represents
the “core” of these algorithms. Both algorithms incorporate
the optimizations related to Selector(p, φ) and validators
mentioned in Section 3.1.

Algorithm 6 FLV for class 3 with b = 0, TD = dn+1
2 e

1: possibleV otesp ← { (vote, ts,−) ∈ ~µr
p :

|{(vote′, ts′,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}| > n

2

2: if |possibleV otes| = 1 then
3: return v s.t. (v,−,−) ∈ possibleV otes
4: else if |~µr

p| > n
2 then

5: return ?
6: else
7: return⊥

Paxos [11] Paxos assumes benign faults only (b = 0) and
requires n > 2f . We get Paxos from Algorithm 1 with the
following parametrization:15 TD = dn+1

2 e, FLAG = φ,
Selector(p, φ) implementing leader election, and Algo-
rithm 6 as a FLV instantiation.

With only benign faults, the instantiation of the function
FLV can be simplified. We now explain how to get Al-
gorithm 6 from Algorithm 4. First, we can observe that
any message 〈vote, ts, history〉 has the following property:
(vote, ts) ∈ history. Therefore, the set correctV otesp is
the same as the set possibleV otesp, which means that the
set correctV otesp is not needed. It follows that history
is not needed in the FLV function, and by extension, the
variable historyp is not needed in the consensus algorithm.

Because the unanimity property is not relevant in the be-
nign case, lines 8-9 of Algorithm 4 can be removed. This
allows us to merge lines 5-11 of Algorithm 4 into lines 4-5
of Algorithm 6.
PBFT [4] PBFT is designed for Byzantine faults (f = 0)
and requires n > 3b. We get PBFT from Algorithm 1 with
the following parametrization: TD = 2b + 1, FLAG = φ,
Selector(p, φ) = Π and Algorithm 7 as a FLV instantia-
tion. To get the instantiation as close as possible to PBFT,
we have set n = 3b+ 1, as in PBFT.

We explain now how to get Algorithm 7 from Algo-
rithm 4. PBFT does not consider the unanimity property,
which allows a significant simplification of Algorithm 4.

15See footnote 12, here with reference to line 7 of Algorithm 4 instead
of line 4 of Algorithm 2.

Algorithm 7 FLV for class 3 with TD = 2b + 1 and n =
3b+ 1
1: possibleV otesp ← { (vote, ts,−) ∈ ~µr

p :

|{(vote′, ts′,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}| > 2b

2: correctV otesp ← {v : (v, ts,−) ∈ possibleV otesp ∨
|{(vote′, ts′, history′) ∈ ~µr

p : (vote, ts) ∈ history′}| > b }

3: if |correctV otesp| = 1 then
4: return v s.t. (v,−,−) ∈ correctV otesp

5: else if |correctV otesp| > 1 or
|
{

(vote, ts,−) ∈ ~µr
p : ts = 0

}
| > 2b then

6: return ?
7: else
8: return null

Indeed, without the unanimity property, lines 8-9 of Al-
gorithm 4 can be removed. Then, we can merge the con-
ditions of line 5 and line 7 of Algorithm 4 into line 5 of
Algorithm 7.

PBFT uses a coordinator-based implementation of Pcons
predicate that does not require signed messages [17]. By
using the coordinator-free implementation of Pcons [2], we
get a coordinator-free variant of PBFT.

6 Randomized consensus algorithms

Algorithm 1 can be adapted to support randomized con-
sensus algorithms. The first modification is the introduction
of randomization. In the context of binary consensus (ini-
tial value 0 or 1), line 11 is replaced with “selectp := 1 or 0
with probability 0.5”. This allows all correct processes, by
repeating the execution of the selection round, to select the
same value with probability 1.

A second modification is needed, which is related to the
“reliable channel” assumption of these algorithms. This as-
sumption can be expressed by the following communication
predicate that is required to hold in every round r instead of
predicates Pcons and Pgood :

Prel(r) ≡ ∀p ∈ C : |{m ∈ ~µrp : m 6= ⊥}| ≥ n− b− f.

Therefore, randomized protocols need a slightly differ-
ent FLV -liveness property: for any set ~µrp with n − b − f
messages (instead of any set with all messages from correct
processes), FLV must return a value different from null.
Note that Algorithms 2 and 3 ensure this property, but not
Algorithm 4. In other words, we can easily transform any
consensus algorithm of class 1 or 2 into a randomized al-
gorithm. We believe that this is not possible for consensus
algorithms of class 3.

The instantiations of Ben-Or’s binary consensus algo-
rithms [1] from Algorithm 1 can be found in [19].

7 Conclusion

The paper has presented a generic consensus algorithm
parameterized with TD , FLAG , Selector and FLV . In-

stantiation of these parameters led us to distinguish three
classes of consensus algorithms (into which known consen-
sus algorithms fit), and to identify the new MQB algorithm.
As future work, we plan to develop a framework around our
generic algorithm.

Acknowledgements: We would like to thank Fatemeh
Borran, Martin Hutle, Segio Mena and Nuno Santos for
their comments on an earlier version of the paper.

References

[1] M. Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols. In PODC, 1983.

[2] F. Borran and A. Schiper. A Leader-free Byzantine Consen-
sus Algorithm. To appear in ICDCN, 2010.

[3] M. Castro. Practical Byzantine fault-tolerance. PhD thesis.
Technical report, MIT, 2000.

[4] M. Castro and B. Liskov. Practical byzantine fault tolerance
and proactive recovery. ACMTCS, 2002.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. JACM, 1996.

[6] B. Charron-Bost and A. Schiper. The Heard-Of model:
computing in distributed systems with benign failures. Dis-
tributed Computing, 22(1):49–71, 2009.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. JACM, 1988.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. JACM,
1985.

[9] R. Guerraoui and M. Raynal. The Information Structure of
Indulgent Consensus. IEEE Trans. on Computers, 2004.

[10] R. Guerraoui and M. Raynal. The Alpha of Indulgent Con-
sensus. The Computer Journal, 2006.

[11] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[12] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM Trans. Program. Lang. Syst., 1982.

[13] B. Lampson. The abcd’s of paxos. In PODC, 2001.
[14] H. C. Li, A. Clement, A. S. Aiyer, and L. Alvisi. The paxos

register. In SRDS, 2007.
[15] D. Malkhi and M. K. Reiter. Byzantine quorum systems.

Distributed Computing, 1998.
[16] J.-P. Martin and L. Alvisi. Fast Byzantine consensus. TDSC,

2006.
[17] Z. Milosevic, M. Hutle, and A. Schiper. Unifying Byzantine

consensus algorithms with Weak Interactive Consistency.
To appear in OPODIS 2009.

[18] A. Mostéfaoui, S. Rajsbaum, and M. Raynal. A versatile and
modular consensus protocol. In DSN, 2002.

[19] O. Rütti, Z. Milosevic, and A. Schiper. Generic construc-
tion of consensus algorithm for benign and Byzantine faults.
Technical Report LSR-REPORT-2009-005, EPFL-IC, 2009.

[20] Y. J. Song, R. van Renesse, F. B. Schneider, and D. Dolev.
The building blocks of consensus. In ICDCN, 2008.

