
FRODO 2.0: An Open-Source Framework
for Distributed Constraint Optimization

Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek

École Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory (LIA)

firstname.lastname@epfl.ch

Abstract. Distributed Constraint Optimization (DCOP) is a field that
has recently been getting more and more attention from academia and
industry. However, very few open-source, off-the-shelf tools are currently
available to solve DCOPs; examples are FRODO, DisChoco and DCOPo-
lis. A DCOP platform should possess the following key qualities: the
framework should be reliable and extensively tested, deployable in a
truly distributed setting, and modular so that it is easy to customize
and extend. This paper introduces the Java-based FRODO 2.0 frame-
work, which possesses all three qualities. It is a complete re-design of the
FRODO framework, released under the GNU Affero GPL license.

1 Introduction

As the field of Distributed Constraint Optimization (DCOP) is gaining popular-
ity and momentum in the academic world, and more industrial partners might be
tempted to apply various DCOP algorithms to real-life problems, the scarcity of
available DCOP frameworks is becoming dire. While a few frameworks already
exist, such as FRODO [1], DisChoco [2] or DCOPolis [3], we have been looking
for a platform that would possess all of the three following qualities, which we
deem necessary: reliability, deployability and modularity.

The DCOP community is concerned with developing new algorithms, and
comparing their performances against existing ones. For this purpose, an open-
source DCOP framework must provide some guarantees of reliability of the al-
gorithm implementations it offers as benchmarks, in terms of correctness and
completeness. Modularity also makes it easier to modify an algorithm’s behav-
ior, and combine algorithms to produce hybrids, while facilitating code reuse.
Another important quality required for a framework to be used in industry is
the capability to readily deploy algorithms in a truly decentralized setting.

This paper announces the release of the FRODO 2.0 framework for DCOP [4].
While it still bears the same FRODO name as a tribute to the early framework
by Petcu [1], version 2.0 is a completely new Java framework, re-designed and re-
implemented from scratch with the three previously mentioned qualities in mind.
In particular, it comes with a very extensive suite of randomized unit tests to
provide guarantees of correctness and completeness of the DCOP algorithms.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek

Communications Layer

Solution Spaces Layer

Algorithms Layer
FRODO

Fig. 1. General FRODO software architecture.

Its code is systematically documented using Doxygen to facilitate maintenance
and encourage external contributions. Its expressive XML problem file format is
shared with the open-source CP solver JaCoP [5], which we plan to integrate into
the framework to support complex local subproblems. The FRODO framework
is distributed under the GNU Affero GPL.

2 FRODO Architecture

This section describes the multi-layer, modular architecture chosen for FRODO
(Figure 1). We describe each layer in more detail in the following subsections.

2.1 Communications Layer

The communications layer is responsible for passing messages between agents.
At its core is the Queue class, which is an elaborate implementation of a mes-
sage queue. Each Queue object runs its own thread, retrieving messages as they
are delivered into its inbox. Messages are Java objects extending the general
Message class, and have specific types. DCOP algorithms are implemented in
the form of one or more listeners that register to Queues for certain types of
messages (Section 2.3). Queue objects are more than just a means to buffer re-
ceived messages; they can also be used to send messages to other Queues, through
pipes that connect pairs of Queues to form a network. Pipes can be of two types:
shared-memory pipes are used to connect Queues running in the same JVM,
while TCP pipes handle the communication between Queues in separate JVMs,
possibly also on separate computers; a mix of both types of pipes can be used.

2.2 Solution Spaces Layer

This layer provides classes that can be used to model and reason about con-
straint optimization problems. A solution space can be seen as a constraint or a
combination of constraints that describes a subspace of solutions to a problem.
In the context of DPOP [6], solution spaces are not only used to represent each
agent’s local subproblem; they are also a way for agents to exchange information
during the UTIL propagation phase. In the classical version of DPOP, the solu-
tion spaces are hypercubes. In contrast, the H-DPOP algorithm [7] uses utility

FRODO 2.0: An Open-Source Framework for DCOP 3

<instance>
<presentation name="sampleProblem" maxConstraintArity="2" format="XCSP 2.1_FRODO" />
<domains nbDomains="1">

<domain name="three_colors" nbValues="3">1..3</domain> </domains>
<variables nbVariables="3">

<variable name="X" domain="three_colors" owner="agentX" />
<variable name="Y" domain="three_colors" owner="agentY" />
<variable name="Z" domain="three_colors" owner="agentZ" /> </variables>

<relations nbRelations="1">
<relation name="NEQ" arity="2" nbTuples="3" semantics="soft" defaultCost="0">

infinity: 1 1|2 2|3 3 </relation> </relations>
<constraints nbConstraints="2">

<constraint name="X_not_equal_Y" arity="2" scope="X Y" reference="NEQ" />
<constraint name="X_not_equal_Z" arity="2" scope="X Z" reference="NEQ" /> </constraints>

</instance>

Fig. 2. An example FRODO XCSP file.

diagrams, which are more efficient than hypercubes when the space of feasible
solutions is sparse, because they only represent the feasible solutions.

FRODO provides efficient implementations of solution spaces, as well as use-
ful operations on them. Examples of operations used by DPOP include the tra-
ditional join and projection operations. The E[DPOP] algorithm [8] also uses
more advanced operations such as expectation and consensus.

While it is possible to interact with FRODO directly by inputing objects of
class SolutionSpace, the framework has also been designed to accept DCOP
problem files in XCSP 2.1 format [9]. It is an expressive, XML-based format for
CSPs and WCSPs that supports the n-ary table constraints used in FRODO,
as well as other more complex constraints. We slightly extended it to represent
DCOPs by specifying which agent owns which variable(s). Fig. 2 gives a possible
representation of a graph coloring DCOP in this format. Our choice of the XCSP
format was motivated by our plans to integrate FRODO with the open-source CP
solver JaCoP [5], which also uses an extension of XCSP and provides support for
many types of global constraints. Such an integration would enable FRODO to
be used for DCOPs in which each agent must solve a complex local subproblem.

2.3 Algorithms Layer

Each algorithm is implemented as one or more modules, which listen for incoming
messages in the agent’s Queue, and exchange messages with other local and
remote modules. Typically, a module is associated with a phase of the algorithm;
Fig. 3 illustrates DPOP’s modules and their messages. The VariableElection
and DFSgeneration modules are implemented following the algorithms in [10].

The advantages of such a modular design are manyfold. For instance, as
several algorithms operate on DFS pseudo-trees, the VariableElection and
DFSgeneration modules can be reused as is across algorithms. The main ad-
vantage of modularity in the context of DPOP is that it makes it possible to
easily implement numerous hybrids of the existing versions of DPOP. Combin-

4 Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek

VariableElection DFSgeneration

UTILpropagation

6

VALUEpropagation

VALUE

?DFS info

-root

�

conditional
�
separators

variable

9

UTIL
6 optimal assignments

variable(s)
tokenselection

messages

messagesmessages

66

Fig. 3. Modular implementation of DPOP.

ing various modules to produce algorithms is performed by simply declaring the
modules and their parameter values in an XML agent definition file.

The algorithms currently implemented in FRODO are DPOP [6], Param-
DPOP, and ADOPT [11]. Param-DPOP is an extension of DPOP that supports
special variables called parameters. Contrary to traditional decision variables,
the agents do not choose optimal assignments to the parameters; instead, they
choose optimal assignments to their decision variables and output a solution to
the parametric DCOP that is a function of these parameters.

3 Experimental Setups

FRODO has been designed not only to be easily extendable and modular, but
also to facilitate experimentation. A command-line based controller tool allows
the user to run batch experiments, defined in an XML document specifying what
algorithm to run and what XCSP problems to solve. The controller then takes
care of setting up the agents and distributing the subproblems to be solved.
However, it is also possible to set up the different agents and their subproblems
locally, after which they register to the controller and connect to their neighbors.

The controller can be run in two different modes, depending on whether one
or more machines are available to perform the experiments. In the simple mode,
all agents are created in the same JVM as the controller. The advanced mode,
however, allows one to run experiments in a distributed fashion. It requires a dae-
mon to run on each machine participating in the experiment. These daemons are
registered to the controller, which distributes the agents among them. FRODO
currently distributes randomly and evenly the agents across the daemons, but
future versions will support assigning specific agents to specific daemons.

As for performance evaluation, FRODO measures the amount of information
conveyed via messages, the number of messages sent by each module, and the
number of Non-Concurrent Constraint Checks (NCCCs) [12]. All these measures
are reported to the central controller, regardless of whether the experiments are
run on a single, or on multiple machines. Aside from these traditional perfor-
mance measures, agents can also report other statistics, such as the chosen DFS
or the optimal solution found, which is a useful metric for local search algorithms.

FRODO 2.0: An Open-Source Framework for DCOP 5

4 Conclusion

This paper announces the release of the new FRODO 2.0 framework for DCOP,
which possesses several key qualities: reliability through extensive unit test-
ing, deployability in truly distributed settings, and modularity in the DCOP
algorithm implementations. Ongoing work includes performance improvements
to the solutions spaces layer, and the implementation of ASODPOP [13] and
E[DPOP] [8]. As our first external user and contributor, Xavier Olive is also
working on providing symmetry-breaking preprocessing methods [14] and MPI-
based pipes. In the near future, we plan to implement H-DPOP [7] and S-
DPOP [15], to support the simulated time metric from [3] and ENCCCs [16],
message delay [17] and message loss, and to couple FRODO with the JaCoP
solver [5] to support more complex, local subproblems.

References

1. Petcu, A.: FRODO: A FRamework for Open/Distributed constraint Optimization.
Technical Report 2006/001, EPFL, Lausanne (Switzerland) (2006)

2. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, E.H.: DisChoco: A platform
for distributed constraint programming. In: IJCAI-DCR’07. (2007) 16–27

3. Sultanik, E.A., Lass, R.N., Regli, W.C.: DCOPolis: A framework for simulating
and deploying distributed constraint optimization algorithms. In: CP-DCR. (2007)

4. FRODO: An open-source framework for DCOP. http://liawww.epfl.ch/frodo/
5. JaCoP: Java constraint programming solver. http://jacop.osolpro.com/
6. Petcu, A., Faltings, B.: DPOP: A Scalable Method for Multiagent Constraint

Optimization. In: Proceedings of IJCAI’05. (2005) 266–271
7. Kumar, A., Petcu, A., Faltings, B.: H-DPOP: Using hard constraints for search

space pruning in DCOP. In: Proceedings of AAAI’08. (July 13—17 2008) 325–330
8. Léauté, T., Faltings, B.: E[DPOP]: Distributed constraint optimization under

stochastic uncertainty using collaborative sampling. In: DCR’09. (2009)
9. Organising Committee of the Third International Competition of CSP Solvers:

XML Representation of Constraint Networks – Format XCSP 2.1. (2008)
10. Faltings, B., Léauté, T., Petcu, A.: Privacy guarantees through distributed con-

straint satisfaction. In: Proceedings of IAT’08. (December 9–12 2008)
11. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous dis-

tributed constraint optimization with quality guarantees. AI 161 (2005) 149–180
12. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of dis-

tributed constraints processing algorithms. In: AAMAS-DCR’02. (2002) 86–93
13. Ottens, B., Faltings, B.: ASODPOP: Making open DPOP asynchronous. In:

Proceedings of the Doctoral Program of CP’08. (2008)
14. Olive, X., Nakashima, H.: Breaking symmetries in distributed constraint program-

ming problems. In: Proceedings of the IJCAI09 DCR Workshop. (2009)
15. Petcu, A., Faltings, B.: S-DPOP: Superstabilizing, fault-containing multiagent

combinatorial optimization. In: Proceedings of AAAI’05. (2005) 449–454
16. Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-

tributed constraint optimization. In: AAMAS’06. (2006) 1427—1429
17. Zivan, R., Meisels, A.: Message delay and DisCSP search algorithms. Annals of

Mathematics and Artificial Intelligence 46(4) (April 2006) 415–439

