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Abstract

This work is dedicated to the sensible optimization and

porting of a multi-lead (ML) wavelet-transform (WT)-

based electrocardiogram (ECG) wave delineator to a

state-of-the-art commercial wearable embedded sensor

platform with limited processing and storage resources.

The original offline algorithm was recently proposed and

validated in the literature, as an extension of an earlier

well-established single-lead (SL) WT-based ECG delin-

eator. Several ML ECG delineation approaches, including

SL selection according to various criteria and lead combi-

nation into a single root-mean-squared (RMS) curve, are

carefully optimized for real-time operation on a state-of-

the-art commercial wearable embedded sensor platform.

Furthermore, these ML ECG delineation approaches are

contrasted in terms of their delineation accuracy, complex-

ity and memory usage, as well as suitability for ambulatory

real-time operation. Finally, the robustness and stability

of the ML ECG delineation approaches are benchmarked

with respect to a validated SL implementation.

1. Introduction
A significant amount of research effort has been devoted

to the automated analysis of electrocardiogram (ECG) sig-

nals, and in particular to the underlying detection of the

major ECG characteristic waves, namely the QRS com-

plex, P and T waves, so-called ECG delineation [1]. As a

result, several automatic delineation methods working on

a single ECG lead can be found in the literature [1, 2]. In

practice, however, multiple leads are simultaneously ac-

quired both in traditional clinical settings (the standard

12 leads) and in emerging ambulatory ECG monitoring

(the 3-lead configuration). The deployment of delineation

approaches able to exploit the multiple leads, i.e., multi-

lead (ML) delineation, can potentially improve the accu-

racy, stability and resilience to artifacts of the character-

istic waves measurements, compared to single-lead (SL)
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delineation [3, 4]. This is particularly relevant for the

herein considered ambulatory/wearable ECG application,

the quality of the measurements by the different lead may

not be known a-priori (ECG electrodes installed by the pa-

tient himself) and/or may vary due various artifacts intro-

duced during daily usage.

The present work investigates two approaches to deploy-

ing ML delineation based a single-lead ECG delineator,

namely, lead selection and multi-lead combination into a

single root-mean-squared (RMS) curve. The considered

single-lead delineator is based on a state-of-the-art wavelet

transform-based delineator [2, 5], which exploits the time-

scale description of this transform to provide a robust, effi-

cient and reliable automated analysis of the multiresolution

waves of the ECG signal. More specifically, we use a mod-

ified version of this early offline algorithm [2], which we

have previously optimized for real-time implementation on

a state-of-the-art commercial embedded wearable sensor

platforms (EWSNs) with limited processing and storage

resources ShimmerTM [7]. The detailed description and

validation of our optimized algorithm can be found in [6].

In addition to comparatively evaluating the delineation

accuracy of the aforementioned multi-lead ECG delin-

eation approaches, this work describes their optimization

and porting to the ShimmerTM platform. In particular, we

report on the complexity and memory usage of these multi-

lead approaches, and thus assess their suitability for ambu-

latory real-time operation.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the investigated ML delineation meth-

ods. In Section 3 we describe the applied optimization

techniques to port the ML delineation methods onto an

EWSN. Then, in Section 4 we present the experimental

results that validate the quality of the delineation. Finally,

in Section 5 we draw the main conclusions of this work.

2. Multi-lead delineation methods
Two main approaches to ML delineation methods are

considered in this work. The first approach is lead selec-

tion, which simply selects among the available multiple
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leads the best lead, according to a given criterion, to de-

lineate a specific or all ECG characteristic waves using the

retained single-lead delineator. The second approach in-

stead combines the multiple leads into an RMS ECG sig-

nal on which the single-lead delineator is run. In summary,

the first approach tries to identify the best individual lead

to extract the desired signal component(s), while the sec-

ond approach seeks to provide an overall view of the entire

heart in a manner that is independent of the lead system

used. Both methods are further explained subsequently.

2.1. Lead selection
The automatic selection of the best lead is not straight-

forward in an ambulatory wearable setting. For bench-

marking purposes, we consider 3 schemes: random (uni-

form) selection, and two different expert-based selections.

The random selection simply selects one of the leads uni-

formly at random. This approach has the advantage of

requiring no system configuration or training, at the ex-

pense of degraded delineation performance when the best

lead is not selected (i.e., for a 2-lead system, 50% of the

time). The first expert-based method (i.e., training-based

selection) identifies the single lead providing the minimum

standard deviation of the delineation error, averaged over

all delineation points. This lead is then consistently se-

lected for the delineation. This approach corresponds to

a scenario, where upon system installation on the patient,

the cardiologist would observe the multiple leads and se-

lect the lead allowing the best results overall. The sec-

ond expert-based method (i.e., genie selection) represents

the optimal approach, which consistently chooses, for each

delineation point and for each beat, the channel with less

error. It entails a two-fold increase in the complexity and

memory requirements of the algorithm, as both leads have

to be acquired and delineated in parallel.

2.2. RMS method
This method first combines the multiple leads into a sin-

gle RMS ECG signal, on which delineation is then per-

formed [3, 4]. The RMS ECG signal xRMS [n] of a set of

M ECG leads (xi[n] with i = 1, . . . ,M ) is defined as:

x[n] =

√

√

√

√

1

M

M
∑

i=1

x2
i
[n], (1)

where n denotes the discrete-time index. For a meaning-

ful combination, it is crucial to remove baseline wander on

each of the leads before computing the RMS [3, 4]. Since

the quality of the subsequent delineation depends on the

baseline wander correction, the effectiveness of the follow-

ing two state-of-the-art algorithms is assessed.

• Adaptive filtering: Baseline wander is removed using

a single-tap adaptive least-mean-squares (LMS) filter, fol-

lowed by a moving average filter (which helps to get a nar-

rower transition band), as proposed in [8]. The original

paper used a learning rate µ = 0.005 and a moving aver-

age over 361 samples (with a sampling frequency of 360

Hz). Since the sampling rate of our system is 250 Hz, a

very similar frequency response was obtained by taking

µ = 0.007 and a moving average over 251 samples. How-

ever, to make the system simpler to compute on an embed-

ded platform, we instead used µ = 1/128 = 0.0078125
and a moving average over 256 samples. The filter fre-

quency response remains very similar to the original one,

but it theoretically has very limited computational com-

plexity. However, this theoretical low complexity comes

at the expense of a reduced baseline wander removal capa-

bility. Moreover, its execution in a EWSN is not efficient

due to the type of required operations (i.e., floating point

multiplications/divisions) (cf. Section 3).

• Morphological filtering was proposed in [9]. It consists

of two steps. The first one implements baseline correction

by means of several erosion and dilation operations on the

original signal. In the second step, noise is further reduced

using erosion and dilation operations applied on the signal,

but using special structuring elements that help retaining

the peaks and valleys of the important waves, e.g., the QRS

complex, the P and T waves.

3. Implementation on an Embedded

Wearable Sensor Platform
In this section we present the particular EWSN used in

this work and describe the optimizations applied to port the

algorithm onto this platform.

3.1. The ShimmerTM embedded platform
Our target WBSN is the SHIMMERTM platform [7].

This platform is equipped with an ultra-low-power 16-

bit microcontroller from TI (MSP430F1611 [12]) which

offers a maximum frequency of 8MHz, 10KB of RAM,

48KB of Flash and some peripherals as analog-to-digital

converters (ADC), a direct memory access unit (DMA)

and a fast hardware multiplier. The SHIMMER also pro-

vides two radio chips (Bluetooth and 802.15.4 compliant)

and an expansion port used to connect a daughter board

equipped with several sensors (ECG, accelerometers, gy-

roscopes, etc.). The daughter board used in this work con-

tains an application-specific integrated circuit (ASIC) that

is able to read and amplify 3-lead ECGs.

Regarding the software, the applications have been pro-

grammed in C and compiled for Shimmer using the GCC-

MSP v4.30 toolchain [13], which uses all the hardware re-

sources of the target microcontroller.

3.2. Optimizations for Shimmer
To execute the proposed algorithms in Shimmer and

process the ECG signal in real-time, we need to optimize

their computational power and memory footprint. In all

the algorithms, every sample uses 2 bytes and at least 6

buffers per lead. Then, in the case of the random and

training-based algorithms, which choose one lead at the
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Table 1. Results: comparison between the three lead selection methods (optimal, random, training-based) and the RMS

method with the two alternative filters for baseline wander correction (adaptive and morphological).

Method Param Pon Ppeak Pend QRSon QRSend Tpeak Tend

2-lead [6] Se (%) 99.87 99.87 99.91 99.97 99.97 99.97 99.97

16-bit int P+

min
(%) 91.98 92.46 91.70 98.61 98.72 98.91 98.50

Optimal m ± σ (ms) 8.6 ± 11.2 10.1 ± 8.9 0.9 ± 10.1 3.4 ± 7.0 3.5 ± 8.3 3.7 ± 13.0 −2.4 ± 16.9

2-lead Se (%) 98.41 98.30 98.17 99.74 99.74 99.44 99.37

16-bit int P+

min
(%) 92.30 92.65 92.44 99.29 99.33 99.33 98.97

Random lead m ± σ (ms) 11.2 ± 17.1 10.6 ± 14.5 −4.1 ± 15.6 7.0 ± 10.2 5.3 ± 11.3 4.8 ± 20.8 −4.9 ± 25.0

2-lead Se (%) 98.64 98.64 98.64 99.97 99.97 99.73 99.73

16-bit int P+

min
(%) 92.75 93.43 92.91 99.58 99.58 99.57 99.36

Training-based m ± σ (ms) 14.8 ± 12.9 15.4 ± 9.5 1.3 ± 11.1 8.6 ± 7.7 3.1 ± 9.5 5.2 ± 14.1 −3.1 ± 19.3

RMS Se (%) 95.88 95.88 95.88 99.60 99.63 97.57 97.54

16-bit int P+

min
(%) 94.33 94.27 94.09 98.96 98.96 99.03 98.88

Adaptive filtering m ± s (ms) 8.3 ± 23.1 13.9 ± 18.3 −2.9 ± 19.8 5.6 ± 10.1 7.8 ± 11.3 8.7 ± 22.6 −7.1 ± 28.5

RMS Se (%) 98.28 98.28 98.31 99.78 99.78 99.66 99.55

16-bit int P+

min
(%) 92.87 92.87 93.09 99.18 99.15 99.19 98.93

Morph. filtering m ± s (ms) 1.5 ± 14.2 15.0 ± 10.8 −0.3 ± 13.2 8.6 ± 7.8 9.4 ± 9.3 5.9 ± 19.5 −10.7 ± 24.5

Tolerances 10.2 – 12.7 6.5 11.6 – 30.6

beginning of the execution, we store in each buffer 512

samples of the input signal and of its WT-transform (on

each of the five scales at a certain instance of time), which

requires 6.8KB of memory (6KB for the buffers and 0.8KB

for auxiliary variables). Thus, they fits in the 10KB mem-

ory in the MSP430 microcontroller. Then, for the opti-

mal ML delineation algorithm, since it needs 12 buffers

because two leads are used for delineation, we have ad-

justed its buffer’s length to 256 samples and its total mem-

ory utilization is 6.8KB. Last, in the case of the RMS al-

gorithms, they require ten buffers: 2 for the input signals

(1 per lead), 2 for the filtered signal (1 per lead), 1 for the

RMS curve, and five for the different scales of the WT-

transform. Also, both algorithms need 0.5KB for auxiliary

variables. Hence, we have adjusted their buffers’ length to

256 samples, and their final memory footprint is approxi-

mately 5.5KB, fitting in the 10KB limit of the MSP430.

Regarding computational complexity, the lead selection

algorithms require 5% of the time to perform on-line pro-

cessing per lead, which is the case of the random and

training-based algorithms, while the remaining 95% the

MSP430 microcontroller is in sleep mode. Then, the op-

timal ML delineation algorithm uses the microcontroller

10% of the time, as it uses two leads, which still enables a

large amount of time in sleep mode. On the contrary, the

RMS algorithms are more computationally intensive due to

their initial filtering phase of the two input signals (one per

lead) and when the RMS curve is calculated. Thus, apart

from the 5% of the time in the delineation process, they

both use 2.5% of the time in the RMS calculation requires,

and then the largest amount of time in the filtering process:

56% in the case of the adaptive filter and 23% in the case

of the morphological filtering. In fact, even though the the

adaptive filter requires only very few operations (4 addi-

tions/substractions, 4 multiplications and 1 division) per

sample and simple moving average, they are all floating

point operations, which are very expensive (from the per-

formance viewpoint) to execute in small microcontroller,

since it does not have any hardware support for floating

point operations and they are replaced by software emu-

lation code. Thus, this results clearly show the need for

adapting the original algorithm and underlying operations

to the specific type of EWSN and included microcontroller.

4. Validation and Experimental Results

For the validation of this work, we run all the experi-

ments using as input the 105 records of the QT database

(QTDB) [10]. The QTDB is a free-access database

which consists of 15-minute excerpts of two-channel ECG

recordings. This database was created for the evaluation

of ECG delineation algorithms. For this purpose, the input

ECG records have been manually annotated by expert car-

diologists. The performance of the algorithms is measured

comparing the results obtained by our proposed automated

algorithm with respect to the manual annotations.

To compare the results obtained by our algorithms with

the ones contained in QTDB, we use four metrics: sensi-

tivity, positive predictivity, mean error and standard devi-

ation. The sensitivity and positive predictivity are defined

as Se = TP/(TP + FN) and P+ = TP/(TP + FP ),
respectively, where TP is the number of true positive de-

tections, FN the number of false negative detections and

FP the number of false positive detections. The mean er-

ror (m), which is computed as the average of the errors

across all the records, shows how close the results of the

algorithm are to those that have been manually annotated

in the database, while the standard deviation of the error

(σ), which is defined as the average of the standard devia-

tion of each record, gives us information about the stability

of the detections.
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4.1. Delineation results
The validation results on the QTDB obtained for the var-

ious ML delineation methods discussed in this paper are

compiled in Table 1. In addition, the last row indicates

the two-standard-deviation tolerances set by the Common

Standards for Electrocardiography (CSE) committee [11].

Comparing the three lead-selection approaches, it is

confirmed that the optimal approach, which consistently

chooses the best lead for each wave, naturally exhibits

the best delineation accuracy for all fiducial points. The

training-based lead selection approach, which chooses the

lead with minimum standard deviation for all the points,

shows a slightly worse performance, while the random

selection comes last. As an illustration, the differences

(mean±standard deviation in ms) between automatic real-

time delineation on the embedded platform and the expert

annotations for the faint P wave were as follows: training-

based lead selection achieved 14.8±12.9, slightly worse

than the genie lead selection approach (8.6±11.2) and 1

sample better than the random lead selection (11.2±17.1).

It is worth mentioning that since the results of random se-

lection vary from one execution to another, the average of

15 executions is computed in order to minimize the effect

of the random selection in the results.

Regarding the RMS-based ML delineation, it is relevant

to note that the results reported in Table 1 were obtained af-

ter several modifications/optimizations on the single-lead

WT-based delineator used as a second stage of the pre-

vious lead selection delineators [6]. These modifications

were introduced to take into account the specific character-

istics of the RMS ECG signal, and are as follows: (1) The

QRS detection threshold ǫ2 was divided by 2 compared to

its original value; (2) For P and T waves, only maxima fol-

lowed by minima on scales 24 and 25 were considered, due

to the special shape of the RMS ECG; (3) The coefficient

to compute ξPon
was reduced from 0.5 to 0.25.

The results of RMS-based delineation with adaptive fil-

tering pre-processing are reported in Table 1. They show

that QRS and T delineation are within acceptable range

(i.e., close to the tolerances), while the P wave is poorly

delineated. This is due to the fact that this faint wave is

the most affected by the bad quality of the baseline wan-

der removal of the simple filter used here. This is further

confirmed by the significantly better delineation accuracy

when the more effective morphological filter is used in

the pre-processing stage of RMS-based delineation. As

shown in Table 1, this last approach to RMS-based ML

delineation outperforms random lead selection, and falls

slightly short of equaling the training-based lead selec-

tion. In particular, it was found to achieve 1.5±14.2, with-

out requiring expert training for lead selection, yet criti-

cally depending on successful baseline wander correction

of the multiple lead prior to combination. It remains to

be confirmed that an even better baseline wander removal

strategy, such as cubic spline interpolation, establishes the

RMS-based ML delineation as the most accurate, stable

and robust approach to ML delineation.

5. Conclusions
This work has investigated several ML techniques, as

a means to improve the accuracy of ECG signal delin-

eation. These techniques have been ported and validated

in real-time on a commercial wearable sensor platform.

Our results suggest that a training-based lead selection pro-

vides good results, without any added complexity to the

core WT- based delineation algorithm. However, this tech-

nique is probably not appropriate for ambulatory settings,

where expert intervention may not be available and elec-

trode placement may change due to body movements. As

far as RMS-based ECG delineation is concerned, our re-

sults indicate that the quality of the results highly depends

on the effectiveness of the mandatory baseline removal

pre-processing stage. When a good baseline wander re-

moval technique is used, the delineation results are very

close to the ones obtained by the expert-based lead selec-

tion methods, while obviating the need for expert interven-

tion.
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