
Demo Abstract of Net-Controller:
a Network Visualization and Management Tool

Julien Herzen Adel Aziz Patrick Thiran
EPFL EPFL EPFL

Lausanne, Switzerland Lausanne, Switzerland Lausanne, Switzerland
julien.herzen@epfl.ch adel.aziz@epfl.ch patrick.thiran@epfl.ch

Abstract— Net-Controller is a user-friendly network visualiza-
tion and management tool developed at EPFL in order to easily
retrieve and display in real time network statistics, such as link
throughput and queue occupancy from a large testbed composed
of wireless routers. Additionally, Net-Controller allows to control
and modify the parameters of a complete network from a central
point, and to easily generate traffic between different nodes. We
intend to illustrate some of the features of Net-Controller through
two examples that show how easily this tool detects and helps
elucidate the throughput degradation that occurs in a wireless
multi-hop network. The first example shows how and why fair
queuing [6] improves performance compared to the standard
FIFO policy used in off-the-shelf routers. The second example
shows how and why a hop-by-hop congestion control mechanism,
such as EZ-Flow [4] is needed to tackle the instability problem
of a multi-hop scenario.

I. INTRODUCTION

Wireless mesh networks (WMNs) based on a multi-hop
backbone promise to revolutionize Internet services by pro-
viding customers with ubiquitous high-speed access at a low
cost. However, even though multiple deployments of WMNs
already exist, many technical challenges still need to be
addressed before the wide adoption of this technology.

Indeed, current deployments use off-the-shelf hardware
that run on technologies such as IEEE 802.11 and were
developed for single-hop topologies. Thus, as a multi-hop
environment is fundamentally different from a single-hop one,
the performances (throughput, delay, etc.) achieved by these
deployments appears to be significantly sub-optimal [3, 7].

Wireless links are extremely time-varying, and therefore
difficult to model and simulate in a realistic way. For this
reason, measurements obtained on-the-fly from real networks
are often needed to assess the performance of such wireless
communication systems. Although long term traces are needed
to obtain statistically meaningful results, it may be very
useful to easily obtain instantaneous visualization of some
performance metrics when looking for the source of a problem,
in the early evaluation phases, or when finely tuning a system.

Net-Controller is a program that can create nice dynamic
plots representing data collected on-the-fly from the network.
Besides, it also allows for some arbitrary commands to be sent
to any set of nodes. This type of tool is useful for quickly an-
alyzing a scenario both for research and educational purposes.
Moreover, it is also useful for network administrators who
need to be able to easily and quickly diagnose and solve a

performance problem that occurs in their wireless networks.
Some tools, such as Jigsaw [5], are proposed in prior work to
allow the creation of a packet-level trace by merging the data
obtained from multiple sniffers.

Net-Controller significantly differs from Jigsaw-like tools in
three ways: (i) it is both very user-friendly with a graphical
interface and easily expandable to monitor arbitrary metrics
of interest in the network; (ii) second, it does not require
dedicated monitoring nodes in the network and thus is also
able to display internal data that cannot be sniffed on the air,
such as the queue occupancy or the variation in contention
window; (iii) third, it is not only a monitoring tool. Indeed,
Net-Controller is designed to allow for the parameters of any
node in the network to be simply modified directly from the
graphical interface. Moreover, it also enables to generate traffic
from any set of nodes in the network to any other node with
only a few mouse clicks (see video [1]).

II. DESIGN OF THE TOOL

We deployed Net-Controller on our testbed composed of
multiple Asus WL-500gP wireless routers that form a IEEE
802.11 mesh network and a computer that acts as the entire
network monitoring and management center. Both the routers
and the computer are connected to a wired network, as
depicted in Figure 1, in order to ensure that the monitoring
data does not interfere with the real traffic happening in the
network. The routers run the OpenWRT firmware [2].

Net-Controller runs as two separated sub-programs that
communicate together through a network socket.

• The server part runs on the computer. It consists in a
simple graphical interface that allows the dynamic plots

Net-Controller

node 1

flow 1

node 2 node 3 node 4 node 5

flow 2

flow 3

Fig. 1. Illustration of the design structure of Net-Controller on a 5-node
linear topology, where 3 different flows are launched.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0 10 20 30 40 50 60
time [s]

0

100

200

300

400

500

600

700

800

th
ro

ug
hp

ut
 [k

bi
t/s

]

thr<1-->3> at node 3
thr<2-->3> at node 3

0 10 20 30 40 50 60
time [s]

100

120

140

160

180

200

220

th
ro

ug
hp

ut
 [k

bi
t/s

]

thr<1-->3> at node 3
thr<2-->3> at node 3

Fig. 2. Throughput received at the destination for the two flows. With
the standard FIFO policy (left) and with fair queuing (right). The plots are
produced by Net-Controller [1]. In the legend, “thr〈x → y〉” denotes the
throughput of the flow from the source node x to the destination node y.

to be generated, the commands to be launched on the
nodes, and traffic to be started (or stopped). Requests are
sent periodically to the nodes in order to retrieve the data
to plot. The commands are launched through ssh. This
program is written in Python and is multi-platform. It
simply needs to know the IP addresses of the routers to
interact with them.

• The client part runs on the wireless routers. Its role is to
answer the requests sent by the server with the appropri-
ate values. These values can be instantaneously obtained
every time (e.g., a buffer occupancy), or aggregated (e.g.,
the number of bytes received since the last request, in
order to compute a throughput). The current version of
this module is implemented in C and can answer requests
for: (i) the link level throughput, for each IP flow going
through this router; (ii) the occupancy of the IP and MAC
layer queues; and (iii) the value of the IEEE 802.11
CWmin parameter. We designed our program to facilitate
the addition of new parameters.

III. DEMO OF THE TOOL

A. Capturing the Benefits of Fair Queuing

Currently, almost all off-the-shelf routers use a single queue
with a FIFO policy (First-In, First-Out). Nevertheless, other
policies have been proposed. In fair queuing [6], each node
uses a separated queue for each individual flow and these
queues are then scheduled in a round-robin manner. We
implement fair queuing in Click [8] and capture its gain by
having a fully backlogged UDP 1-hop flow (flow 1) and 2-hop
flow (flow 2); both go through node 2 as depicted in Figure 1.
Figure 2 shows that the standard FIFO policy completely
starves the 2-hop flow, whereas fair queuing fairly shares the
throughput between the two flows (max-min fairness). The
starvation problem in FIFO occurs because the single queue
of node 2 is always full of packets from flow 1, and thus drops
most packets from flow 2.

B. Capturing the Benefits of EZ-Flow

The default IEEE 802.11 protocol is known to exhibit a
turbulent (unstable) behavior when used in a multi-hop sce-
nario [3]. These turbulences take the form of buffer build-up at
the relay nodes and they result in high end-to-end delays and

0 10 20 30 40 50 60
time [s]

0

100

200

300

400

500

600

th
ro

ug
hp

ut
 [k

bi
t/s

]

node 2
node 3
node 4
node 5

0 10 20 30 40 50 60
time [s]

0

50

100

150

200

250

th
ro

ug
hp

ut
 [k

bi
t/s

]

node 2
node 3
node 4
node 5

Fig. 3. Link throughput at the intermediate nodes and end-to-end throughput
at the destination. With default 802.11 (left) and with EZ-flow running at the
first node (right). Again, the plots are produced directly by Net-Controller [1].

wasted wireless resources due to buffer-overflows. EZ-flow
is a hop-by-hop congestion control mechanism that tackles
this problem by dynamically adapting the MAC parameters
(CWmin) without requiring any form of message passing [4].
Our tool successfully captures the gain of EZ-flow in a 4-hop
topology (flow 3 of Figure 1). Figure 3 shows the received
link-layer throughput at each relay node. We note that with
EZ-flow, the link throughput at all the relay node equals the
end-to-end throughput (i.e. smooth flow). In contrast, when
IEEE 802.11 is used only by itself, the link throughput at
the two first relays is significantly higher than the end-to-end
throughput (by a factor 2-3). Therefore wireless resources are
wasted and queues build up (i.e. turbulent flow).

IV. CONCLUSION

We have presented our network management tool, called
Net-Controller, designed to facilitate the control and moni-
toring of a multi-hop network. Net-Controller is designed to
be as user-friendly as possible by enabling - from a single
graphical interface - both the control of parameters and real-
time plotting of statistics from the entire network. We have
demonstrated the utility of this tool through two examples by
showing: (i) how easily Net-Controller captures the benefit of
fair queuing and EZ-flow and (ii) how it helps elucidate the
source of these gains in performance. In addition to the live
demo given at Infocom, we provide two videos of our tool in
use on our website [1].

REFERENCES

[1] Net-Controller: a network visualization and management tool.
http://icawww1.epfl.ch/NetController/.

[2] OpenWRT firmware. http://openwrt.org/.
[3] A. Aziz, D. Starobinski, and P. Thiran. Elucidating the instability of

random access wireless mesh networks. In Proc. of SECON, Rome, Italy,
June 2009.

[4] A. Aziz, D. Starobinski, P. Thiran, and A. El Fawal. Ez-flow: Removing
turbulence in ieee 802.11 wireless mesh networks without message
passing. In Proc. of ACM CoNEXT, Rome, Italy, Dec. 2009.

[5] Y.-C. Cheng, J. Bellardo, P. Benko, A. Snoeren, and G. V. nd S. Savage.
Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In Proc. of ACM
Sigcomm, Pisa, Italy, Sept. 2006.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In Proc. of ACM Sigcomm, Austin, TX, Sept. 1989.

[7] V. Gambiroza, B. Sadeghi, and E. Knightly. End-to-end performance
and fairness in multihop wireless backhaul networks. In Proc. of ACM
MobiCom, Philadelphia, PA, Sept. 2004.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Trans. Comput. Syst., 18(3):263–297, Aug 2000.


