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Abstract 
 
This paper presents a contribution to the 

development of rapid prototyping tools based on data-
flow description. In this context, the efficiency of 
automatic translator tools from the data-flow 
description to C and/or HDL are presented using two 
design cases. Moreover, this paper presents the novel 
concept of the automatic synthesis of interfaces based 
on dataflow description. Such “generic” interfaces 
include an embedded microprocessor, which enables 
using a vide variety of interfaces already available as 
optimized libraries from the FPGA manufacturers. 

The different design cases described have been 
tested and validated on different platforms. The results 
of the work show the flexibility and generality of the 
proposed wrapper methodology that is described in the 
paper. 
 
1. Introduction 

 
Nowadays, in the fields of embedded system, 

heterogeneous platforms are more and more used to 
implement complex processing applications. Due to the 
increase of the application complexity, it becomes 
more and more difficult to develop and to optimize 
algorithms mapped on heterogeneous platforms. 
Several steps need to be completed, and several issues 
need to be addressed such as: 1) which portion of the 
algorithm will result to be a more efficient 
implementation on which component of the 
heterogeneous platform?, 2) which partitioning 
schemes respect the constraint of the application, 3) 
and how to convert the selected section of the 
algorithm into the language compatible with the 
corresponding component. Several works are already 
ongoing and aims at addressing those issues.  

The first issue can be addressed by using an 
appropriate language, which is the CAL dataflow 
language in that case. A dataflow language allows for 
getting a visual programming because the application 

could be represented by a graph. Compared with the 
languages that use other paradigms, dataflow 
programming allows for modeling on a high level of 
abstraction. The CAL language is based on the actor 
model of computation. It provides many features to 
facilitate systems modeling.  

The second issue can be addressed by the existence 
of a tool environment that supports different design 
space exploration stages and yields efficient mapping 
and partitioning of the high level algorithm 
specification on each component of the heterogeneous 
platform. An essential element is the inclusion, at the 
level of the unified computation model, of the 
architectural components of the heterogeneous 
platforms and of native library/IP components. 

A dataflow model expressed in CAL is composed of 
a set of independent “actors”, which consume data 
tokens from channels, process these tokens, and then 
bring new tokens on channels. The channels are 
represented by directing edges to represent the 
direction of the communication between two actors. 
CAL language facilitates explaining explicitly how the 
full design will be partitioned on different chips/cores 
as well as the type of communication between them. 

Generic wrappers have been designed to easily 
convert the model with the appropriate interface. A 
generic structure must be able to adapt to every 
communication controller. These wrappers could be 
connected with its sub-layer to every IP-interface 
defined within the component library. Two wrappers 
are necessary: one for communication interfaces and 
the other for memories. 

In this paper, a description of the wrapper for 
hardware component is provided, with focus on the 
case of an FPGA with a soft-core. The paper shows 
that the wrapper is generic and can be used with many 
communication interfaces.  

The remainder of this paper is organized as follows: 
Section 2 presents the main objective, the language and 
the methodology to quickly prototype new architecture. 
Section 3 presents the efficiency of the CAL converters 
on two design cases (an MPEG-4 simple profile 
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decoder and a bar code decoder). Section 4 shows the 
utilization of the interface wrappers. In section 5, a 
presentation of some interface wrappers is provided. 
Finally, section 6 concludes the paper. 
 
2. Objectives and principles 

 
This section describes the main objectives behind 

the work of this paper, focusing on the location of the 
wrappers in the design flow. A presentation of the 
CAL language [1] and its properties are made to 
explain why this language has been chosen. The 
methodology and the interface management are 
explained to sense the real advantage of the work. 

2.1. CAL language. 
 
A dataflow model expressed in CAL is composed of 

a set of independent “actors” [1], [2] and their 
connection structure which build a network (see Figure 
1). An actor is a standalone entity which has its own 
internal state represented by a set of state variables. It 
performs computations by executing actions and it 
must have, at least, one action to do computations. An 
action execution is modeled as an atomic component 
which means that no other action, of the same actor, 
can execute at the same time. Moreover, an action is 
executed based on the internal state of the actor and 
depending on the availability and values of tokens at 
the input ports. The “actor” has a set of input and 
output ports through which it communicates with other 
actors by passing data tokens. In summary, an “actor” 
may consume tokens from inputs, may change the 
internal state and may produce tokens at the outputs. 

 

 
Figure 1: CAL principles 

 
CAL provides scheduling concepts to control the 

executions order of actions inside an actor. CAL allows 
for combining a network of actors to build hierarchical 
systems. The network is achieved by connecting the 
input and output ports of actors together to define the 
communication structure of the model. Moreover the 
communication channels are constituted by FIFOs. 

By using CAL, designers can only focus on the 
modeling of the dataflow system and do not need to 
care much about the low level of details to implement 
the communication between actors. Also, CAL 
provides the designer with the control over 
communication parameters such as length of queues 
and types of exchanged data. When a dataflow model 
is developed, it can be simulated using the 
Opendataflow simulator [3] to check for the correct 
functionality. 

 
2.2. Objectives 

 
The main objective is to define and develop a 

methodology for a unified specification formalism for 
software and hardware components to be mapped onto 
heterogeneous multi-component embedded platforms, 
using a synthesizable high-level dataflow formalism, 
based on the CAL language, which is capable of 
specifying and modeling both software and hardware 
components. In a CAL-based design flow, the whole 
system is modeled and implemented in CAL. 
Moreover the partitioning between hardware and 
software can be easily modified since the same source 
is used for generating both parts. 

 

  
Figure 2: Data flow based on CAL description 
 
Figure 2 details the design flow: a CAL program 

which is the global algorithm is the first input, while 
the second input is the architecture of the 



heterogeneous platform. First, the CAL program is 
validated with a behavioural simulation. 

Then, the second step is the pre-partitioning. This 
step defines, in accordance with the constraints and the 
architecture (component and interface), which actors 
will be the best placement, either hardware or software. 
During this step, simulations are made to find the 
correct partition, with insertion of wrappers and actors 
which represent the behaviour of the interfaces 
included into the architecture. In the case where no 
partition is found, a request to rewrite the CAL 
program or change the architecture constraints is made 
to the designer. Once the architectural validation is 
obtained, a phase of writing a CAL model, called CAL 
partitioned, is executed specifically after the validation. 
The partitioned CAL is the result of the partitioning 
where attributes are added to correspond with the 
component (SW or HW). This is in this part that the 
actors “wrappers” are included into the design. In 
accordance with the interface present in the platform, 
the wrapper is defined and the sub-layer (peripheral 
wrapper) is parameterized to correspond with the IP-
interface during the code translation. Nevertheless, on 
the hardware side, the interface integration is much 
harder to put in place because it has no operating 
system (OS) to manage interfaces automatically 
instead of the software side. Moreover many edges 
within a chip can use the same physical path (or 
peripheral) to access actors within another chip. An 
example of a partition is shown figure 3. 

  

 
Figure 3: Example of partitioning 

 
Once the choice of the actors is made for the 

partition, each part is translated into the correct 
language by two tools: CAL2HDL [4] for FPGAs and 
CAL2C for processors [5].  

The final step is to synthesize and to implement by 
calling and adding specific IPs that are present in the 
component’s library. For instance a bitstream is created 
for an FPGA. The ultimate goal is to automate all the 
previous steps. However, up till the time this paper is 
written, only the definition of the wrappers has been 
performed. 

.  
2.3. The global methodology and interface 
management. 

 
One of the major key issues in design conception is 

to provide rapid prototyping methodology to define 
and to validate a system architecture that reaches the 
application’s requirements. The CAL description and 
the related implementation tools enable to describe and 
to implement a completed processing chain. 

The processing part, as explained in the previous 
section, can be split into two partitions SW and HW 
that can be automatically translated to C and VHDL 
codes respectively. The efficiency of the automatic 
translation will be discussed in section 5 with two 
existing design cases.  

Two specific classes of actors can be defined to 
represent respectively the external interfaces and the 
external memory. The two resulting models can be 
used at different stages of the design’s validation. The 
model can be used to validate: 

! the functional CAL, 
! the CAL description obtained after 

merging with the architecture definition 
For instance, the external interfaces can be 

described with a simple description: 
! bandwidth, 
! temporal interruption (period or randomly 

generated). 
Obviously, the model can be completed to be more 

conformant to the real physical interfaces.  
The external interfaces are directly exchanged with 

the physical link (for instance LAN, RS232...). 
A completed automatic implementation requires 

handling with the control of the different interfaces.  A 
technological solution is proposed for the two 
partitions.  

The processor in charge of the SW partition can 
easily handle the control of the interface with a C 
driver. For the HW partition, a controller, as well as the 
driver, must also be generated to connect the interface 
with the HW partition. 

A unique wrapper structure, described in CAL 
language, is proposed to handle the interfaces. These 
latter enables a large variety of interfaces to be 
integrated. It is composed of a generic part to handle 
with interface interconnections and an adapter specific 



to each physical interface. The structure of the adapter 
is based on a micro-controller (Xilinx-Microblaze or 
Altera-NiosII), which nowadays proposes a variety of 
interface controllers. The wrapper does not modify the 
performances of the micro-controller’s solution.  

For instance, as presented in figure 4, the different 
wrapper should be added for each external interface. 

 

 
 

Figure 4: Example of partitioning with the addition 
of the communication wrapper. 

 
A validation test is made with the partition of actors 

or network in both SW and HW component. The 
insertion of actors “wrappers” is obligatory, for this 
real simulation, as well as the insertion of the 
interface’s models. Video in/out is one of this model 
defined by parameters near the physical constraints. 
The simulation made at this step is the nearest of the 
real situation. LAN and RS232 are also defined 
between the two wrappers with their constraints. This 
stage is the pre-partitioning one, which is one of the 
most important into the rapid-prototyping phase. 

For the SW partition, a C driver is generated with 
the CAL2C tool. For the HW partition, a wrapper with 
a specific adapter, based on embedded micro-controller 
is generated. The adapter is dedicated to a specific 
interface due to the associated micro-controller code, 
which is also automatically generated.  

 
3. Effectiveness of CAL2C and CAL2HDL  

 
The translator has been tested with two different 

real applications. The first is the MPEG-4 SP decoder 
[4], [5], [6] [7], while the second is the code bar 
decoding [8], [9], [10], [11] in postal sorting. Both 
applications focus on the flexibility of a CAL 
description and the interests of high level of abstraction 
for a complete application description.  

 
3.1. First design case: the MPEG-4 SP decoder 
 

MPEG-4 is a suite of standards which has many 
"parts", where each part standardizes various entities 
related to multimedia, such as audio, video, and file 
formats. MPEG-4 contains a number of features that 
allow it to compress video much more effectively than 
older standards and to provide more flexibility. Figure 
5 shows the MPEG-4 decoder which has been 
described via a dataflow model using CAL. 

 

 
Figure 5: MPEG-4 SP decoder described in CAL 

 
This decoder model is composed of three distinct 

parts. The first includes the parser and merger actors. 
The parser cuts the bitstream video in Y, Cr, Cb 
streams and theirs associated motion vectors. The 
merger recomposes the video picture. The second part 
is used to decode the texture, then the third part 
computes the motion compensation on the decoded 
texture. The MPEG-4 SP dataflow description is 
composed of 42 actor instantiations. Figure 6 compares 
the entire MPEG-4 SP decoder written in CAL and the 
same decoder directly describe in HDL files. This 
graph shows a big advantage in term of development 
time and code size description for the MPEG-4 SP 
decoder CAL description compared with the manually-
written description (normalize to 1). This graph also 
shows an advantage for CAL description in term of 
area used by the FPGA and the throughput. 

 

 
Figure 6: Comparison of hardware performances 
between CAL generation and HDL handwrite for 

the MPEG-4 SP Decoder 
 
The entire MPEG-4 decoder can be generated from 

the CAL description using CAL2C [6]. Table 1 shows 
the different throughput performances between three 
MPEG-4 SP decoder code [4]. 



 

 
Table 1: Performances of the MPEG-4 SP decoder 
described in CAL, generate C, and generated HDL 

 
3.2. Second design case: the code bar decoder 
 

The goal of this application is to detect and decode 
bar codes on letters to enable automatic sorting at 
different stages of the logistic postal letter handling.  

 

 
Figure 7: Code bar decoder describes in CAL. 
 
Figure 7 shows the code bar decoder which has 

been described in CAL. This design has three distinct 
parts, which are the preprocessing, two processing 
(blobbing and code bar decoder), and then the manager 
stage. The first part computes some filters to improve 
the picture quality and highlights useful area. Both 
processing compute algorithms on the picture to find 
the proper area and decode it. The third part manages 
correctly the flow inside the design. 
 

Figure 8 compares two architectures, one is the 
CAL-generated, while the other is the manually-written 
CAL description (normalize to 1). The results show 
that the development time and the code size of the 
description have a factor of four compared with the 
handwritten. The figure also shows that in term of area 
the difference is more or less equivalent but the 
throughput change dramatically according to the used 
description. 

Furthermore, this comparison shows that the 
application can even run with half the throughput.  

 
These two design cases show the effectiveness of 

the CAL translators (CAL2HDL and CAL2C). 
Therefore, the HW/SW partitioning can be delayed to 
the last conception stage of the design flow. 
Consequently, the automatic insertions of interface 
controllers represent a key-point to propose efficient 
rapid prototyping tools.   

 
 

 
Figure 8: Comparison of hardware 

performances between two CAL generation and 
HDL handwrite for the Bar code decoder [7]. 

 
The results are more or less the same performance 

in order of the description CAL used, particularly the 
area's performance. This latter is closed to the 
handwritten description. But the development time and 
the size of the description has been improved by about 
a factor of four. 

 
4. A CAL wrapper for implementation of 
interface controllers  

 
A wrapper is used to connect directly an interface 

without its denomination. The wrapper must be able to 
easily connect as many devices as possible. In the 
partitioned CAL, only the parameters change to 
configure the right adapter. Figure 9 represents the 
overview of the wrapper on the hardware side. 

 

 
Figure 9: Wrapper overview 

 



Several “arcs” can use one wrapper, if only one 
interface can be used for many tasks or transfers. The 
wrapper must be able to serialize data from channels 
and must be able to de-serialize the data to the proper 
channel.  

 
4.1. Serialization and de-serialization process 

 
Both wrappers are used to convert a token from any 

channel into a sequence of words transmitted across a 
network connection link. Both wrappers are described 
in CAL for simplification. This allows automatic 
generation of the wrapper according to the number of 
“arcs” connected to the device. Even if it is written in 
CAL, it remains completely transparent because it will 
be instantiated during the pre-partitioning and the 
partitioning steps. Another advantage of making a 
CAL description is that the future improvements will 
be easier. The serialization wrapper should add data 
such that the de-serialization wrapper is able to 
redistribute the tokens on the proper channels. 
Moreover, the arcs connected to the wrapper are not 
necessarily active at the same time, and then the 
wrapper must be able to adjust its consumption and its 
production of tokens automatically according to the 
active arcs. To solve this problem of random token 
presence on the arcs, the actions should describe all the 
possibilities of consumption.  

 
4.2. Generic device connection 

 
The generic device connection allows connecting 

any communication interface with the serialization and 
the de-serialization wrappers. To make it easily 
realizable, a soft-core microprocessor is required; 
microBlaze for Xilinx and/or NiosII for Altera. The 
advantage of using a microprocessor is that most of the 
IPs to dedicate communication interfaces have already 
been created and optimized. 

The microprocessor architecture is a RISC soft-core 
architecture, which is implemented entirely in the 
programmable logic. It holds between 900 and 2600 
“logic cells” and can reach a frequency of 80 to 180 
MHz depending on the platform and options. A 
microprocessor is connected on a multi-master bus to 
access the IP slaves. 

The proposed architecture is composed of one On-
chip memory and if necessary one external memory. 
The architecture has a peripheral controller that is 
either built by the manufacturers or self-described. The 
architecture has a flow translator which converts the 
tokens into a pile of data and vice versa. Both piles of 
data are accessible from two different processor local 
bus addresses as the status of both FIFO. 

This conversion is made thanks to FIFOs for both 
directions. The wrapper adapter has also the 
possibilities of checking both FIFO statuses. Each 
component is accessible by the Processor Local Bus 
which is managed by the soft-core. A hardware Mutex 
has been placed on the Processor Local Bus, then the 
soft-core is able to supervise the critical section. The 
soft-core uses robust and light-weight µOS which are 
based on the pre-emptive real time multitasking 
operating system kernel for microprocessors. This type 
of µOS allows having several concurrently running 
tasks called “threads” and allows having event flags, 
which suspend or run the thread according to their 
status. 

 
5. Implementations and experimental 
results  

 
The wrappers are used in a simple CAL example (at 

the level of partitioned CAL model), which sends and 
receives data from and to the FPGA. The examples 
follow the steps from partitioned CAL to bitstream 
generation. These examples have been tested and 
validated on different platforms. 

To verify the flexibility and the smooth operation of 
the generic hardware interface model; several 
implementations with communication bus has been 
performed.  
 
5.1 Ethernet link  

 
In this subsection a peripheral that is dedicated for 

the Ethernet protocol is tested. To compare the 
flexibility of the wrapper interface, the system is 
implemented on two different FPGAs from two 
different manufacturers. The first example has been 
designed targeting the Altera family associated with an 
SMSC component. The same case can be applied to the 
Xilinx family. Nevertheless, Virtex 5 from Xilinx 
includes a specific core dedicated for Ethernet 
communication, which is the second case.  

Both designs need an external memory to use the 
light-weight implementation of the stack TCP/IP. The 
Internet Protocol Suite is the set of communication 
protocols used for the Internet and other similar 
networks. The light-weight TCP/IP implementation is 
to reduce the RAM usage while still having a full scale 
TCP. This makes light-weight TCP/IP suitable for 
usage in embedded systems with tens of kilobytes of 
free RAM and rooms for around 40 kilobytes of code 
ROM. 

 
 
 



5.1.1. Ethernet on Cyclone II 
 
The microprocessor that is used in the cyclone II is 

the NIOS II, which is a 32-bit embedded-processor 
architecture designed specifically for the Altera family 
of FPGAs [12]. This microprocessor is connected on a 
local processor bus named “Avalon”. “Avalon” 

interfaces simplify system design by allowing the 
designer to easily connect components into an FPGA. 
The Avalon interface family defines interfaces for 
usage in both high-speed streaming and memory-
mapped applications. In the studied case, the peripheral 
controller connected to this bus is the SMSC 
LAN91C111 device controller [13]. This external 
device is designed to facilitate the implementation of a 
third generation of Fast Ethernet connectivity solutions 
for embedded applications. The LAN91C111 is a 
mixed signal Analog/Digital device that implements 
the AMC and PHY portion of the CSMA/CD protocol 
at 10 and 100 Mbps. The design will also minimize 
data throughput constraints utilizing 32-bit, 16 bit or 8-
bit bus Host interface in embedded applications. The 
internal buffer size is 8 Kbytes, which is the total chip 
storage for transmitting and receiving operations. 

 
5.1.2. Ethernet link on Virtex 5 

 
The microprocessor that is used with the virtex 5 is 

the microblaze, which is also a 32-bit Harvard RISC 
architecture, optimized for the Xilinx FPGA families 
[14]. The microblaze is connected on processor local 
bus named “PLB”. The processor local bus PLB is a 
high-performance bus that provides a standard 
interface between the processor cores and the 
integrated bus controllers. The PLB supports reading 
and writing data transfers between master and slave 
devices. These latter are equipped with a PLB bus 
interface and connected through PLB signals. The 
device controller connected to the PLB is the TEMAC 
(Tri-Mode Ethernet MAC). The TEMAC is a 
configurable core ideally suited for using in 
networking equipment such as switches and routers. 
The customizable TEMAC core enables system 
designers to implement a broad range of integrated 
Ethernet designs, from low cost 10/100 Ethernet to 
higher performance 1 Gigabit ports. The TEMAC core 
is designed to the IEEE 802.3 specification and 
operates in 1000 Mbps, 100 Mbps, and 10 Mbps 
modes. In addition, it supports both half and full 
duplex operation. The Xilinx Tri-Mode Ethernet MAC, 
combined with the Ethernet 1000BASE-X PCS/PMA 
or SGMII core, provides a complete and highly flexible 
solution for the implementation of Ethernet Link and 
Physical layers. 

 
5.2 PCI link  
 
In this subsection a peripheral that is dedicated for the 
PCI protocol is tested. The proposed implementation is 
based on the wrapper that is explained in section 4. 
This implementation is compared with the direct 
implementation of a specific PCI controller.   
As described in section 4, the wrapper is based on a 
microblaze microprocessor. The target technology is 
the Virtex 2 Pro FPGA from Xilinx. The peripheral 
connected on the PLB bus is the PLBV46 PCI Full 
Bridge. This one provides full bridge functionality 
between the Xilinx PLB and a 32-bit Revision 2.2 
compliant Peripheral Component Interconnect (PCI) 
bus. 
The proposed implementation is obtained with the 
automatic translation of the wrapper dedicated to this 
PCI configuration. The obtained interface 
performances have been compared to a reference 
design, which is based on the Initiator/Target PCI core 
form Xilinx. This module is a pre-implemented and 
fully tested module for Xilinx FPGAs. The pinout for 
each device and the relative placement of the internal 
logic are predefined. Critical paths are controlled by 
constraints files to ensure predictable timing. The 
Xilinx IP cores for PCI technologies operate at 
maximum throughput, with zero wait-state bursts. The 
core is directly connected with a minimal wrapper 
(serialization and de-serialization). The performance is 
identical for both designs, and therefore represents 
another important step to obtain an efficient rapid 
prototyping tool based on CAL dataflow description. 
 
6. Conclusion 

 
6.1. Results 

 
This paper shows that the generic wrapper 

methodology provides a high-degree of flexibility and 
robustness. The proposed methodology is expected to 
enhance the design-flow of typical embedded systems. 
In case of observing a lack of performance, a designer 
may design his/her own peripheral Intellectual 
Property, and then modify the generic peripheral 
wrapper. Moreover, the proposed wrapper 
methodology enables easy changing of interfaces. 

 
6.2. Future work 

 
The serialization and the de-serialization wrappers 

suffer deadlocks if the FIFOs sizes are not chosen 
correctly according to the design. These deadlocks will 



be corrected by feedback information between the two 
wrappers.  

The same methodology for the memory device will 
be implemented. The difference between a memory 
device and a standard interface is that memories have a 
two-flow access, addresses and data. Moreover, the 
data channel is bidirectional. Thus memories will be 
described with four channels (two flows in both 
directions) as shows in the figure 10. 

In addition, if many actors want access to the 
memory via the serialization wrapper (and the de-
serialization wrapper for the data read), the soft-core 
must drive the tokens properly. 

 

 
Figure 10: CAL description for memories. 
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