
Model Checking Tools for Software System

Implementations

EPFL Technical Report

LPD-REPORT-2010-003

Maysam Yabandeh

School of Computer and Communication Sciences, EPFL, Switzerland

email:maysam.yabandeh@epfl.ch

Abstract

Systematic State Exploration or Model Checking techniqueshave been

used for years to check the model of softwares against user-specified proper-

ties. Nevertheless, they never achieved a wide-spread usage because of the

difficulties and problems in translating from the programming languages,

which are used to develop the software, to the modeling language on which

the model checker can work. Recently, there have been several efforts in

direct state exploration of software system implementations. In this survey,

we illustrate the challenges in this domain and explain the different solutions

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


adopted by the state-of-the-art developed tools for state exploration of soft-

ware systems. The focus of this paper in on the developed model checking

tools for software systems, and it does not include solutions for unit testing

and selecting the optimal test scenarios.

keywords: software systems, distributed systems, reliability, testing, model

checking, systematic state space exploration

1 Introduction

Systematic State Exploration, which is also known asmodel checking, has been

used for years to systematically explore reachable states in a model and to verify

them against user-specified properties. The model can be made based on a soft-

ware system, a hardware system, or any general phenomena. The languages that

are used to develop software systems are different from the modeling language,

and the developer has to go through the tedious, time-consuming task of trans-

lating the original program into the modeling language, i.e., abstraction. These

difficulties discourage the developers to use the model checker tools for large soft-

ware systems.

To alleviate these problems, two general approaches have been used: i) auto-

matically generating a model of the software, and ii) directly exploring the state

space of the original software itself rather than a model of that. The former ap-

proach still suffers from the drawbacks of translation intoa model; due to mis-

matches between the original software and the abstracted model, the found bugs

2



are not sound. In other words, the reported bugs can not necessarily manifest in

the original application as well.

The second approach, which is the focus of this paper, systematically explores

the state space of the software system by controlling the scheduler and the inputs

to the software. In this way, the developers can check the state space of their

software without going through the error-prone, expensivetask of abstraction.

Although appealing, there are certain challenges in this approach that affect both

applicability and efficiency of such tools. In this paper, wedemonstrate these

challenges and the different solutions adopted by the related tools.

In this paper, we refer to the employed algorithm for state exploration, as

exploration algorithm or search algorithm. Given a explored state, the search al-

gorithm invokes a property checker module on that. The property checker could

check for deadlocks or user-specified properties which are also known as invari-

ants. The assert statements inside the source code can either be checked by the

property checker or their violation can be trapped and be reported to the developer.

Similar to the tools for checking the models, the main challenge is still the

state space explosion issue: the phenomena of exponentially increase in num-

ber of states by exploring deeper levels. However, here morenumber of non-

determinisms as well as the large size of the real applications worsen this problem

in a way that exhaustive exploration techniques become ineffective. Section 2

demonstrates this problem and its direct correlation with non-determinisms in the

software systems. Section 3 discusses that how we can alleviate the state explo-

sion problem by more precise emulation of the environment. Section 4, explains

3



1 boolx = read();
2 booly = read();
3 if (x && y)
4 z = 5;
5 elsez = 8;
6 if (x)
7 z = 2 ∗ z;
8 elsez = 0;

Figure 1: Snippet of code used for state exploration.

Figure 2: State space obtained by running the program in Figure 1. The changes
in the state are shown inside the circle.

the changes in the exploration algorithms that can make efficient exploration of

such large state spaces feasible. Finally, in Section 5 we compare the state-of-the-

art tools and illustrate how each of them addresses the described challenges.

2 State Explosion Problem

The processing unit (CPU) that runs a software program computes only the single

next state of the system by executing the next instruction inthe program. Fig-

4



Figure 3: State space obtained by applying early binding in state exploration of
the program in Figure 1. The changes in the state are shown inside the circle.

ure 2 depicts the state space explored by running the sample program presented in

Figure 1. In contrary to that, more than one state can result from an instruction ex-

ecution in systematic state space exploration. For example, when an if-then-else

instruction checks for a variable that its value is receivedfrom an input device

such as keyboard, the next state of the system depends on the concrete value of

the variable. Although this value will be determined at run-time, during state

space exploration it is a source ofnon-determinism for the search algorithm. Cor-

responding to each non-determinism point, a branch will be introduced to the state

space to cover all the possible options. Taking each branch leads the system to a

potentially different state. The number of reachable states exponentially increases

with the number of branches, which is known asstate explosion phenomenon.

5



2.1 State Space

As mentioned before, the space of potential states that a software can visit is way

larger than the set of visited states by a particular run. Forexample, the state space

of the snippet of code shown in Figure 1 is illustrated in Figure 3. As you can

observe, in contrary to the visited states by running the program, the state space is

not sequential; there exist branches corresponding to eachnon-determinism point.

Each set of joint branches bind some values to a particular non-determinism point.

For example, corresponding to Variablex which be assigned at run-time, there is

a branch at Figure 3 to cover both valuestrue andfalse.

The policy that specified the position that a branch appears in the state graph

is determined by the exploration algorithm. The policy defines when the possible

values should be bound to the non-determinism points.

2.1.1 Early Binding

In early binding, a branch covering the possible values is added when the variable

is assigned. For example, in the snippet of code shown in Figure 1, Booleanx

is assigned by reading from keyboard. In Figure 3, which is the visited states

following by the early-binding policy, the first branch is added immediately after

assigning the value to Booleanx in the program.

6



Figure 4: State space obtained by applying late binding in state exploration of the
program in Figure 1. The changes in the state are shown insidethe circle. The
variable with bar are assigned to false and vice versa.

2.1.2 Late Binding, Before Usage

In late binding before usage, a set of branches covering the possible values is

added right before the assigned variable is actually used [3]. For example, in

Figure 4, which depicts the visited states following by the late-binding policy,

the first branch is added right before Variablex is used at Line 3. The resulting

state space by following the late binding policy is equivalent to the state space

explored by early binding policy. However, it could potentially be more compact

by merging equivalent states. The disadvantage is the slight added complexity for

late binding.

7



Figure 5: State space obtained by applying symbolic execution on program in
Figure 1. The changes in the state are shown inside the circle. The conditions on
the edges represent branch conditions inside the program. The bar symbol is used
for negation.

2.1.3 Late Binding, During Property Evaluation

The binding can be postponed till the time the model checker evaluates the user-

specified properties against the system state. Since the concrete value is not

bound, asymbolic value is kept for the variable. The model checker then has

to keep track of the operations performed on the symbolic value and pass them to

the property checking module. This technique is calledSymbolic Execution.

The major challenge in symbolic execution is to executingconditional branch

instructions. Conditional branch in programming languages is the essential part

for implementation of if-then-else and loop statements1. In the normal run of the

program, the CPU jumps to the position specified by the instruction, if the corre-

sponding condition is evaluated to true. In symbolic execution, the model checker

1Note that conditional branches are different from the branches in state space graph

8



does not have the concrete values to evaluate the condition.Therefore, a branch is

added to the state space to cover both true and false values. In Figure 5, the first

branch is added right before evaluatingx && y in the first if-then-else statement

of the code snippet shown in Figure 1. By taking each branch, an assumption is

made about the evaluation of the condition. The set of assumptions made along

the path will be passed to the property checking module.

Note that the state space graph obtained by symbolic execution is not equiv-

alent to the state space graph obtained by early binding. Here, the branches in

the graph correspond to branch points in the program structure. Corresponding

to each if-then-else statement, a branch is added to the current position at state

graph.

Not all the branches in the state graph that is obtained by symbolic execution

are valid; some branches can be impossible to be traversed ina real run. The

property checking module can help to prune some impossible branches. It can be

used to evaluate the condition in the instruction; if the condition is evaluated as

false, then the corresponding branch will be pruned, and vice versa. In Figure 5,

the grayed branches are pruned from exploration. Consequently, the size of the

space graph can be potentially much smaller than the case with early binding.

The disadvantage of symbolic execution is that the complexity is pushed to

the property checking module. However, there are well-known off-the-shelf SAT

solvers, which take the history of operations performed on the symbolic variable

as well as the list of assumed conditions and return weather the condition is satis-

fiable or not. The problem is that computation time of SAT solvers is not bounded,

9



and it can take forever for a SAT solver to response. Besides,the size of the as-

sumed condition set and the sequence of performed operations could become too

large to be efficiently handled by state-of-the-art SAT solvers. For these reasons,

Symbolic Execution can also quickly stick in the state explosion problem.

2.2 Modeling Environment

The only thing that the state space exploration algorithm can be certain about is

the sequence of program instructions. The sequence of states that will be explored

by a program run depends on the particular environment that the program is de-

ployed in. Theenvironment is everything except the sequence of instructions in

the program, which includes the hardware, the operating system, the communica-

tion environment, the input devices, the time, and also the other programs that will

interact with the software. Every uncertainty about the environment introduces a

non-determinism point into the search algorithm and worsens the state explosion

problem. On the other hand, every assumption about the environment eliminates

the corresponding non-determinism point and alleviates the state explosion prob-

lem.

One major problem of model checking of software systems is the numerous

unknown parameters about their potential environment. Thenumber of states,

therefore, grows very quickly in a way that exhaustive search algorithms become

totally ineffective. However, by assuming a model for each part of the environ-

ment, we can reduce the uncertainty regarding that part and consequently reduce

the corresponding branching factor, i.e., the number of immediate states after the

10



branch joint.

Another advantage of modeling the environment is eliminating the states

which are impossible or improbable for the deployed software system to get into.

For example, if we know that the input values to the system arealways non-zero,

we can ignore the branches that check for zero values. Besidethe reduction in

number of explored states, the search algorithm does not report the invariant vio-

lations that are impossible or improbable to occur in practice. Therefore the ac-

curacy of the search algorithm increases and the number of false positive reports

reduces.

The disadvantage of modeling the environment is that the state exploration

software becomes i) more complicated and ii) more environment dependent. For

each model, we have to add some new logics that implement the model to the

state exploration system, which makes the state exploration system complicated.

On the other hand, every model makes some assumptions about the environment

in which the software will be deployed. These assumptions could change from

system to system or from time to time. However, the expenses for updating the

model might not be trivial. For example, using a model of TCP rather than its

actual implementation is one major source of complexity in the state exploration

tools. Moreover, the model has to be updated when new versions of TCP are

deployed.

In the next section, we categorize the parts of the environment surrounding

the software systems and discuss the employed techniques for modeling them or

reducing uncertainty regarding them.

11



3 Environment

We define the environment as all the elements that will directly or indirectly affect

the behavior of the deployed system. For each part of environment that we are un-

certain about its behavior, we must explore all the possibleactions and reactions in

model checking. Uncertainty regarding each part of the environment can lead to

more non-determinism points in the exploration process andconsequently worsen

the state explosion problem. By assuming a model for each part of the environ-

ment, we can further reduce the uncertainty and hence alleviate the exponential

growth of the state space.

In this section, we categorize the different parts of the environment and present

different approaches that have been taken to reduce the uncertainty regarding each

category. For a software system, we can split the environment into three general

categories: i) the upper layer applications, which uses theprovided service by

the software, ii) the lower layer services, which supply thesoftware with some

services, and iii) the peers, which are the identical replicas of the software with

whom the software interacts. In the following, we explain each category in more

detail.

3.1 Upper layer application

Every software supplies the users with some interfaces to use the provided service.

The users can range from human operators, who interact with the software via

GUI (Graphical User Interface), to other software systems,which interact via IPC

12



(Inter Process Communication) or via invoking the software’s public functions.

For the sake of simplicity in this section, we focus on general form of function

calls that can accept some input parameters as well.

The order of the calls and the content of the input parameterscan affect the

next state of the system, and a systematic state explorationalgorithm has to con-

sider all their possible values and orders. However, considering all the possible

values for input parameters is not always feasible. For example, for a 32-bit inte-

ger variable the number of possible values is2
32. Having no model for the upper

layer, the exploration algorithm has to check all these values to achieve a complete

search2. The test driver plays the role of the model for the upper layer application

by focusing on a limited set of application requests. For instance, a test driver for

a database service sends a particular set of queries to the database software.

The test drivers are obviously not complete. There is a trade-off between

the completeness and feasibility in systematic exploration. In the case of large

software systems, it is inevitable to sacrifice the completeness for feasibility of the

search. In Section 4 we will see that the exhaustive exploration algorithms have

to be bounded to some depths anyway. More accurately selected test scenarios

would lead to systematic exploration of more relevant and important states of the

software system.

2Symbolic execution techniques can check for much less number of values by considering a
symbolic value for the variables instead of concrete values.

13



3.2 Lower layer services

No software implements all the required functionalities from scratch. Each soft-

ware is supplied with some functionalities by the lower layer services, such as li-

braries, operating system, and other software services. For example an application

in C++ uses some library functions to obtain the current timeor to communicate

with other softwares through TCP. The implementation of this kind of functional-

ities can vary from deployment to deployment. Therefore their behavior, which is

sometimes even dependent to the physical environment, is not fixed, and their con-

crete return value is not determined before deployment. Forexample, depending

on the network traffic, a sent packet through TCP can be arbitrarily delayed.

In the following, we cover some important lower layer services which are the

major issues for most of the applications: i) Time, ii) Random Values, and iii)

Communication Objects.

3.2.1 Time

The current system time is usually provided by a special hardware on the moth-

erboard. The operating system supplies the applications with some interfaces to

inquire about the current time. The usage of current time varies from application

to application; examples are triggering a scheduler, assigning time to items in the

database, and using it as a seed value to pseudo random generators. There are too

many possible values for the current system time which makesiterating over all

of them infeasible. On the other hand, it is unrealistic to assume a model for the

14



time as the system can be deployed and run at any given time.

A simple, common solution for the time issue is to use a monotonically in-

creasing counter as a model for the physical timer. The counter increases by a

constant each time that a thread reads the current time. Obviously, this model in

not accurate and any exploration algorithm on top of that will not be complete.

The time issue in general is still an open problem in systematic exploration of

software state space. Nevertheless, some attempts have been made to tackle this

problem in some specific domains. In the following, we discuss these approaches

and their limitations.

Scheduling One major usage of the current time is to trigger the scheduled timers.

Usually a dedicated scheduler thread in the system regularly checks for the cur-

rent system time; if the current time is passed the scheduledtime of a timer, the

scheduler invokes the timer registered function. Specialized libraries often handle

the details of scheduling, and the only thing that the developer should do is to call

a specific function to schedule the timer. On the other extreme of the spectrum,

the developer might have implemented its own scheduler, weaved into the source

code, beside the other implemented functionalities.

In the case of specialized libraries for scheduling, one solution is to model the

whole scheduler instead of dealing with the difficulties of the concrete time value.

Having a model for the scheduler, the systematic exploration algorithm requires

considering only the different order of triggering the timers and not the exact time

for trigger.

Operating systems also do scheduling to share the processing units among

15



multiple threads and processes. The actual time of the system as well as the be-

havior of threads affect the thread preemption pattern. Thepreemption point is

important because it affects the order in which the threads access the shared re-

sources. Similar to the used models in the application layerschedulers, we can

use a model for the operating system scheduler. In this way, the exploration algo-

rithm only considers the different preemption points in threads and does not get

into details of the concrete time value.

The scheduling functionalities weaved into the source codeare still a chal-

lenge as the exploration algorithm cannot be sure about the precise usage of the

requested time value. One approach is to use symbolic execution to analyze the

way the time value is used inside the program. If the time value is used only

in simple adding operations and comparison tests, the stateexploration software

could check only for a limited set of time values that are enough for covering

the different branch decisions that are made based on the time value. Depending

on the application, this approach can be effective if the time value is used im-

mediately after its request and also in a simple way, i.e., only simple mathematic

operations such as add and subtract. The limitations comes from the fact that sym-

bolic execution can be feasible only till a certain depth andafter that it also faces

state explosion problem.

The current time can also be used as the seed parameter passedto pseudo ran-

dom generators. Without the seed value, pseudo random generators will generate

the same sequence in all runs. In the next section, we explainthe problem of

random values in more detail.

16



3.2.2 Random Values

Pseudo random generators are used to obtain a random number.Their usage in

software programs raises a difficulty for state space exploration, as we have to

consider all the possible return values for the random number. Like the issue of

time, the range of possible values for random numbers is too large to be exhaus-

tively checked. There are application-specific solutions though that we explain in

the following.

Load balancing Some random values are used to pick an item among a few

choices. In this case, the application of the randomness is to balance the load over

several processes (or entities in general). The key point here is that even though

the developer intends to select among a few items, she might use the general form

of random functions, which return a float value between 0 and 1. The simple solu-

tion is to supply the developer with some library functions that let them to invoke

the appropriate function for choosing a member among a set. We can register

the mentioned functions to the state exploration software and replace them with a

simple model during exploration. The model simply adds a branch corresponding

to all the items in the set.

Although simple, the above solution might not be practical in all cases. The

legacy applications still use the general form of the pseudorandom functions.

Even for the new applications, we cannot guaranty that the developer will always

stick to the policy and will use the provided high-level random functions. Similar

to time issue, a solution based on symbolic execution can be applied here; it can

follow the usage of the returned random value in program instructions. In such

17



cases, the random value usually ends up in a switch-case command to pick an op-

tion. The exploration algorithm could then check only for a limited set of random

values that are enough for covering the different branch decisions that are made

based on the random value.

Scheduling Random values are also used to schedule some timers. For exam-

ple, some transport protocols wait for a random duration before retransmitting the

data. The benefit of random duration is to avoid network congestion that is caused

by several transmissions at the same time. From the exploration algorithm per-

spective, the concrete value of the random duration does notmatter. Nevertheless,

the different order of triggering the events, which is resulted from the random

duration, is important. The scheduler model, therefore, can handle this usage of

random numbers. The challenge for the state exploration tool is to either provide

dedicated interfaces for this kind of usage, or to detect theusage that is weaved

into the source code and then apply the scheduler model on that.

3.2.3 Communication Objects

One major role of the operating system is to provide mechanisms for the processes

to communicate with each other. The communication object can range from sim-

ple file system interfaces to specialized interfaces for Inter Process Communica-

tion (IPC). The most complex communication objects are the transport protocols

for communication over asynchronous network such as TCP.

The access to communication objects must be through operating system. The

operating system includes logics for accessing the communication objects and

18



the processes can access them by some proper system calls. Since this logic is

not included in the software application, the exploration algorithm does not know

how to execute the system calls invoked by the application. There are two different

approaches in tackling this issue. One solution is to include the operating system

into the state exploration process; after the application invokes the system call,

the state exploration algorithm runs the corresponding logic inside the operating

system and returns the results. The other approach is to model the communication

object and simulate the effects of the system call on the model.

Including operating system into the state exploration process makes the state

exploration to be operating system-dependent; the resultsmight be different if the

software system is deployed on another operating system or adifferent version of

the same operating system. Furthermore the state of the operating system (which

can be very large) has to be included in the state explorationprocess.

Beside the large size, the main difficulty with operating system is that it is

not easily controllable. The exploration algorithm must beable to initialize the

software state and reproduce a specific sequence of events. This is feasible in

the case of a process which has a clear memory footprint. It is, however, a chal-

lenge to reproduce the sequence of events in a large operating system, full of

non-determinism points.

A new challenge arise when the communication object itself is not under con-

trol of the operating system, and its behavior is, hence, notpredictable. For ex-

ample, when a packet is sent through network, there is no guaranty on its delay,

loss, and unwanted duplication. Hence when the state exploration algorithm wants

19



to reproduce a sequence of events that involve a packet transmission, there is no

way for the state exploration algorithm to force the networkto apply the same

delay, loss, and duplication pattern. These parameters arealso another source of

non-determinism that a complete exploration algorithm hasto consider. They are,

however, beyond the control of exploration tools.

Models can hide the complexities of the operating system services and in-

crease state exploration performance. For example, a PIPE in Linux operating

system can be modeled by a simple queue structure. The problem with models is

that they are valid as long as conform to the implementation of the original ser-

vice. In the case of complex services such as TCP, the model isnot trivial and

can be very complicated. This increases the risk of a mistakein modeling the

service as well as expenses of updating the model according to the new changes

in the service implementation. The other advantage of usingmodels is that due

to simplification in the model, the state of the model is much simpler and more

controllable. Thus, it will be feasible to reproduce a series of events on them.

The expenses of modeling the operating system and its maintenance increase

with the increase in the number of operating system services. For example, Win-

dows offers more than 100 system calls [17]; modeling all these system call in an

operating system which has more than one million lines of code is very expensive

and unreliable.

20



3.3 Peers

In centralized systems, only one copy of the software exists. This is in contrast

with distributed systems where several copies of the software (i.e., peers) are

working concurrently. The state of the system is then distributed between peers,

and a perfect state exploration algorithm has to take them into consideration.

An approach is to explore states of only one copy of the software and con-

sider other peers simply as part of the environment. Although simple, this would

increase non-determinism in the state exploration and thusmakes the state explo-

ration less efficient and less accurate.

The other approach is to start the exploration withN peers whereN is a fixed

number. If we takeN small, the inconsistencies that would only manifest for

largerN stay undetected. On the other hand, the number of states increases ex-

ponentially with the increase in peer count, and the state exploration, hence, is

impractical for large values ofN .

Some related works [15] take the middle ground: they start the state explo-

ration for a large number of peers,N . However the exploration algorithm exe-

cutes only the events that are related to a small set of nodes (with size ofM ), and

ignores the events which are related to the other nodes. ForM ≪ N , the state

exploration can be efficient although it only partly stresses the system.

21



4 Exploration Algorithm

In the simplest from, the exploration algorithm at each stepcomputes the ready

events, picks one event from the ready event list, and executes it. To make the

search complete (till a certain depth), the exploration algorithm has to execute

all the events in the list; this approach is also known as exhaustive search. It is

possible to do this by forking the application process. However, that would be

very inefficient and would quickly run out of memory.

Two well-known algorithms for exhaustive search in the state space are

Breadth First Search (BFS) and Depth First Search (DFS). TheBFS algorithm

saves the current state of the exploration algorithm, whichincludes the ready event

list, the picked event, application state, and the environment state, in a queue. At

each step, it dequeues one item from the queue, executes all the ready events one

by one (after each execution it rolls back to the dequeued state) and enqueues the

resulting states. By that, it explores all the states at a breadth before going to the

next breadth. The BFS algorithm is very memory consuming andthus impractical

for non-toy software applications. Although it can be fast,since it has to execute

each event only once, the costs of taking the snapshot of the system state might

not be trivial. We will discuss this more in the next subsection.

The DFS algorithm keeps only the system state along the path from the root

till the current position. When the algorithm reaches the maximum depth or runs

out of ready events, it backtracks one depth upper, load the system state, and

iterates over the next event in the ready event list. The DFS algorithm requires

22



much less space compared to BFS and hence are more suitable for exploring large

state spaces. Since it is infeasible to exhaustively explore all the state space in

the non-toy software applications, the maximum depth of DSFis usually bounded

(BDFS) to guaranty complete exploration till a certain depth. After exploring all

states till the bounded depth, the maximum depth is increases by a constant and the

algorithm starts over from root. This is computationally less efficient compared

to BFS because of duplicate execution of events in the next rounds.

Both BFS and BDFS suffer from the expensive operations of storing and load-

ing the whole system state from memory. In the case of software systems, the

system state includes the whole memory footprint of the application and the envi-

ronment (files, operating system state, network state, and etc.). In the following,

we present a version of BDFS that is more efficient where keeping the whole

system state in memory is expensive.

In BDFS algorithm, instead of the full system state we can only keep the index

of the picked items from the root till the bottom of the state space. We call this

I-BDFS. When the algorithm reaches the maximum depth, all the states along the

path from root to the current state are checked. To backtrackit needs to obtain the

system state for the last step. It obtains the last state by starting over from the root

and executing the same sequence of events (picking the same index from the ready

event list). Since the maximum achievable depth is shallow anyway, the expenses

of re-executing the events are often less than expensive operations of storing and

loading states from memory.

The challenge in I-BDFS is reproducibility of the event sequence; after execut-

23



ing the same sequence of events we expect the system to reach the same state. As

we discussed in Section 3, there are lots of non-determinismin the environment

which are not necessarily under control of the exploration algorithm. For exam-

ple, the implementation of a system call inside the operating system might use

some random values which are different at each run. Using models can address

this problem since the model are intentionally developed tobe controllable.

4.1 Stateless or Stateful

To avoid loops and exploring duplicate states, it is necessary to keep track of the

visited states. As explained above, this is an expensive operation for software

systems with large state size. To alleviate the cost, one approach is to obtain

a hash of the state and keep track of the hash codes instead of the whole state.

Although it reduces the required memory space for keeping the state as well as

the cost of comparison between two states, nevertheless, obtaining the state hash

still requires touching the whole state once which can be nontrivial in the case of

large states.

Another approach is stateless exploration as opposed to stateful search. Visit-

ing duplicate states makes stateless approach to be very inefficient. Using Partial

Order Reduction (POR) techniques, can remedy the performance if we assume

that the state space graph is acyclic. We explain POR in the next section.

24



4.2 Partial Order Reduction

The POR technique can improve performance of any of exploration algorithms de-

scribed above. However, its usage is inevitable in the inefficient stateless approach

to avoid visiting duplicate states. Recall that the stateless approach is interesting

in state exploration of software systems because taking a hash of the system and

environment state is very expensive in large software systems.

The POR techniques prune the state space of a concurrent system to avoid

unnecessary interleaving of events. For example, if executing < s0

e1

−→ s1

e2

−→

s2 > and< s0

e2

−→ s′
1

e1

−→ s2 > result in the same state, exploring only one of

them is enough for checking the invariants of the software system. In this case,

e1 ande2 are called independent. Independence is not enough to prunee2 from

the state space graph. It is because of the fact that there might be other events

enabled at states′
1

that following them gets the system into states which are not

reachable froms1. To be able to prunee2, we must first prove thate1 ande2 are in

a persistent set ats0.

Obtaining independent events and persistent sets requiresstatic analysis on

the source code. Static analysis tools might not be available in all programming

languages; specifically, if the environment (such as operating system) is included

in the analysis. For example, independence of two operations which use different

system calls is not easy to prove. Furthermore, it is shown that static analysis is

not efficient in dealing with dynamic data such as pointers [1]. This is because the

value referenced by the pointer is not available at the time of analysis.

Dynamic Partial Order Reduction (DPOR) [1] is designed to solve the limita-

25



tions of static analysis. The DPOR algorithm, computes the dependency during

exploration, when the concrete values of the pointers are available. According

to the observed dependencies, it adds appropriate branchesto guaranty the com-

pleteness of the exploration. The limitation of DPOR is thatit works only for

multi-threaded programs and is not applicable to distributed systems. DPOR-DS

inspired from the main insight of DPOR and design an algorithm for distributed

systems [16].

There are other techniques based on static analysis named bysleep sets which

are beyond the scope of this paper.

4.3 Big Steps

Where more than one process are being model checked, the model checker should

consider different interleavings between the processes. This is because the process

shared variables can change by other processes. Therefore,after executing each

atomic instruction, the model checker should add a branch for the case that the

thread is preempted and another thread carries on.

By taking big steps, the model checker assumes a sequence of instructions as

a big atomic instruction and do not preempt the process in themiddle of their

execution. Obviously, it alleviates the state explosion problem by reducing the

number of branches. For example, Chess [10] limit the numberof preemptions

per each thread in model checking of multi-threaded programs. In this case, big

step is a trade-off between completeness of the explorationand its feasibility in a

limited time.

26



Taking big steps does not necessarily make the exploration incomplete. For

example, the sequence of instructions that do not touch shared variables can be

assumed atomic, since preemption in the middle of them is equivalent with the

preemption after them [1]. MaceMC [8] also takes the whole instructions inside

a handler as atomic. The exploration is complete since the Mace system is event-

based and the handler code will not be interrupted with another handler execution.

From a high-level point of view, models of the environment always take big

steps. Each operation on the model can be equivalent to multiple steps in the real

environment counterpart, which potentially can be interrupted.

4.4 Parallelizability

In the multi-core and cloud computing era, it is a must for software tools to be par-

allelizable over multiple cores. This is much more important in state exploration

of software systems, since a single thread cannot go very deep into the large state

space. However, the shared variables such as the history of the visited states make

it difficult to efficiently parallelize the task.

4.5 Heuristics

In state exploration of small models, since the state space was small, it was a

key feature for the exploration algorithm to be complete. Itis a fact that due

to the large state space of the real software systems, the completeness is not an

objective anymore. Therefore, the heuristics are more welcome; the heuristics

27



which sacrifice the completeness of the search to explore more relevant states in

the limited time of state exploration.

4.5.1 Random walk

The simplest form of exploration heuristic is random walk: to pick one event from

the ready event list and expand only that particular branch of the state graph. The

random walk can go very deep in the state space. Nevertheless, it also misses

exploring some states that are accessible from the initial state by a few steps.

One intuitive way to address this problem is combining the exhaustive search and

random walks. The different possible combinations of thesetwo are discussed

in [12].

In the pure random walk, the likelihoods of exploring a very rare state and

a very common state are the same. Depending on the objectivesof the testing,

it might be more desirable to explore the states that will be mostly visited af-

ter deployment of the system. One approach is to assign weights to the events

and randomly pick an event from the ready event list according to their weights.

For example, the chance of a packet drop is very low in the network and the as-

signed weight to that could be low. A more complicated approach can analyze

the log files to obtain the probability of different sequenceof events. Bayesian

networks [6] sounds like a right match for this purpose.

28



4.5.2 Initial state

The root state in the explored state graph is normally the initial state of the soft-

ware system and the environment. Due to state explosion problem, the depth of

a complete exploration would be limited to few steps. This does not allow the

system to be stressed against complicated configurations. Starting a complete

exploration after a long random walk would alleviate this problem. In [8], it is

proposed to disable the faulty events such as packet drop andconnection break

during the random walk. This allows the system to get into a stable state before

starting the complete search.

Another approach is to obtain a system state from an actual live run and use

this state as the initial state in the exploration [15]. The advantage of this approach

is that the exploration starts from a state in which the system has gone through

complicated interleaving of events. Moreover, the explored states would be more

relevant as they are accessible from a state taken from the live run. After a few

steps, the exploration can be restarted from another state also taken from the live

run.

4.5.3 Event Interleaving

The non-determinism in event interleaving is a major contributor to exponential

growth of the state space. POR techniques, which are sound and complete, alle-

viate this problem slightly. Nevertheless, the state explosion still manifests after

a few steps. Because of that, most of the developed tools for model checking of

29



software systems were forced to eventually rely on random walks [8, 17].

Realistically speaking, in large software systems the completeness property of

POR techniques is not appealing as much. Therefore, the heuristics which are not

complete but leads the search to more relevant states are more interesting. One

example isConsequence Prediction, which is proposed in CrystalBall [15]. It

filters a non-network handler, if the handler is already run on the same node local

state, i.e., the process state.

5 Related Tools

In this section, we explain the design of the developed toolsfor model checking

of software systems implementations.

Verisoft To avoid challenges of large state size in software systems,Verisoft [2]

takes the stateless approach. POR techniques are then applied to alleviate the

drawbacks of the stateless approach. Since efficient persistent sets require infor-

mation about the static program structure, POR techniques used in Verisoft are

mostly successful in reducing the number of transitions (because of using sleep

sets) rather than number of visited states.

It uses test drivers as a model for the application layer. Thetest driver should

use Verisoft specialized functions: VStoss and VSassert. VStoss(n) is offered

to pick a random number between 0 andn. Calls to communication objects is

intercepted and handled by models of the communication objects, although the

paper does not discuss the methods for intercepting the calls on communication

30



objects. In an operating system with more than hundreds of different system calls,

intercepting all of them and replacing them with a model is very challenging.

The safety properties checked by Verisoft are deadlocks anduser-specified

assert statements. Verisoft does not discuss the random numbers that are used

inside the program as well as the time issue.

Verisoft takes big steps in model checking by dividing the instructions in two

visible and invisible groups. A visible instruction executes an operation on a

shared object. The set of invisible instructions between two visible ones are con-

sidered atomic with the last visible instruction.

A free download is available at [13].

Java Pathfinder Java Pathfiner (JPF) [4], is an explicit state model checker for

Java bytecode. It checks for deadlocks and user-specified assert statements. JPF

follows the stateful approach for state exploration. The Java Virtual Machine

(JVM) is instrumented to store/load the application and exploration algorithm

states.

JPF offers specialized methods for picking a random value,

Verify.randomInt(n). It also offers a random function for double values,

Verify.randomDouble(). However, the returned values do not systematically

cover the whole range, and a user-defined heuristic model is used to choose only

one single returned value.

To model the environment, the user has to write some model classes which

emulate the environment. For each method in the model classes, JPF automati-

cally intercepts the corresponding calls from the application and return the control

31



to the model class (instead of original class in JVM).

It applies on-the-fly POR, which is similar in spirit to DPOR,to alleviate the

state explosion problem. To identify dependent operationsat run-time, they mon-

itor read/write operations on the shared objects. To make itless expensive, they

suggest that the monitoring piggybacks on garbage collection.

In the original version of JPF, the upper layer application must be modeled by

a test driver. The recent version of JPF is instrumented withsymbolic execution

to address this limitation [14]. The developed techniques tackle the aliasing and

dynamically generated objects. They use late binding (called lazy initialization)

to make the state space graph smaller. Note that the environment must still be

modeled.

The source code is available at [5].

CMC In contrast to Verisoft [2], CMC [11] takes the stateful approach for model

checking of C programs. The global variables and the heap content is stored and

loaded for switching the state. The user also specifies some memory locations

that she thinks are not necessary for the model checking purpose, to be eliminated

from the saved states.

CMC applies on event-driven applications, and the whole implementation of

a handler is taken as a big atomic step. However, the user has to manually specify

the handler boundaries. The user also has to define some functions for initializa-

tion. CMC checks for user-specified asserts as well as memoryleaks.

The upper layer application is modeled by test programs. Theoperating sys-

tem calls and specially the network calls are also replaced by some models. To

32



model time, CMC offers a specialized function to obtain the current time, gettime-

ofday(), which will be replaced with an autonomic counter during model check-

ing. The random values also can be obtained by invoking CMCChoose() function.

During model checking, the returned values will cover the whole range of options.

The paper, however, does not specify that how it motivates the users to use only

this particular offered functions.

The exploration algorithm is BFS. Since the elements in queue are referenced

in order, the queue of states in BFS can be kept mostly in hard disk rather than

memory. This alleviates the problem of keeping track of large states. Neverthe-

less, loading and storing of large states still is a time-consuming task.

To my knowledge, the source code of CMC is not available.

MaceMC CMC [11] requires user involvement in various phases such asspec-

ifying initialization functions, the handler boundaries,and the important parts of

state. MaceMC [8] takes advantage of the fact that these steps are mostly done

in structured programs written in Mace framework [7]. In Mace language, the

initialization function and the handler boundaries are part of the language. The

framework also offers some utility functions such as serialization of state into a

stream.

Similar to CMC, the big steps are specified by handler boundaries. The up-

per layer application is modeled by a test program. In Mace language, the used

services by the program are explicitly specified in the source code. During model

checking, the user can make an instance of such services in the test driver and

pass them to the Mace program. The alternative solution is tomake a correspond-

33



ing model class and pass it instead. The native operating system services are not

modeled and hence are beyond the control of MaceMc. It, however, offers some

wrappers for services such as UDP and TCP, and the developer is encouraged to

use them. These wrappers must be replaced with corresponding models offered

by Mace, in the test drivers.

The exploration algorithm is stateful and consists from a combination of I-

BDFS followed by random walks. The state is loaded only for creating the initial

state and the intermediate states are obtained by rerunningthe event handlers.

The offered randint() function for random values is instrumented to cover the

whole range during model checking. Moreover, if the developer uses the special-

ized time function offered by Mace, it will be replaced by a monotonic counter

during model checking.

The source code is available at [9].

Modist Modist [17] is a stateless model checker for unmodified distributed sys-

tems in Windows. The big steps for model checking are the codebetween two

system calls. It instruments the application binary to replace the system calls with

some API wrappers. The wrapper mostly contacts the exploration back-end with

RPC and then invokes the original system call or returns failure, depending on

the back-end response. In the case of networking APIs, the wrapper redirects the

call from the original networking API to a network model. Themodel is imple-

mented by an asynchronous IO channel as well as a proxy threadfor intercepting

the packets. Therefore, the other processes can be located on remote machines.

The time issue is addressed by using symbolic execution starting from the

34



invocation position of the time function. The back-end tries different values of

time that cover all the branches in the code till a certain depth. The paper does not

propose a solution to random functions and their appearancein the application or

the operating system can cause difficulties in deterministically replaying the error

path.

The exploration algorithms are a heuristic inspired from DPOR, as well as

random walks. To alleviate the state explosion problem, thenumber of injected

faults into the system calls is limited.

The source code is not publicly available.

6 Conclusions

State Explosion phenomenon is still the major hurdle in model checking of large

system implementations. Therefore complete search techniques such as partial

order reduction are not compelling anymore. Instead, heuristics for moving the

search towards more relevant states are totally welcome. The heuristic can be

applied in different parts of the model checking process, such as modeling the

environment, exploration algorithm, and initial state.

Storing/Loading of states in large software systems is veryexpensive, both in

terms of time and memory. The stateful approach used to be necessary to achieve

complete search. Having feasibility been prioritized overcompleteness, stateless

approach sounds more realistic for quick exploration in state space.

Currently, modeling the environment is achieved mostly by heuristics. Precise

35



definition of the process as well as tools for automation of this process would

make the effective model checking of software systems one step closer to reality.

Time and random values are still two big problems in model checking. Al-

though application-specific solutions have been proposed,there is still no ap-

proach to force the developers to use them. Perhaps, the future programming

languages can bemodel checking-aware in the sense that they force the develop-

ers to use only the mechanisms that are already instrumentedto be used in model

checkers.

References

[1] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction

for Model Checking Software. InPOPL, 2005.

[2] P. Godefroid. Model checking for programming languagesusing VeriSoft. In

Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 174–186. ACM New York, NY, USA,

1997.

[3] T. Gvero, S. Khurshid, V. Kuncak, and D. Marinov. On Delayed Choice

Execution for Falsification. Technical Report TR-2008-08,EPFL, 2008.

[4] K. Havelund and T. Pressburger. Model checking java programs using java

pathfinder.International Journal on Software Tools for Technology Transfer

(STTT), 2(4):366–381, 2000.

36



[5] Java pathfinder download page. http://javapathfinder.sourceforge.net.

[6] P. Judea. Bayesian networks: a model of self-activated memory for eviden-

tial reasoning.Cognitive Science Society, UC Irvine, pages 329–334, 1985.

[7] Charles E. Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and

Amin M. Vahdat. Mace: Language Support for Building Distributed Sys-

tems. InPLDI, 2007.

[8] Charles E. Killian, James W. Anderson, Ranjit Jhala, andAmin Vahdat. Life,

Death, and the Critical Transition: Finding Liveness Bugs in Systems Code.

In NSDI, 2007.

[9] Macemc download page. http://www.macesystems.org.

[10] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I. Neamtiu.

Finding and reproducing heisenbugs in concurrent programs. In Proceedings

of the Eighth Symposium on Operating Systems Design and Implementation

(OSDI.08), pages 267–280, 2008.

[11] Madanlal Musuvathi, David Y. W. Park, Andy Chou, DawsonR. Engler, and

David L. Dill. CMC: A Pragmatic Approach to Model Checking Real Code.

SIGOPS Oper. Syst. Rev., 36(SI):75–88, 2002.

[12] H. Sivaraj and G. Gopalakrishnan. Random walk based heuristic algorithms

for distributed memory model checking.Electronic Notes in Theoretical

Computer Science, 89(1):51–67, 2003.

37



[13] Verisoft download page. http://cm.bell-labs.com/who/god/verisoft.

[14] W. Visser, C.S. P.s.reanu, and S. Khurshid. Test input generation with Java

PathFinder. ACM SIGSOFT Software Engineering Notes, 29(4):97–107,

2004.

[15] Maysam Yabandeh, Nikola Kneževíc, Dejan Kostíc, and Viktor Kuncak.

CrystalBall: Predicting and Preventing Inconsistencies in Deployed Dis-

tributed Systems. InNSDI, 2009.

[16] Maysam Yabandeh and Dejan Kostic. DPOR-DS: Dynamic Partial Order

Reduction in Distributed Systems. Technical Report TR-2009-05, EPFL,

2009.

[17] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang

Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIST:

Transparent Model Checking of Unmodified Distributed Systems. InNSDI,

April 2009.

38


