
Hardware synthesis of complex standard interfaces using CAL
dataflow descriptions

Richard Thavot*, Romuald Mosqueron*, Julien Dubois†, Marco Mattavelli*

*Ecole Polytechnique Fédérale de Lausanne (EPFL), GR-LSM, CH 1015 Lausanne, Switzerland
Email: firstname.name@epfl.ch

†Université de Bourgogne, Laboratoire LE2I, 21000 Dijon, France
Email: firstname.name@u-bourgogne.fr

Abstract

This paper presents a contribution to the

development of rapid prototyping tools based on data-
flow description. In this context, the efficiency of
automatic translator tools from the data-flow
description to C and/or HDL are presented using two
design cases. Moreover, this paper presents the novel
concept of the automatic synthesis of interfaces based
on dataflow description. Such “generic” interfaces
include an embedded microprocessor, which enables
using a vide variety of interfaces already available as
optimized libraries from the FPGA manufacturers.

The different design cases described have been
tested and validated on different platforms. The results
of the work show the flexibility and generality of the
proposed wrapper methodology that is described in the
paper.

1. Introduction

Nowadays, in the fields of embedded system,

heterogeneous platforms are more and more used to
implement complex processing applications. Due to the
increase of the application complexity, it becomes
more and more difficult to develop and to optimize
algorithms mapped on heterogeneous platforms.
Several steps need to be completed, and several issues
need to be addressed such as: 1) which portion of the
algorithm will result to be a more efficient
implementation on which component of the
heterogeneous platform?, 2) which partitioning
schemes respect the constraint of the application, 3)
and how to convert the selected section of the
algorithm into the language compatible with the
corresponding component. Several works are already
ongoing and aims at addressing those issues.

The first issue can be addressed by using an
appropriate language, which is the CAL dataflow
language in that case. A dataflow language allows for
getting a visual programming because the application

could be represented by a graph. Compared with the
languages that use other paradigms, dataflow
programming allows for modeling on a high level of
abstraction. The CAL language is based on the actor
model of computation. It provides many features to
facilitate systems modeling.

The second issue can be addressed by the existence
of a tool environment that supports different design
space exploration stages and yields efficient mapping
and partitioning of the high level algorithm
specification on each component of the heterogeneous
platform. An essential element is the inclusion, at the
level of the unified computation model, of the
architectural components of the heterogeneous
platforms and of native library/IP components.

A dataflow model expressed in CAL is composed of
a set of independent “actors”, which consume data
tokens from channels, process these tokens, and then
bring new tokens on channels. The channels are
represented by directing edges to represent the
direction of the communication between two actors.
CAL language facilitates explaining explicitly how the
full design will be partitioned on different chips/cores
as well as the type of communication between them.

Generic wrappers have been designed to easily
convert the model with the appropriate interface. A
generic structure must be able to adapt to every
communication controller. These wrappers could be
connected with its sub-layer to every IP-interface
defined within the component library. Two wrappers
are necessary: one for communication interfaces and
the other for memories.

In this paper, a description of the wrapper for
hardware component is provided, with focus on the
case of an FPGA with a soft-core. The paper shows
that the wrapper is generic and can be used with many
communication interfaces.

The remainder of this paper is organized as follows:
Section 2 presents the main objective, the language and
the methodology to quickly prototype new architecture.
Section 3 presents the efficiency of the CAL converters
on two design cases (an MPEG-4 simple profile

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

decoder and a bar code decoder). Section 4 shows the
utilization of the interface wrappers. In section 5, a
presentation of some interface wrappers is provided.
Finally, section 6 concludes the paper.

2. Objectives and principles

This section describes the main objectives behind

the work of this paper, focusing on the location of the
wrappers in the design flow. A presentation of the
CAL language [1] and its properties are made to
explain why this language has been chosen. The
methodology and the interface management are
explained to sense the real advantage of the work.

2.1. CAL language.

A dataflow model expressed in CAL is composed of

a set of independent “actors” [1], [2] and their
connection structure which build a network (see Figure
1). An actor is a standalone entity which has its own
internal state represented by a set of state variables. It
performs computations by executing actions and it
must have, at least, one action to do computations. An
action execution is modeled as an atomic component
which means that no other action, of the same actor,
can execute at the same time. Moreover, an action is
executed based on the internal state of the actor and
depending on the availability and values of tokens at
the input ports. The “actor” has a set of input and
output ports through which it communicates with other
actors by passing data tokens. In summary, an “actor”
may consume tokens from inputs, may change the
internal state and may produce tokens at the outputs.

Figure 1: CAL principles

CAL provides scheduling concepts to control the

executions order of actions inside an actor. CAL allows
for combining a network of actors to build hierarchical
systems. The network is achieved by connecting the
input and output ports of actors together to define the
communication structure of the model. Moreover the
communication channels are constituted by FIFOs.

By using CAL, designers can only focus on the
modeling of the dataflow system and do not need to
care much about the low level of details to implement
the communication between actors. Also, CAL
provides the designer with the control over
communication parameters such as length of queues
and types of exchanged data. When a dataflow model
is developed, it can be simulated using the
Opendataflow simulator [3] to check for the correct
functionality.

2.2. Objectives

The main objective is to define and develop a

methodology for a unified specification formalism for
software and hardware components to be mapped onto
heterogeneous multi-component embedded platforms,
using a synthesizable high-level dataflow formalism,
based on the CAL language, which is capable of
specifying and modeling both software and hardware
components. In a CAL-based design flow, the whole
system is modeled and implemented in CAL.
Moreover the partitioning between hardware and
software can be easily modified since the same source
is used for generating both parts.

Figure 2: Data flow based on CAL description

Figure 2 details the design flow: a CAL program

which is the global algorithm is the first input, while
the second input is the architecture of the

heterogeneous platform. First, the CAL program is
validated with a behavioural simulation.

Then, the second step is the pre-partitioning. This
step defines, in accordance with the constraints and the
architecture (component and interface), which actors
will be the best placement, either hardware or software.
During this step, simulations are made to find the
correct partition, with insertion of wrappers and actors
which represent the behaviour of the interfaces
included into the architecture. In the case where no
partition is found, a request to rewrite the CAL
program or change the architecture constraints is made
to the designer. Once the architectural validation is
obtained, a phase of writing a CAL model, called CAL
partitioned, is executed specifically after the validation.
The partitioned CAL is the result of the partitioning
where attributes are added to correspond with the
component (SW or HW). This is in this part that the
actors “wrappers” are included into the design. In
accordance with the interface present in the platform,
the wrapper is defined and the sub-layer (peripheral
wrapper) is parameterized to correspond with the IP-
interface during the code translation. Nevertheless, on
the hardware side, the interface integration is much
harder to put in place because it has no operating
system (OS) to manage interfaces automatically
instead of the software side. Moreover many edges
within a chip can use the same physical path (or
peripheral) to access actors within another chip. An
example of a partition is shown figure 3.

Figure 3: Example of partitioning

Once the choice of the actors is made for the

partition, each part is translated into the correct
language by two tools: CAL2HDL [4] for FPGAs and
CAL2C for processors [5].

The final step is to synthesize and to implement by
calling and adding specific IPs that are present in the
component’s library. For instance a bitstream is created
for an FPGA. The ultimate goal is to automate all the
previous steps. However, up till the time this paper is
written, only the definition of the wrappers has been
performed.

.
2.3. The global methodology and interface
management.

One of the major key issues in design conception is

to provide rapid prototyping methodology to define
and to validate a system architecture that reaches the
application’s requirements. The CAL description and
the related implementation tools enable to describe and
to implement a completed processing chain.

The processing part, as explained in the previous
section, can be split into two partitions SW and HW
that can be automatically translated to C and VHDL
codes respectively. The efficiency of the automatic
translation will be discussed in section 5 with two
existing design cases.

Two specific classes of actors can be defined to
represent respectively the external interfaces and the
external memory. The two resulting models can be
used at different stages of the design’s validation. The
model can be used to validate:

! the functional CAL,
! the CAL description obtained after

merging with the architecture definition
For instance, the external interfaces can be

described with a simple description:
! bandwidth,
! temporal interruption (period or randomly

generated).
Obviously, the model can be completed to be more

conformant to the real physical interfaces.
The external interfaces are directly exchanged with

the physical link (for instance LAN, RS232...).
A completed automatic implementation requires

handling with the control of the different interfaces. A
technological solution is proposed for the two
partitions.

The processor in charge of the SW partition can
easily handle the control of the interface with a C
driver. For the HW partition, a controller, as well as the
driver, must also be generated to connect the interface
with the HW partition.

A unique wrapper structure, described in CAL
language, is proposed to handle the interfaces. These
latter enables a large variety of interfaces to be
integrated. It is composed of a generic part to handle
with interface interconnections and an adapter specific

to each physical interface. The structure of the adapter
is based on a micro-controller (Xilinx-Microblaze or
Altera-NiosII), which nowadays proposes a variety of
interface controllers. The wrapper does not modify the
performances of the micro-controller’s solution.

For instance, as presented in figure 4, the different
wrapper should be added for each external interface.

Figure 4: Example of partitioning with the addition
of the communication wrapper.

A validation test is made with the partition of actors

or network in both SW and HW component. The
insertion of actors “wrappers” is obligatory, for this
real simulation, as well as the insertion of the
interface’s models. Video in/out is one of this model
defined by parameters near the physical constraints.
The simulation made at this step is the nearest of the
real situation. LAN and RS232 are also defined
between the two wrappers with their constraints. This
stage is the pre-partitioning one, which is one of the
most important into the rapid-prototyping phase.

For the SW partition, a C driver is generated with
the CAL2C tool. For the HW partition, a wrapper with
a specific adapter, based on embedded micro-controller
is generated. The adapter is dedicated to a specific
interface due to the associated micro-controller code,
which is also automatically generated.

3. Effectiveness of CAL2C and CAL2HDL

The translator has been tested with two different

real applications. The first is the MPEG-4 SP decoder
[4], [5], [6] [7], while the second is the code bar
decoding [8], [9], [10], [11] in postal sorting. Both
applications focus on the flexibility of a CAL
description and the interests of high level of abstraction
for a complete application description.

3.1. First design case: the MPEG-4 SP decoder

MPEG-4 is a suite of standards which has many
"parts", where each part standardizes various entities
related to multimedia, such as audio, video, and file
formats. MPEG-4 contains a number of features that
allow it to compress video much more effectively than
older standards and to provide more flexibility. Figure
5 shows the MPEG-4 decoder which has been
described via a dataflow model using CAL.

Figure 5: MPEG-4 SP decoder described in CAL

This decoder model is composed of three distinct

parts. The first includes the parser and merger actors.
The parser cuts the bitstream video in Y, Cr, Cb
streams and theirs associated motion vectors. The
merger recomposes the video picture. The second part
is used to decode the texture, then the third part
computes the motion compensation on the decoded
texture. The MPEG-4 SP dataflow description is
composed of 42 actor instantiations. Figure 6 compares
the entire MPEG-4 SP decoder written in CAL and the
same decoder directly describe in HDL files. This
graph shows a big advantage in term of development
time and code size description for the MPEG-4 SP
decoder CAL description compared with the manually-
written description (normalize to 1). This graph also
shows an advantage for CAL description in term of
area used by the FPGA and the throughput.

Figure 6: Comparison of hardware performances
between CAL generation and HDL handwrite for

the MPEG-4 SP Decoder

The entire MPEG-4 decoder can be generated from

the CAL description using CAL2C [6]. Table 1 shows
the different throughput performances between three
MPEG-4 SP decoder code [4].

Table 1: Performances of the MPEG-4 SP decoder
described in CAL, generate C, and generated HDL

3.2. Second design case: the code bar decoder

The goal of this application is to detect and decode
bar codes on letters to enable automatic sorting at
different stages of the logistic postal letter handling.

Figure 7: Code bar decoder describes in CAL.

Figure 7 shows the code bar decoder which has

been described in CAL. This design has three distinct
parts, which are the preprocessing, two processing
(blobbing and code bar decoder), and then the manager
stage. The first part computes some filters to improve
the picture quality and highlights useful area. Both
processing compute algorithms on the picture to find
the proper area and decode it. The third part manages
correctly the flow inside the design.

Figure 8 compares two architectures, one is the
CAL-generated, while the other is the manually-written
CAL description (normalize to 1). The results show
that the development time and the code size of the
description have a factor of four compared with the
handwritten. The figure also shows that in term of area
the difference is more or less equivalent but the
throughput change dramatically according to the used
description.

Furthermore, this comparison shows that the
application can even run with half the throughput.

These two design cases show the effectiveness of

the CAL translators (CAL2HDL and CAL2C).
Therefore, the HW/SW partitioning can be delayed to
the last conception stage of the design flow.
Consequently, the automatic insertions of interface
controllers represent a key-point to propose efficient
rapid prototyping tools.

Figure 8: Comparison of hardware

performances between two CAL generation and
HDL handwrite for the Bar code decoder [7].

The results are more or less the same performance

in order of the description CAL used, particularly the
area's performance. This latter is closed to the
handwritten description. But the development time and
the size of the description has been improved by about
a factor of four.

4. A CAL wrapper for implementation of
interface controllers

A wrapper is used to connect directly an interface

without its denomination. The wrapper must be able to
easily connect as many devices as possible. In the
partitioned CAL, only the parameters change to
configure the right adapter. Figure 9 represents the
overview of the wrapper on the hardware side.

Figure 9: Wrapper overview

Several “arcs” can use one wrapper, if only one
interface can be used for many tasks or transfers. The
wrapper must be able to serialize data from channels
and must be able to de-serialize the data to the proper
channel.

4.1. Serialization and de-serialization process

Both wrappers are used to convert a token from any

channel into a sequence of words transmitted across a
network connection link. Both wrappers are described
in CAL for simplification. This allows automatic
generation of the wrapper according to the number of
“arcs” connected to the device. Even if it is written in
CAL, it remains completely transparent because it will
be instantiated during the pre-partitioning and the
partitioning steps. Another advantage of making a
CAL description is that the future improvements will
be easier. The serialization wrapper should add data
such that the de-serialization wrapper is able to
redistribute the tokens on the proper channels.
Moreover, the arcs connected to the wrapper are not
necessarily active at the same time, and then the
wrapper must be able to adjust its consumption and its
production of tokens automatically according to the
active arcs. To solve this problem of random token
presence on the arcs, the actions should describe all the
possibilities of consumption.

4.2. Generic device connection

The generic device connection allows connecting

any communication interface with the serialization and
the de-serialization wrappers. To make it easily
realizable, a soft-core microprocessor is required;
microBlaze for Xilinx and/or NiosII for Altera. The
advantage of using a microprocessor is that most of the
IPs to dedicate communication interfaces have already
been created and optimized.

The microprocessor architecture is a RISC soft-core
architecture, which is implemented entirely in the
programmable logic. It holds between 900 and 2600
“logic cells” and can reach a frequency of 80 to 180
MHz depending on the platform and options. A
microprocessor is connected on a multi-master bus to
access the IP slaves.

The proposed architecture is composed of one On-
chip memory and if necessary one external memory.
The architecture has a peripheral controller that is
either built by the manufacturers or self-described. The
architecture has a flow translator which converts the
tokens into a pile of data and vice versa. Both piles of
data are accessible from two different processor local
bus addresses as the status of both FIFO.

This conversion is made thanks to FIFOs for both
directions. The wrapper adapter has also the
possibilities of checking both FIFO statuses. Each
component is accessible by the Processor Local Bus
which is managed by the soft-core. A hardware Mutex
has been placed on the Processor Local Bus, then the
soft-core is able to supervise the critical section. The
soft-core uses robust and light-weight µOS which are
based on the pre-emptive real time multitasking
operating system kernel for microprocessors. This type
of µOS allows having several concurrently running
tasks called “threads” and allows having event flags,
which suspend or run the thread according to their
status.

5. Implementations and experimental
results

The wrappers are used in a simple CAL example (at

the level of partitioned CAL model), which sends and
receives data from and to the FPGA. The examples
follow the steps from partitioned CAL to bitstream
generation. These examples have been tested and
validated on different platforms.

To verify the flexibility and the smooth operation of
the generic hardware interface model; several
implementations with communication bus has been
performed.

5.1 Ethernet link

In this subsection a peripheral that is dedicated for

the Ethernet protocol is tested. To compare the
flexibility of the wrapper interface, the system is
implemented on two different FPGAs from two
different manufacturers. The first example has been
designed targeting the Altera family associated with an
SMSC component. The same case can be applied to the
Xilinx family. Nevertheless, Virtex 5 from Xilinx
includes a specific core dedicated for Ethernet
communication, which is the second case.

Both designs need an external memory to use the
light-weight implementation of the stack TCP/IP. The
Internet Protocol Suite is the set of communication
protocols used for the Internet and other similar
networks. The light-weight TCP/IP implementation is
to reduce the RAM usage while still having a full scale
TCP. This makes light-weight TCP/IP suitable for
usage in embedded systems with tens of kilobytes of
free RAM and rooms for around 40 kilobytes of code
ROM.

5.1.1. Ethernet on Cyclone II

The microprocessor that is used in the cyclone II is

the NIOS II, which is a 32-bit embedded-processor
architecture designed specifically for the Altera family
of FPGAs [12]. This microprocessor is connected on a
local processor bus named “Avalon”. “Avalon”

interfaces simplify system design by allowing the
designer to easily connect components into an FPGA.
The Avalon interface family defines interfaces for
usage in both high-speed streaming and memory-
mapped applications. In the studied case, the peripheral
controller connected to this bus is the SMSC
LAN91C111 device controller [13]. This external
device is designed to facilitate the implementation of a
third generation of Fast Ethernet connectivity solutions
for embedded applications. The LAN91C111 is a
mixed signal Analog/Digital device that implements
the AMC and PHY portion of the CSMA/CD protocol
at 10 and 100 Mbps. The design will also minimize
data throughput constraints utilizing 32-bit, 16 bit or 8-
bit bus Host interface in embedded applications. The
internal buffer size is 8 Kbytes, which is the total chip
storage for transmitting and receiving operations.

5.1.2. Ethernet link on Virtex 5

The microprocessor that is used with the virtex 5 is

the microblaze, which is also a 32-bit Harvard RISC
architecture, optimized for the Xilinx FPGA families
[14]. The microblaze is connected on processor local
bus named “PLB”. The processor local bus PLB is a
high-performance bus that provides a standard
interface between the processor cores and the
integrated bus controllers. The PLB supports reading
and writing data transfers between master and slave
devices. These latter are equipped with a PLB bus
interface and connected through PLB signals. The
device controller connected to the PLB is the TEMAC
(Tri-Mode Ethernet MAC). The TEMAC is a
configurable core ideally suited for using in
networking equipment such as switches and routers.
The customizable TEMAC core enables system
designers to implement a broad range of integrated
Ethernet designs, from low cost 10/100 Ethernet to
higher performance 1 Gigabit ports. The TEMAC core
is designed to the IEEE 802.3 specification and
operates in 1000 Mbps, 100 Mbps, and 10 Mbps
modes. In addition, it supports both half and full
duplex operation. The Xilinx Tri-Mode Ethernet MAC,
combined with the Ethernet 1000BASE-X PCS/PMA
or SGMII core, provides a complete and highly flexible
solution for the implementation of Ethernet Link and
Physical layers.

5.2 PCI link

In this subsection a peripheral that is dedicated for the
PCI protocol is tested. The proposed implementation is
based on the wrapper that is explained in section 4.
This implementation is compared with the direct
implementation of a specific PCI controller.
As described in section 4, the wrapper is based on a
microblaze microprocessor. The target technology is
the Virtex 2 Pro FPGA from Xilinx. The peripheral
connected on the PLB bus is the PLBV46 PCI Full
Bridge. This one provides full bridge functionality
between the Xilinx PLB and a 32-bit Revision 2.2
compliant Peripheral Component Interconnect (PCI)
bus.
The proposed implementation is obtained with the
automatic translation of the wrapper dedicated to this
PCI configuration. The obtained interface
performances have been compared to a reference
design, which is based on the Initiator/Target PCI core
form Xilinx. This module is a pre-implemented and
fully tested module for Xilinx FPGAs. The pinout for
each device and the relative placement of the internal
logic are predefined. Critical paths are controlled by
constraints files to ensure predictable timing. The
Xilinx IP cores for PCI technologies operate at
maximum throughput, with zero wait-state bursts. The
core is directly connected with a minimal wrapper
(serialization and de-serialization). The performance is
identical for both designs, and therefore represents
another important step to obtain an efficient rapid
prototyping tool based on CAL dataflow description.

6. Conclusion

6.1. Results

This paper shows that the generic wrapper

methodology provides a high-degree of flexibility and
robustness. The proposed methodology is expected to
enhance the design-flow of typical embedded systems.
In case of observing a lack of performance, a designer
may design his/her own peripheral Intellectual
Property, and then modify the generic peripheral
wrapper. Moreover, the proposed wrapper
methodology enables easy changing of interfaces.

6.2. Future work

The serialization and the de-serialization wrappers

suffer deadlocks if the FIFOs sizes are not chosen
correctly according to the design. These deadlocks will

be corrected by feedback information between the two
wrappers.

The same methodology for the memory device will
be implemented. The difference between a memory
device and a standard interface is that memories have a
two-flow access, addresses and data. Moreover, the
data channel is bidirectional. Thus memories will be
described with four channels (two flows in both
directions) as shows in the figure 10.

In addition, if many actors want access to the
memory via the serialization wrapper (and the de-
serialization wrapper for the data read), the soft-core
must drive the tokens properly.

Figure 10: CAL description for memories.

REFERENCES

[1] Johan Eker and Jorn Janneck, ”CAL Language
Report”, Tech.Rep.ERL Technical Memo UCB/ERL
M03/48, University of Califonia at Berkeley, Dec.
2003.

[2] Christophe Lucarz, Marco Mattavelli, Matthieu
Wipliez, Ghislain Roquier, Mickaël Raulet, Jörn W.
Janneck, Ian D. Miller and David B. Parlour,
”Dataflow/Actor-Oriented language for the design of
complex signal processing systems”, Workshop on
Design and Architectures for Signal and Image
Processing (DASIP08), Bruxelles, Belgium, November
2008.

[3] “Open DataFlow Sourceforge Project”
http://opendf.sourceforge.net/.

[4] Jorn W. Janneck, Ian D. Miller, Dave B. Parlour.
“Profiling Dataflow Programs”, Reconfigurable Video
Coding and Processing (ICME08), Germany,
Hannover, June 2008

[5] Ghislain Roquier, Matthieu Wipliez, Mickaël
Raulet, Jörn W. Janneck, Ian D. Miller, David B.
Parlour, “automatic software synthesis of dataflow
program: an MPEG-4 Simple Profile decoder case

study”, Signal Processing Systems, 2008. SiPS 2008.
IEEE Workshop on, Washington,USA (2008).

[6] Jörn W. Janneck, Ian D. Miller, Dave B. Parlour,
Marco Mattavelli, Christophe Lucarz, Matthieu
Wipliez, Mickal Raulet, and Ghislain Roquier,
Translating dataflow programs to efficient hardware:
an MPEG- 4 simple profile decoder case study, in
Design Automation and Test in Europe (DATE),
Munich, Germany, 2008.

[7] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J.
Janneck, “Reconfigurable Media Coding: a new
specification model for multimedia coders,” in
Proceedings of SIPS’07, Oct. 2007.

[8] Richard Thavot , Romuald Mosqueron ,
Mohammad Alisafaee , Christophe Lucarz , Marco
Mattavelli , Julien Dubois , Vincent Noel, ”Dataflow
design of a co-processor architecture for image
processing”» , Workshop on Design and Architectures
for Signal and Image Processing (DASIP 2008),
Bruxelles , Belgium, November 2008.

[9] R. Mosqueron, J. Dubois M. Mattavelli ”High
Performance Embedded coprocessor Architecture for
Cmos Imaging Systems”, Workshop on Design and
Architectures for Signal and Image Processing
(DASIP07), Grenoble, France, November 2007.

[10] R. Mosqueron, J. Dubois and M.
Mattavelli,”Smart camera with embedded co-
processor: a postal sorting application”, Optical and
Digital Image Conferance (SPIE08), Proceeding
Volume 7000, Strasbourg, France, April 2008.

[11] J. Dubois, M. Mattavelli, ”Embedded co-
processor architecture for CMOS based image
acquisition”, IEEE International conference of Image
Processing (ICIP03), Volume 2, pp.591–594, 2003

[12] “Nios II Processor Reference Handbook”
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v
1.pdf

[13] “10/100 Non-PCI Ethernet Single Chip
MAC+PHY”
http://www.smsc.com/main/datasheets/91c111.pdf

[14] “MicroBlaze Processor Reference Guide”
http://www.xilinx.com/support/documentation/sw_man
uals/mb_ref_guide.pdf

