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Abstract— This paper illustrates the practical application of
non-iterative correlation-based tuning with guaranteed stability.
In this method, a sufficient condition for closed-loop stability
is defined as theH∞-norm of a particular error function.
This norm is then estimated using data from one closed-loop
experiment. The method is applied to a pick-and-place robot. It
is shown that the proposed constraints for stability are effective
without being overly conservative. Furthermore, it is shown
how the method can be used to systematically design low-order
controllers.

I. I NTRODUCTION

In model reference control, the control specifications are
formulated as a reference model, and the objective is to
design a controller for which the controlled system resembles
this reference model. A model-based solution to this problem
requires the identification of a plant model, which is then
used to compute the controller that minimizes the error be-
tween the reference model and the closed-loop system. This
approach thus uses two optimization steps. An additional
controller-order reduction step might be necessary before
implementation.

Several data-driven techniques have been proposed as
an alternative to model-based approaches [1], [2], [3], [4].
In these data-driven approaches, the control criterion is
minimized directly with respect to the controller parameters.
Compared to a model-based approach, the optimization in
the identification step is omitted, and undermodeling of the
plant is avoided. Furthermore, the controller structure does
not depend on the structure of the model and the order of the
controller can be fixed. However, closed-loop stability canin
general not be guaranteed [5].

A non-iterative data-driven controller tuning approach
that guarantees closed-loop stability is proposed in [6]. A
sufficient condition for closed-loop stability, defined as the
H∞-norm of some error function, is added to the model
reference problem. In a data-driven setting, this condition can
be verified using an estimate of theH∞-norm. If a spectral
estimate is used, this leads to a set of constraints that is
convex for a linearly parameterized controller. The resulting
optimization can be solved for large data sets. The method
uses the correlation approach to deal with measurement noise
and is applicable to stable and unstable systems.
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The optimal controller parameters, calculated using the
approach given in [6], satisfy the stability condition and
minimize the approximate model-reference criterion, for a
given reference model and controller structure. The designed
controller achieves good performance if both the reference
model and the structure of the controller are appropriate for
the plant. In practice, the reference model and the controller
structure are defined by the user, and it is not straightforward
how to choose either of them.

This paper presents the results of application of the
approach proposed in [6] to a pick-and-place robot. It is
shown how the approach can be used to systematically design
low-order controllers, starting with the design of a high-
order FIR controller. An orthogonal basis is then chosen to
approximate the high-order FIR controller by a controller that
can actually be implemented. If the order of the controller
needs to be reduced further, the main characteristics of the
high-order controllers can be used to define an appropriate
structure for the low-order controller. An iterative procedure
is used to define the reference model, based on the wind-
surfing approach for iterative control design [7], where the
required performance is increased gradually by increasing
the bandwidth of the reference model.

The approach given in [6] is summarized in Section II.
The robot is described in Section III. Controller design is
discussed in Section IV, where the performed experiments
are described in Section IV-A, the design of high-order
controllers is treated in Section IV-B and the design of low-
order controllers using the characteristics of the high-order
controllers is discussed in Section IV-C. Conclusions are
provided in Section V.

II. DATA -DRIVEN MODEL REFERENCECONTROL WITH

GUARANTEED STABILITY

A. Model reference control with guaranteed stability

Consider the unknown linear SISO plantG(q−1), where
q−1 denotes the backward shift operator. Specifications for
the controlled plant are given as a stable strictly proper
reference modelM(q−1). The objective is to design a linear,
fixed-order controllerK(q−1, ρ), with parametersρ, for
which the controlled plant resembles the reference model
M(q−1). This can be achieved by minimizing the two-
norm of the difference between the reference model and the
achieved closed-loop system:

Jmr(ρ) =

∥

∥

∥

∥

F

[

M −
K(ρ)G

1 + K(ρ)G

]∥

∥

∥

∥

2
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Fig. 1. Tuning scheme for model reference control problem using one
closed-loop experiment

The model reference criterion (1) is non-convex with respect
to the controller parametersρ. An approximation that is
convex for linearly parameterized controllers can be defined
using the reference modelM , see [6] for details. The
approximate model-reference criterion is given by:

J(ρ) =
∥

∥

∥
F (1 − M)[M − K(ρ)(1 − M)G]

∥

∥

∥

2

2

, (2)

with F a weighting filter. Note that the objective is to design
a fixed-order controller and thatJ(ρ) = 0 can in general not
be achieved.

There is no guarantee that a controller determined by min-
imizing J(ρ) actually stabilizes the plant. In [6], a sufficient
condition for stability is added to the approximate model ref-
erence problem. The approach for closed-loop experiments
is summarized next. Assume that a set of measurements
from the plant controlled by the stabilizing controllerKs is
available. Note that this controller is not necessarily known,
only the data are assumed to be available. The closed-loop
plant for this controller is given byMs = KsG

1+KsG
. The stable

controllerK(ρ) then stabilizes the plantG, if ∃δN ∈ ]0, 1[
such that

δ(ρ) := ‖Ms − K(ρ)(1 − Ms)G‖∞ 6 δN . (3)

This stability condition is based on the small-gain theorem.
The proof is given in [6], where the constraint is fixed as
δ(ρ) < 1. In a data-driven approach,δ(ρ) is estimated and
smaller values ofδN can be used to compensate for the
estimation error. The result stated above considers stable
controllers, but special cases of unstable controllers can
easily be handled, for example integrators, see [8] for details
in the context of controller validation. A stabilizing solution
to the approximate model reference problem is then given
by:

ρs = argmin
ρ

J(ρ)

subject toδ(ρ) 6 δN .
(4)

B. Tuning scheme

Consider the tuning scheme shown in Fig. 1, where the
plant is controlled by the stabilizingKs (which might be
unknown). The excitation signal is applied directly to the
input of the plant. The error

ε(t, ρ) = L (Mu2(t) − K(ρ)(1 − M)y(t)) (5)

can be used to compute the optimal controller. Note that the
noise affects the input to the controller to be identified and

not the output as in standard identification problems. The
correlation approach will be used to deal with the effect of
noise. A second error signalεs(t, ρ), which will be used in
the stability constraint, is defined as:

εs(t, ρ) = −u1(t) − K(ρ)y(t)

=
(

Ms−K(ρ)(1−Ms)G
)

r(t)+(Ks−K(ρ))(1−Ms)v(t).

The transfer function betweenr(t) andεs(t, ρ) is equal to the
transfer function definingδ(ρ) in (3). The signals available
from the scheme of Fig. 1 can thus be used to estimateδ(ρ).

C. Implementation using the correlation approach

The ideal controllerK(ρ∗) is defined as the controller
that achievesM = K(ρ∗)G(1 − M). The error signal
(5) corresponding to this ideal controller becomes filtered
noise. Sincev(t) is not correlated with the referencer(t),
the ideal errorε(t, ρ∗) will not be correlated withr(t)
either. The objective of correlation based tuning is therefore
to tune the controller parametersρ such thatε(t, ρ) and
r(t) become uncorrelated. Assume that the reference signal
r(t) is periodic with periodNp and that it includes an
integer number of periodsnp, i.e. the total signal length
is N = npNp. The auto-correlation ofr(t) is given by
Rr(τ) = 1

Np

∑Np

t=1 r(t − τ)r(t). Assume that the spectrum
of r(t) satisfies

Φr(ωk) =

Np−1
∑

τ=0

Rr(τ)e−jτωk 6= 0,

for ωk = 2πk/Np, k = 0, . . . , Np − 1, and that the filter
L(1−M)G/(1 + KsG) has no zero on the imaginary axis.
Furthermore, assume that the noisev(t) can be represented
as filtered white noise,v(t) = H(q−1)e(t), whereH(q−1)
is stable and assume thatv(t) is not correlated with the
reference signalr(t), i.e.

Rrv(τ) = lim
N→∞

1

N

N
∑

t=1

r(t − τ)v(t) = 0.

Let the controller be linearly parametrized,

K(q−1, ρ) = βT (q−1)ρ, ρ ∈ DK , (6)

where the setDK is compact andβ(q−1) is a vector
of stable linear discrete-time transfer operators,β(q−1) =
[β1(q

−1), . . . , βnρ
(q−1)]T . nρ is the number of controller

parameters. The vector of instrumental variablesζ(t), corre-
lated withr(t) and uncorrelated withv(t), is defined as:

ζ(t) = [r(t + l1), . . . r(t), . . . , r(t − l1)]
T , (7)

wherel1 is a sufficiently large integer. The choice ofl1 pro-
vides a trade-off between bias and variance in the controller
parameters. The correlation function is defined as

fN,l1(ρ) =
1

N

N
∑

t=1

ζ(t)ε(t, ρ) (8)

and the correlation criterionJN,l1(ρ) as

JN,l1(ρ) = fT
N,l1

(ρ)fN,l1(ρ). (9)



The stability constraint can be implemented using a spec-
tral estimate. Let the error signalεs(t, ρ) be generated
periodically, i.e. no transients are present in the response. The
cross-spectrum betweenεs(t, ρ) andr(t) can be estimated:

Φ̂rεs
(ωk, ρ) =

Np−1
∑

τ=0

R̂rεs
(τ, ρ)e−jτωk , (10)

where R̂rεs
(τ, ρ) = 1

N

∑N
t=1

r(t − τ)εs(t, ρ), τ =
0, . . . , Np − 1. The spectral estimate

δ̂(ρ) = max
ωk

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

(11)

can be used to define a set of convex constraints that
converges to the constraint (3). For periodic signals, the
optimization problem (4) can be approximated by:

ρ̂ = arg min
ρ

JN,l1(ρ)

subject to
∣

∣

∣

∣

Np−1
∑

τ=0

R̂rεs
(τ, ρ)e−jτωk

∣

∣

∣

∣

6 δN

∣

∣

∣

∣

Np−1
∑

τ=0

Rr(τ)e−jτωk

∣

∣

∣

∣

,

ωk = 2πk/Np, k = 0, . . . , ⌊(Np − 1)/2⌋.

(12)

If the controller is parameterized linearly, according to (6),
this optimization is convex inρ. Let the stable filterL be
defined as

L(e−jωk) =
F (e−jωk)(1 − M(e−jωk))

Φru2
(ωk)

. (13)

Then, asN, l1, Np → ∞, Np/N, l1/N → 0, the estimatêρ
converges to the stabilizing solutionρs, see [6] for the proof.
Φru2

(ωk), the cross-spectrum betweenr(t) and u2(t), can
be estimated from the available data.

Remarks: The stability condition is defined with respect to
the stabilizing controllerKs, sinceδ represents a distance be-
tween thisKs and the controller to be designed. Similar ideas
can be found in the windsurfing approach [7] and cautious
controller tuning [9]. These are iterative methods, where the
difference between consecutive controllers is limited to avoid
stability problems.

In the scheme of Fig. 1, the error is filtered byL, see (5),
which is not the case in the scheme proposed in [6]. In [6],
the filtering is applied to the instrumental variables. However,
these two approaches are asymptotically equivalent.

III. D OUBLE SCARA DIRECT-DRIVE ROBOT

The approach is applied to a pick-and-place robot known
as the FAMMDD, Fast and Accurate Manipulator Modules
Direct Drive. This robot has been developed by Philips CFT
[10]. The robot used in the experiments has no transmission,
hence the name Direct Drive. The FAMM consists of two
SCARAs (Selective Compliant Assembly Robot Arms), see
Fig. 2 and Fig. 3. The upper arms are fixed to two concentric
axes, and the end-effector is situated at the wrist. The robot
is driven by four AC motors, two in the wrist and two on
the main axis. Only displacements in the horizontal plane

Upper arm

Fore-arm

Concentric axes

Wrist

End-effector

Fig. 2. FAMMDD double SCARA pick-and-place robot.

Wrist

Fore-arm

Upper arm
α1

α2

ℓ

Concentric axes

Fig. 3. Schematic representation of FAMMDD.

will be considered in the experiments, the position of the
end-effector in the wrist being fixed.

Both SCARAs are driven by a servomotor integrated in
the axis. Permanent magnets are fixed to the axis, which
acts as the rotor of the motor. The base of the robot contains
the stator coils. An advantage compared to a single SCARA
robot is that the mass of the main actuators does not move as
the end-effector is displaced. The arms are designed such that
the moving mass is minimized, while the required stiffness is
maintained. The transmission-free actuation avoids backlash
and other transmission disadvantages, but the load dynamics
are dominant since they are not reduced by a transmission.

The first motor drives the left arm and affects the angle
α1, as defined in Fig. 3. The second motor drives the right
arm affecting the angleα2. If both motors are moving in the
same direction,α1−α2 = 0, the end-effector rotates around
the main axis. If the motors move in opposite directions, the
distanceℓ of the end-effector from the main axis changes.
The load dynamics depend on the positionℓ of the end-
effector, which causes nonlinear behavior.

Both anglesα1 and α2 are measured. The objective is
to position the end-effector, and the controlled variablesare
the rotation angleα = α1+α2

2
and ℓ̃ = α1−α2

2
. Note that

ℓ is a nonlinear function of the controlled variablẽℓ. The
implementation of this change of variables is shown in Fig.
4. The outputs of the system areα and ℓ̃, the inputs areuk1

and uk2, and um1 and um2 are the resulting inputs to the
first and second motor respectively.

If the distance of the wrist from the main axis,ℓ, is
constant, and only small rotationsα around the axes are con-
sidered, the system is approximately linear. In the following
experiments, the distance of the wrist from the main axis is
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Fig. 5. Experimental scheme used for controller design.

controlled byKℓ̃, a PD controller with a low-pass filter. The
controller for the resulting SISO system with inputuk1 and
outputα is designed using the approach of Section II.

IV. CORRELATION-BASED DATA-DRIVEN CONTROLLER

DESIGN

A. Experiments

Using the initial stabilizing controllerKα, the experiment
is performed in closed loop according to the scheme of Fig.
5. The system is sampled with the sampling time of1 ms.
r(t) is a PRBS with period length ofNp = 4095 and am-
plitude 0.24. Because there is no compensation for friction,
the experiments are performed on the robot in movement.
αd(t) is a sinusoid of approximately0.25 Hz with amplitude
0.6 radians, where the exact frequency is chosen such that
the excitation and its harmonics due to nonlinearities are
located at frequencies inbetween the frequenciesωk excited
by r(t). The amplitude ofαd is chosen such that the number
of changes in direction are limited.

A set of data of lengthN = 150Np is collected according
to the scheme of Fig. 1. The DFT of these signals is used
to calculate the frequency response fromuk1 to α, see Fig.
6. The first anti-resonance and resonance are situated around
150 rad/s.

B. Design of high-order controllers

At low frequencies, the system behaves as a double inte-
grator. The first reference modelM1 is chosen accordingly,
such that1 − M1 has two zeros at1:

M1 =
0.00137q−4 − 0.00135q−5

AM

,

with AM = 1−3.75q−1 +5.32q−2−3.42q−3 +0.898q−4−
0.037q−5. The bandwidth ofM1 lies below the first anti-
resonance of the plant and it is expected that this objective
can be achieved. Due to the anti-resonances in the system,
the ideal controllerK∗ that achievesM is expected to
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Fig. 6. Magnitude Bode diagram of measured frequency response from
uk1 to α.

10
1

10
2

10
3

0

20

40

60

80

M
ag

ni
tu

de
 [d

B
]

Frequency [rad/s]

Fig. 7. Magnitude Bode diagram of calculated controllers for M1. Grey
dashed: FIR of order1500. Black: Laguerre basis functions of order30.

show resonant behaviour. In an FIR structure, such resonant
behaviour can only be described if the order of the FIR filter
is high. An FIR controller of order1500 is designed, using
the approach of Section II. The optimization is implemented
using YALMIP [11] and SeDuMi [12]. Sincer(t) is a PRBS
signal, the extended instruments of (7) can be taken as,

ζ(t) = [r(t), r(t − 1), . . . , r(t − l1)]
T . (14)

Furthermore, the following choices are made:F = 1, l1 =
(Np − 1)/2 and δN = 0.9. Note that, forNp = 4095
constraints, no computational problems are encountered for
the calculation of1500 parameters.

The magnitude Bode diagram of both1500th-order FIR
controllers is shown in Fig. 7. Note that the stability con-
straints introduce conservatism, and the optimal controller
approximatesK∗ only if the constraints are not active.
Inspection of the constraints shows that they are active only
for very low frequencies. It is therefore assumed that, apart
from low frequencies, the distance betweenK∗ and the high
order FIR controller can be made very small, and that this
controller approximates the characteristics ofK∗.

The (ideal) high order controller contains two poorly
damped resonances, one that cancels the first anti-resonance
of the system and a second one at a higher frequency. This
controller cannot be implemented, for at least two reasons.
Firstly, the order of the controller is too large. Secondly,even
though this controller may achieve perfect model matching
for the measured outputα, it is not necessarily a good
controller for the plant. For systems that contain an anti-
resonance, cancelation of this anti-resonance may cause
oscillations in other (not necessarily measured) parts of the
system.

A second controller is therefore calculated, of order30
with an orthogonal basis of Laguerre functions with poles in
0.8 (see [13] for an overview of orthogonal basis functions in
system identification). This orthogonal basis offers many de-
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Fig. 9. Magnitude Bode diagram of calculated controllers for M1. Grey
dashed: Laguerre basis of order30. Black: K1 of order4

grees of freedom at low frequencies and thus permits model
matching at the frequencies that are important for closed-
loop performance. However, the match at high frequencies
is expected to be limited. The Bode diagram of the resulting
controller is shown in Fig. 7. The damping of the resonance
at low frequencies is larger than the damping of the FIR
controller. As expected, the controller resembles the FIR
controller between10 and 500 rad/s, but the fit at higher
frequencies is limited.

The 30th-order controller is implemented and the same
experiment as described in Section IV-A is performed with
this controller in the loop. The measured response is used
to estimate the complementary sensitivity function. The
achieved closed-loop performance is shown in Fig. 8. The
controller structure does not permit perfect model matching,
but the error is relatively small at all frequency ranges.

C. Design of low-order controllers

If, for practical reasons, the order of the controller needsto
be reduced, the characteristics of the1500th- and30th-order
controller can be used to choose an appropriate structure for
the low-order controller. In this example, a controller of order
4 is designed, using the data measured with the30th-order
controller in the loop.

The high-order FIR controller and the30th-order con-
troller clearly show the behaviour of a notch filter at about
160 rad/s. Some of the controller parameters of the low-order
controller need to be fixed to reproduce this behaviour. The
fixed part of the controller therefore includes a notch filter,
designed using the response of the30th-order controller. The
remaining two poles are fixed at0.7. Note that it is not
necessary to actually implement the30th-order controller
to design the low-order controller. The structure of the
controller is given by:

K1(ρ) =
(ρ0 + ρ1q

−1 + ρ2q
−1)(1 − z1q

−1)(1 − z2q
−1)

(1 − p1q−1)(1 − p2q−1)(1 − p3q−1)(1 − p4q−1)
,
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Fig. 10. Achieved closed-loop performance. Grey dashed: reference model
M1. Black: measured complementary sensitivity withK1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

P
os

iti
on

 [r
ad

]

Time [s]

Fig. 11. Tracking performance. Dash-dot thin line: reference signalαd.
Black solid: measured response withK1. Grey dashed: response ofM1 to
αd.

wherez1 = z∗2 = 0.98 + 0.15i, p1 = p∗2 = 0.95 + 0.14i and
p3 = p4 = 0.7. ζ(t) is defined as in (14), withl1 = 500,
δN = 0.9 and F = 1. The Bode diagram of the resulting
controller is shown in Fig. 9, where the Bode diagram of the
30th-order controller is given for comparison. Inspection of
the stability constraints shows that they are active for low
frequencies, and the gain of the controller is limited at low
frequencies to guarantee stability.

The controller is implemented and the same experiment
as described in Section IV-A is performed. The controller
stabilizes the plant. The achieved closed-loop performance
is shown in Fig. 10. The controlled system resemblesM1

at low frequencies. At higher frequencies, the model cannot
be matched due to the limited structure ofK1. However,
since the controlled system resembles the reference model
up to the bandwidth, the tracking performance achieved with
this low-order controller is expected to be good. The time
response of the controlled system is shown in Fig. 11. Note
that the time responses presented in this paper are normalized
for comparison. The controlled system is slightly slower than
the reference model due to the stability constraints. The price
to pay for stability is thus a limitation of performance.

The performance requirements can be increased by in-
creasing the bandwidth of the reference model. A second
reference model is defined as

M2 =
0.03211q−4 − 0.03117q−5

AM2

,

whereAM2
= 1−3.01q−1+3.36q−2−1.68q−3+0.34q−4−

0.013q−5. The set of data of lengthN = 150Np collected
with K1 in the loop is used for controller design. The
structure ofK2(ρ) is the same as the structure ofK1(ρ),
ζ(t) is defined as in (14),l1 = 500, δN = 0.9 andF = 1.

For comparison, another controllerKls is designed using
loopshaping. The non-parametric model of Fig. 6 is used
to design the controller, and the cross-over frequency is
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chosen similar to that ofM/(1 − M). A notch filter is
introduced to deal with the resonance. This filter is designed
using the non-parametric model and is not the same as
the fixed part ofK1 and K2. A lead filter is added for
the phase margin. A second-order low-pass filter is added
to limit the high-frequency gain, resulting in a5th-order
controller. The Bode diagram ofK2 and of Kls are
shown in Fig. 12. The achieved closed-loop performance is
shown in Fig. 13. Model-matching up to the bandwidth is
not possible with the limited controller structure. Since the
control objective forK2 is model matching, it is expected
that the achieved model-reference criterionJmr of (1) is
smaller forK2 than for Kls. Jmr can be approximated by
Ĵmr(K) =

∑

ωk
[M2(e

−jωk)−T (e−jωk)]2, whereT (e−jωk)
is the measured frequency response function as shown in Fig.
13. As expected,̂Jmr(K2) < Ĵmr(Kls). The difference is
about3.4%.

The time-domain response of the plant controlled byK2

is comparable to that of the plant controlled byKls, as
shown in Fig. 14. Note that the measured responses and the
response of the reference model overlap. Note also that the
reference signalαd in Fig. 14 is the same asαd in Fig. 11.
αd is not visible in the figure because the response ofM2

is much faster than the response ofM1 and the response of
the reference model is superposed onαd.

The achieved tracking performance ofK2 and Kls are
thus comparable. The Bode diagram ofK2 and that ofKls

are also very similar. This result might not be surprising
for such low-order controllers. However, it should be noted
that the structure ofK2 is found systematically from a
series of optimization problems, and the proposed approach
can be used to calculate the optimal controller for any
predefined controller structure of any order. If a higher-order
controller can be implemented, the achieved performance
will be improved, as illustrated by the results achieved with
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Fig. 14. Tracking performance. Dash-dot thin line: reference signalαd.
Black: measured response withK2. Black dash-dot: measured response with
Kls. Grey dashed: response ofM2 to αd.

the 30th-order controller, see Fig. 8.

V. CONCLUSIONS

Non-iterative correlation-based controller tuning with
guaranteed stability is applied to a pick-and-place robot.A
closed-loop scheme is used to generate the signals necessary
for controller design. The constraints for closed-loop stability
integrated in the controller design method are effective.
The designed controllers stabilize the system. Low-order
controllers are designed systematically. Firstly, a high-order
controller is designed that represents the ideal controller. The
structure of the low-order controllers is then defined such
that the important characteristics of the ideal controllerare
maintained.
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