Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Model Checking Tools for Software System
Implementations
EPFL Technical Report
LPD-REPORT-2010-003

Maysam Yabandeh
School of Computer and Communication Sciences, EPFL, $vigiad

email: maysam yabandeh@pfl . ch

Abstract

Systematic State Exploration or Model Checking technidue& been
used for years to check the model of softwares against pesifeed proper-
ties. Nevertheless, they never achieved a wide-spreac Usamause of the
difficulties and problems in translating from the programglanguages,
which are used to develop the software, to the modeling laggwn which
the model checker can work. Recently, there have been $aféoes in
direct state exploration of software system implementetidn this survey,

we illustrate the challenges in this domain and explain tfierént solutions

https://core.ac.uk/display/147957636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

adopted by the state-of-the-art developed tools for stgiwetion of soft-
ware systems. The focus of this paper in on the developed Inabdeking
tools for software systems, and it does not include solstfonunit testing

and selecting the optimal test scenarios.

keywords: software systems, distributed systems, reliabilityjbgstmodel

checking, systematic state space exploration

1 Introduction

Systematic State Exploration, which is also knowmaslel checking, has been
used for years to systematically explore reachable statasnodel and to verify
them against user-specified properties. The model can be baskd on a soft-
ware system, a hardware system, or any general phenomeadaiguages that
are used to develop software systems are different from thdetimg language,
and the developer has to go through the tedious, time-congutask of trans-

lating the original program into the modeling language, abstraction. These

difficulties discourage the developers to use the modelk&hreools for large soft-
ware systems.

To alleviate these problems, two general approaches hareused: i) auto-
matically generating a model of the software, and ii) diseekploring the state
space of the original software itself rather than a modehaf.t The former ap-
proach still suffers from the drawbacks of translation iatsmodel; due to mis-

matches between the original software and the abstractelélntbe found bugs

are not sound. In other words, the reported bugs can not sedgsnanifest in
the original application as well.

The second approach, which is the focus of this paper, sysieaily explores
the state space of the software system by controlling thedsdar and the inputs
to the software. In this way, the developers can check the sggace of their
software without going through the error-prone, expensask of abstraction.
Although appealing, there are certain challenges in thisagrh that affect both
applicability and efficiency of such tools. In this paper, demonstrate these
challenges and the different solutions adopted by theeeatols.

In this paper, we refer to the employed algorithm for statpl@ation, as
exploration algorithm or search algorithm. Given a explicstate, the search al-
gorithm invokes a property checker module on that. The ptgpmecker could
check for deadlocks or user-specified properties which laelkaown as invari-
ants. The assert statements inside the source code canlmticbecked by the
property checker or their violation can be trapped and berteg to the developer.

Similar to the tools for checking the models, the main cmgjéeis still the
state space explosion issue: the phenomena of expongntiaiease in num-
ber of states by exploring deeper levels. However, here moreber of non-
determinisms as well as the large size of the real applicatimrsen this problem
in a way that exhaustive exploration techniques becomdeictefe. Section 2
demonstrates this problem and its direct correlation wath-determinisms in the
software systems. Section 3 discusses that how we canaaéletie state explo-

sion problem by more precise emulation of the environmeattign 4, explains

1boolz = read();
2booly = read();
sif (x &&)

4 z=5;

selsez = 8;

sif (x)

7 2=2% 2z,
selsez =0;

Figure 1: Snippet of code used for state exploration.

OO S

Figure 2: State space obtained by running the program inr&ijuThe changes
in the state are shown inside the circle.

the changes in the exploration algorithms that can makeesifiexploration of
such large state spaces feasible. Finally, in Section 5 wgpace the state-of-the-

art tools and illustrate how each of them addresses theidedarhallenges.

2 State Explosion Problem

The processing unit (CPU) that runs a software program coesmnly the single

next state of the system by executing the next instructiothénprogram. Fig-

/O\

atat)
()
(@)

(-

Figure 3: State space obtained by applying early bindingatesxploration of
the program in Figure 1. The changes in the state are shovdeitiee circle.

ure 2 depicts the state space explored by running the samggegon presented in
Figure 1. In contrary to that, more than one state can resuit &in instruction ex-
ecution in systematic state space exploration. For examplen an if-then-else
instruction checks for a variable that its value is receifredn an input device
such as keyboard, the next state of the system depends oortbeete value of
the variable. Although this value will be determined at tume, during state
space exploration it is a sourceradn-determinism for the search algorithm. Cor-
responding to each non-determinism point, a branch wilhbeduced to the state
space to cover all the possible options. Taking each bragaitslthe system to a
potentially different state. The number of reachable stai@onentially increases

with the number of branches, which is knownstate explosion phenomenon.

2.1 State Space

As mentioned before, the space of potential states thatwas@f can visit is way
larger than the set of visited states by a particular runekample, the state space
of the snippet of code shown in Figure 1 is illustrated in F&gg8. As you can
observe, in contrary to the visited states by running thgnaum, the state space is
not sequential; there exist branches corresponding toreacileterminism point.
Each set of joint branches bind some values to a particulad@berminism point.
For example, corresponding to Variablevhich be assigned at run-time, there is
a branch at Figure 3 to cover both valuage andfalse.

The policy that specified the position that a branch appestise state graph
is determined by the exploration algorithm. The policy desimvhen the possible

values should be bound to the non-determinism points.

2.1.1 Early Binding

In early binding, a branch covering the possible values deddvhen the variable
is assigned. For example, in the snippet of code shown inr€igjuBoolean:

is assigned by reading from keyboard. In Figure 3, which é\tisited states
following by the early-binding policy, the first branch isdeti immediately after

assigning the value to Boolearnin the program.

()

HfEnle e
) () (o9 o5

Figure 4: State space obtained by applying late bindingatestxploration of the
program in Figure 1. The changes in the state are shown itis&deircle. The
variable with bar are assigned to false and vice versa.

2.1.2 Late Binding, Before Usage

In late binding before usage, a set of branches covering tissilple values is
added right before the assigned variable is actually uspdF8r example, in
Figure 4, which depicts the visited states following by thteibinding policy,
the first branch is added right before Variablés used at Line 3. The resulting
state space by following the late binding policy is equival® the state space
explored by early binding policy. However, it could potatfitr be more compact
by merging equivalent states. The disadvantage is thet slifted complexity for

late binding.

Figure 5: State space obtained by applying symbolic execudn program in

Figure 1. The changes in the state are shown inside the.cirble conditions on

the edges represent branch conditions inside the prograebdr symbol is used
for negation.

2.1.3 Late Binding, During Property Evaluation

The binding can be postponed till the time the model checkaluates the user-
specified properties against the system state. Since theretenvalue is not
bound, asymbolic value is kept for the variable. The model checker then has
to keep track of the operations performed on the symboligerahd pass them to
the property checking module. This technique is caguibolic Execution.

The major challenge in symbolic execution is to executiogditional branch
instructions. Conditional branch in programming langsagethe essential part
for implementation of if-then-else and loop stateménis the normal run of the
program, the CPU jumps to the position specified by the iosbn, if the corre-

sponding condition is evaluated to true. In symbolic execythe model checker

INote that conditional branches are different from the binasdn state space graph

does not have the concrete values to evaluate the condltimrefore, a branch is
added to the state space to cover both true and false valuésgure 5, the first
branch is added right before evaluating.& y in the first if-then-else statement
of the code snippet shown in Figure 1. By taking each branclkasaumption is
made about the evaluation of the condition. The set of assangomade along
the path will be passed to the property checking module.

Note that the state space graph obtained by symbolic execistinot equiv-
alent to the state space graph obtained by early bindinge,Hlee branches in
the graph correspond to branch points in the program steict@orresponding
to each if-then-else statement, a branch is added to thentyposition at state
graph.

Not all the branches in the state graph that is obtained bypslimexecution
are valid; some branches can be impossible to be traversadeal run. The
property checking module can help to prune some impossrhaleches. It can be
used to evaluate the condition in the instruction; if thediton is evaluated as
false, then the corresponding branch will be pruned, anel vicsa. In Figure 5,
the grayed branches are pruned from exploration. Conségutire size of the
space graph can be potentially much smaller than the cabesaiily binding.

The disadvantage of symbolic execution is that the comiylegipushed to
the property checking module. However, there are well-kmoftf-the-shelf SAT
solvers, which take the history of operations performedhensymbolic variable
as well as the list of assumed conditions and return wealtleszdndition is satis-

fiable or not. The problem is that computation time of SAT sabis not bounded,

and it can take forever for a SAT solver to response. Besitiessize of the as-
sumed condition set and the sequence of performed opesattarid become too
large to be efficiently handled by state-of-the-art SAT sadv For these reasons,

Symbolic Execution can also quickly stick in the state egjgo problem.

2.2 Modeling Environment

The only thing that the state space exploration algorithmhmcertain about is
the sequence of program instructions. The sequence of stetiewill be explored
by a program run depends on the particular environment ligaptogram is de-
ployed in. Theenvironment is everything except the sequence of instructions in
the program, which includes the hardware, the operatingsyshe communica-
tion environment, the input devices, the time, and also thergrograms that will
interact with the software. Every uncertainty about theremment introduces a
non-determinism point into the search algorithm and wadka state explosion
problem. On the other hand, every assumption about thecamagnt eliminates
the corresponding non-determinism point and alleviatestate explosion prob-
lem.

One major problem of model checking of software systemsasiimerous
unknown parameters about their potential environment. flmaber of states,
therefore, grows very quickly in a way that exhaustive deaftgorithms become
totally ineffective. However, by assuming a model for eaant pf the environ-
ment, we can reduce the uncertainty regarding that part anskeguently reduce

the corresponding branching factor, i.e., the number of édiate states after the

10

branch joint.

Another advantage of modeling the environment is elimigatine states
which are impossible or improbable for the deployed sofengstem to get into.
For example, if we know that the input values to the systenalwvays non-zero,
we can ignore the branches that check for zero values. Bé&stdeeduction in
number of explored states, the search algorithm does nottréqe invariant vio-
lations that are impossible or improbable to occur in pcactiTherefore the ac-
curacy of the search algorithm increases and the numbersef f@sitive reports
reduces.

The disadvantage of modeling the environment is that thie steploration
software becomes i) more complicated and ii) more envirorirdependent. For
each model, we have to add some new logics that implement tueinto the
state exploration system, which makes the state exploraiistem complicated.
On the other hand, every model makes some assumptions &eoemironment
in which the software will be deployed. These assumptionddcohange from
system to system or from time to time. However, the expensesgddating the
model might not be trivial. For example, using a model of T@her than its
actual implementation is one major source of complexityhim $tate exploration
tools. Moreover, the model has to be updated when new versibM CP are
deployed.

In the next section, we categorize the parts of the environirserrounding
the software systems and discuss the employed techniquesfteling them or

reducing uncertainty regarding them.

11

3 Environment

We define the environment as all the elements that will diyextindirectly affect
the behavior of the deployed system. For each part of envieon that we are un-
certain about its behavior, we must explore all the possitii®ens and reactions in
model checking. Uncertainty regarding each part of therenment can lead to
more non-determinism points in the exploration processcandequently worsen
the state explosion problem. By assuming a model for eadhop#éne environ-
ment, we can further reduce the uncertainty and hence atiéethe exponential
growth of the state space.

In this section, we categorize the different parts of theremment and present
different approaches that have been taken to reduce thetaimtg regarding each
category. For a software system, we can split the envirohmémthree general
categories: i) the upper layer applications, which usesptiogided service by
the software, ii) the lower layer services, which supply sloéware with some
services, and iii) the peers, which are the identical regliof the software with
whom the software interacts. In the following, we explaicleaategory in more

detail.

3.1 Upper layer application

Every software supplies the users with some interfacesgthesprovided service.
The users can range from human operators, who interact hétlsaftware via

GUI (Graphical User Interface), to other software systestsch interact via IPC

12

(Inter Process Communication) or via invoking the softgapriblic functions.
For the sake of simplicity in this section, we focus on gehfman of function
calls that can accept some input parameters as well.

The order of the calls and the content of the input parametansaffect the
next state of the system, and a systematic state explor@tanithm has to con-
sider all their possible values and orders. However, censid all the possible
values for input parameters is not always feasible. For @k@nfor a 32-bit inte-
ger variable the number of possible valueg¥ Having no model for the upper
layer, the exploration algorithm has to check all theseesto achieve a complete
searcl?. The test driver plays the role of the model for the upperiaygplication
by focusing on a limited set of application requests. Fotainse, a test driver for
a database service sends a particular set of queries totddeada software.

The test drivers are obviously not complete. There is a tcdfleetween
the completeness and feasibility in systematic explonatiim the case of large
software systems, it is inevitable to sacrifice the compless for feasibility of the
search. In Section 4 we will see that the exhaustive exptoratigorithms have
to be bounded to some depths anyway. More accurately seleetescenarios
would lead to systematic exploration of more relevant anglartant states of the

software system.

2Symbolic execution techniques can check for much less nuofbelues by considering a
symbolic value for the variables instead of concrete values

13

3.2 Lower layer services

No software implements all the required functionalitiesnirscratch. Each soft-
ware is supplied with some functionalities by the lower laservices, such as li-
braries, operating system, and other software serviceexXample an application
in C++ uses some library functions to obtain the current ton&® communicate
with other softwares through TCP. The implementation of Kind of functional-
ities can vary from deployment to deployment. Thereforé thehavior, which is
sometimes even dependent to the physical environmentt fsxad, and their con-
crete return value is not determined before deployment.ekample, depending
on the network traffic, a sent packet through TCP can be arlytdelayed.

In the following, we cover some important lower layer seegevhich are the
major issues for most of the applications: i) Time, ii) Ramd¥alues, and iii)

Communication Objects.

3.2.1 Time

The current system time is usually provided by a specialviard on the moth-
erboard. The operating system supplies the applicatiotis seime interfaces to
inquire about the current time. The usage of current timegdrom application
to application; examples are triggering a scheduler, aggigtime to items in the
database, and using it as a seed value to pseudo randomtgen€efaere are too
many possible values for the current system time which mak&esting over all

of them infeasible. On the other hand, it is unrealistic tsuase a model for the

14

time as the system can be deployed and run at any given time.

A simple, common solution for the time issue is to use a mamoégdly in-
creasing counter as a model for the physical timer. The esuntreases by a
constant each time that a thread reads the current time.oGdlyj this model in
not accurate and any exploration algorithm on top of thak mat be complete.
The time issue in general is still an open problem in systenedploration of
software state space. Nevertheless, some attempts haveriaele to tackle this
problem in some specific domains. In the following, we disdihese approaches
and their limitations.

Scheduling One major usage of the current time is to trigger the schedurfeers.
Usually a dedicated scheduler thread in the system reguthadcks for the cur-
rent system time; if the current time is passed the schedirrexlof a timer, the
scheduler invokes the timer registered function. Spewdliibraries often handle
the details of scheduling, and the only thing that the dgyalshould do is to call
a specific function to schedule the timer. On the other exrefrthe spectrum,
the developer might have implemented its own schedulery&emto the source
code, beside the other implemented functionalities.

In the case of specialized libraries for scheduling, onetswi is to model the
whole scheduler instead of dealing with the difficultieshad toncrete time value.
Having a model for the scheduler, the systematic explanaigorithm requires
considering only the different order of triggering the tisiand not the exact time
for trigger.

Operating systems also do scheduling to share the progessits among

15

multiple threads and processes. The actual time of therayasewell as the be-
havior of threads affect the thread preemption pattern. greemption point is
important because it affects the order in which the threadsss the shared re-
sources. Similar to the used models in the application lagbedulers, we can
use a model for the operating system scheduler. In this Wwayexploration algo-
rithm only considers the different preemption points iretids and does not get
into details of the concrete time value.

The scheduling functionalities weaved into the source ceestill a chal-
lenge as the exploration algorithm cannot be sure aboutré@ge usage of the
requested time value. One approach is to use symbolic egadotanalyze the
way the time value is used inside the program. If the time eatuused only
in simple adding operations and comparison tests, the sxaileration software
could check only for a limited set of time values that are @fotor covering
the different branch decisions that are made based on tieevisne. Depending
on the application, this approach can be effective if thestiralue is used im-
mediately after its request and also in a simple way, i.dy, 8mple mathematic
operations such as add and subtract. The limitations comesthe fact that sym-
bolic execution can be feasible only till a certain depth afidr that it also faces
state explosion problem.

The current time can also be used as the seed parameter papseddo ran-
dom generators. Without the seed value, pseudo randomajersewill generate
the same sequence in all runs. In the next section, we exfilaiproblem of

random values in more detail.

16

3.2.2 Random Values

Pseudo random generators are used to obtain a random numiteer.usage in
software programs raises a difficulty for state space eaptor, as we have to
consider all the possible return values for the random numikike the issue of
time, the range of possible values for random numbers isagelto be exhaus-
tively checked. There are application-specific solutidmmgh that we explain in
the following.

Load balancing Some random values are used to pick an item among a few
choices. In this case, the application of the randomnesdialaince the load over
several processes (or entities in general). The key poneat isehat even though
the developer intends to select among a few items, she maghthe general form
of random functions, which return a float value between 0 ankh& simple solu-
tion is to supply the developer with some library functionattlet them to invoke
the appropriate function for choosing a member among a se&t.caM register
the mentioned functions to the state exploration softwatkraplace them with a
simple model during exploration. The model simply adds atinacorresponding
to all the items in the set.

Although simple, the above solution might not be practicadli cases. The
legacy applications still use the general form of the psewaholom functions.
Even for the new applications, we cannot guaranty that tkreldper will always
stick to the policy and will use the provided high-level randfunctions. Similar
to time issue, a solution based on symbolic execution carppkea here; it can

follow the usage of the returned random value in progranraesbns. In such

17

cases, the random value usually ends up in a switch-case ando pick an op-
tion. The exploration algorithm could then check only foimaited set of random
values that are enough for covering the different branclsaets that are made
based on the random value.

Scheduling Random values are also used to schedule some timers. For exam
ple, some transport protocols wait for a random duratiooteefetransmitting the
data. The benefit of random duration is to avoid network cetige that is caused
by several transmissions at the same time. From the exjgoralgorithm per-
spective, the concrete value of the random duration doesatier. Nevertheless,
the different order of triggering the events, which is résdilfrom the random
duration, is important. The scheduler model, therefora, l@ndle this usage of
random numbers. The challenge for the state exploratidndao either provide
dedicated interfaces for this kind of usage, or to detecuage that is weaved

into the source code and then apply the scheduler model @n tha

3.2.3 Communication Objects

One major role of the operating system is to provide mechasfsr the processes
to communicate with each other. The communication objettraage from sim-
ple file system interfaces to specialized interfaces farifrocess Communica-
tion (IPC). The most complex communication objects are ithiesport protocols
for communication over asynchronous network such as TCP.

The access to communication objects must be through opgrsstem. The

operating system includes logics for accessing the comratioh objects and

18

the processes can access them by some proper system calig. ti$is logic is
not included in the software application, the exploratitgoeathm does not know
how to execute the system calls invoked by the applicatitverd are two different
approaches in tackling this issue. One solution is to inelind operating system
into the state exploration process; after the applicatmokes the system call,
the state exploration algorithm runs the correspondinglogide the operating
system and returns the results. The other approach is toltih@deommunication
object and simulate the effects of the system call on the inode

Including operating system into the state exploration ssanakes the state
exploration to be operating system-dependent; the resudfist be different if the
software system is deployed on another operating systendiffeeent version of
the same operating system. Furthermore the state of thatopesystem (which
can be very large) has to be included in the state exploratiocess.

Beside the large size, the main difficulty with operatingtegsis that it is
not easily controllable. The exploration algorithm mustatde to initialize the
software state and reproduce a specific sequence of evehts.isTfeasible in
the case of a process which has a clear memory footprint, tioiwever, a chal-
lenge to reproduce the sequence of events in a large opeststem, full of
non-determinism points.

A new challenge arise when the communication object itseibit under con-
trol of the operating system, and its behavior is, hence predictable. For ex-
ample, when a packet is sent through network, there is nagtiaon its delay,

loss, and unwanted duplication. Hence when the state extaralgorithm wants

19

to reproduce a sequence of events that involve a packetrrssion, there is no
way for the state exploration algorithm to force the netwtrkapply the same
delay, loss, and duplication pattern. These parameteralsweanother source of
non-determinism that a complete exploration algorithmtbaonsider. They are,
however, beyond the control of exploration tools.

Models can hide the complexities of the operating systemices and in-
crease state exploration performance. For example, a PIREux operating
system can be modeled by a simple queue structure. The pratite models is
that they are valid as long as conform to the implementaticthe original ser-
vice. In the case of complex services such as TCP, the moadeltigivial and
can be very complicated. This increases the risk of a mistakeodeling the
service as well as expenses of updating the model accorditigetnew changes
in the service implementation. The other advantage of usindels is that due
to simplification in the model, the state of the model is muichpéer and more
controllable. Thus, it will be feasible to reproduce a sedéevents on them.

The expenses of modeling the operating system and its mainde increase
with the increase in the number of operating system servieasexample, Win-
dows offers more than 100 system calls [17]; modeling abéh&ystem call in an
operating system which has more than one million lines okdsdery expensive

and unreliable.

20

3.3 Peers

In centralized systems, only one copy of the software exiftgs is in contrast
with distributed systems where several copies of the softwee., peers) are
working concurrently. The state of the system is then diisted between peers,
and a perfect state exploration algorithm has to take théoncionsideration.

An approach is to explore states of only one copy of the soévaad con-
sider other peers simply as part of the environment. Althosigiple, this would
increase non-determinism in the state exploration andrtialses the state explo-
ration less efficient and less accurate.

The other approach is to start the exploration witlpeers wheréV is a fixed
number. If we takeV small, the inconsistencies that would only manifest for
larger N stay undetected. On the other hand, the number of statesases ex-
ponentially with the increase in peer count, and the stapdoeation, hence, is
impractical for large values a¥.

Some related works [15] take the middle ground: they statstiate explo-
ration for a large number of peerd]. However the exploration algorithm exe-
cutes only the events that are related to a small set of ned#ésgize of /), and
ignores the events which are related to the other nodesMFex. NV, the state

exploration can be efficient although it only partly strestee system.

21

4 Exploration Algorithm

In the simplest from, the exploration algorithm at each stemputes the ready
events, picks one event from the ready event list, and ezedtit To make the
search complete (till a certain depth), the exploratioroalgm has to execute
all the events in the list; this approach is also known as @stnge search. It is
possible to do this by forking the application process. Hamwvethat would be
very inefficient and would quickly run out of memory.

Two well-known algorithms for exhaustive search in the estapace are
Breadth First Search (BFS) and Depth First Search (DFS).BHF® algorithm
saves the current state of the exploration algorithm, wimcludes the ready event
list, the picked event, application state, and the enviremnstate, in a queue. At
each step, it dequeues one item from the queue, executbe adlddy events one
by one (after each execution it rolls back to the dequeudd)stad enqueues the
resulting states. By that, it explores all the states at adirebefore going to the
next breadth. The BFS algorithm is very memory consumingtianslimpractical
for non-toy software applications. Although it can be fagtce it has to execute
each event only once, the costs of taking the snapshot ofydters state might
not be trivial. We will discuss this more in the next subsacti

The DFS algorithm keeps only the system state along the path the root
till the current position. When the algorithm reaches th&imam depth or runs
out of ready events, it backtracks one depth upper, load ybtem state, and

iterates over the next event in the ready event list. The Dg&ithm requires

22

much less space compared to BFS and hence are more suitaéloring large
state spaces. Since it is infeasible to exhaustively egpdirthe state space in
the non-toy software applications, the maximum depth of B3Sually bounded
(BDFS) to guaranty complete exploration till a certain tepifter exploring all
states till the bounded depth, the maximum depth is incedaga constant and the
algorithm starts over from root. This is computationallgdeefficient compared
to BFS because of duplicate execution of events in the nexid®.

Both BFS and BDFS suffer from the expensive operations oingj@nd load-
ing the whole system state from memory. In the case of so&wgstems, the
system state includes the whole memory footprint of theiegpbn and the envi-
ronment (files, operating system state, network state, smg én the following,
we present a version of BDFS that is more efficient where kegfhe whole
system state in memory is expensive.

In BDFS algorithm, instead of the full system state we carn &akp the index
of the picked items from the root till the bottom of the stgpase. We call this
I-BDFS. When the algorithm reaches the maximum depth, alkthtes along the
path from root to the current state are checked. To backitaaeds to obtain the
system state for the last step. It obtains the last statedotjrgj over from the root
and executing the same sequence of events (picking the sdmefrom the ready
event list). Since the maximum achievable depth is shalloyway, the expenses
of re-executing the events are often less than expensivatges of storing and
loading states from memory.

The challenge in I-BDFS is reproducibility of the event sexace; after execut-

23

ing the same sequence of events we expect the system to hesséine state. As
we discussed in Section 3, there are lots of non-determimsime environment
which are not necessarily under control of the exploratigo@hm. For exam-
ple, the implementation of a system call inside the opegasiystem might use
some random values which are different at each run. Usingetaazhn address

this problem since the model are intentionally developéduoktocontrollable.

4.1 Stateless or Stateful

To avoid loops and exploring duplicate states, it is neagdsekeep track of the
visited states. As explained above, this is an expensiveatipe for software
systems with large state size. To alleviate the cost, oneoapp is to obtain
a hash of the state and keep track of the hash codes instebhd wfible state.
Although it reduces the required memory space for keepiagstate as well as
the cost of comparison between two states, nevertheletsnoly the state hash
still requires touching the whole state once which can beriwial in the case of
large states.

Another approach is stateless exploration as opposedt&fidtaearch. Visit-
ing duplicate states makes stateless approach to be védiigigrg. Using Partial
Order Reduction (POR) techniques, can remedy the perfarendrwe assume

that the state space graph is acyclic. We explain POR in tkieseetion.

24

4.2 Partial Order Reduction

The POR technique can improve performance of any of exptoratgorithms de-
scribed above. However, its usage is inevitable in the itiefit stateless approach
to avoid visiting duplicate states. Recall that the statekgpproach is interesting
in state exploration of software systems because takingla dlethe system and
environment state is very expensive in large software syste

The POR techniques prune the state space of a concurreetrsystavoid
unnecessary interleaving of events. For example, if ekegut s, = s; —
sy >and< sy = 58 < s, > result in the same state, exploring only one of
them is enough for checking the invariants of the softwastesy. In this case,
e; ande, are called independent. Independence is not enough to psuinem
the state space graph. It is because of the fact that theret iégother events
enabled at state| that following them gets the system into states which are not
reachable frons;. To be able to prune,, we must first prove that; ande, are in
apersistent set ats,.

Obtaining independent events and persistent sets recgtads analysis on
the source code. Static analysis tools might not be availaball programming
languages; specifically, if the environment (such as opgyatlystem) is included
in the analysis. For example, independence of two opeatidmch use different
system calls is not easy to prove. Furthermore, it is showhdtatic analysis is
not efficient in dealing with dynamic data such as pointefsThis is because the
value referenced by the pointer is not available at the tifranalysis.

Dynamic Partial Order Reduction (DPOR) [1] is designed toesthe limita-

25

tions of static analysis. The DPOR algorithm, computes #y@eddency during
exploration, when the concrete values of the pointers aadadle. According
to the observed dependencies, it adds appropriate bratwlesranty the com-
pleteness of the exploration. The limitation of DPOR is tihatorks only for
multi-threaded programs and is not applicable to distetgystems. DPOR-DS
inspired from the main insight of DPOR and design an algoritbr distributed
systems [16].

There are other techniques based on static analysis nanmsbebpets which

are beyond the scope of this paper.

4.3 Big Steps

Where more than one process are being model checked, the ched&er should
consider different interleavings between the procesdeas.iJ because the process
shared variables can change by other processes. Therafmreexecuting each
atomic instruction, the model checker should add a brancthi® case that the
thread is preempted and another thread carries on.

By taking big steps, the model checker assumes a sequenustiictions as
a big atomic instruction and do not preempt the process imtiaelle of their
execution. Obviously, it alleviates the state explosioobpgm by reducing the
number of branches. For example, Chess [10] limit the nurobgreemptions
per each thread in model checking of multi-threaded programthis case, big
step is a trade-off between completeness of the explorandnts feasibility in a

limited time.

26

Taking big steps does not necessarily make the exploraticomplete. For
example, the sequence of instructions that do not touchedhariables can be
assumed atomic, since preemption in the middle of them is/algut with the
preemption after them [1]. MaceMC [8] also takes the whostrurctions inside
a handler as atomic. The exploration is complete since theeMgstem is event-
based and the handler code will not be interrupted with ardtandler execution.

From a high-level point of view, models of the environmenta}s take big
steps. Each operation on the model can be equivalent topteuttieps in the real

environment counterpart, which potentially can be inteted.

4.4 Parallelizability

In the multi-core and cloud computing era, it is a must fotwafe tools to be par-
allelizable over multiple cores. This is much more imporiarstate exploration
of software systems, since a single thread cannot go vegyideethe large state
space. However, the shared variables such as the histdrg oidited states make

it difficult to efficiently parallelize the task.

45 Heuristics

In state exploration of small models, since the state spaesmall, it was a
key feature for the exploration algorithm to be complete.slta fact that due
to the large state space of the real software systems, thpletaness is not an

objective anymore. Therefore, the heuristics are more omed; the heuristics

27

which sacrifice the completeness of the search to explore metevant states in

the limited time of state exploration.

45.1 Random walk

The simplest form of exploration heuristic is random watkpick one event from
the ready event list and expand only that particular brarfit¢heostate graph. The
random walk can go very deep in the state space. Neverthéledso misses
exploring some states that are accessible from the initzdé Dy a few steps.
One intuitive way to address this problem is combining tHeagstive search and
random walks. The different possible combinations of these are discussed
in[12].

In the pure random walk, the likelihoods of exploring a veayer state and
a very common state are the same. Depending on the objecfithe testing,
it might be more desirable to explore the states that will sty visited af-
ter deployment of the system. One approach is to assign tgeigtthe events
and randomly pick an event from the ready event list accgrtbrtheir weights.
For example, the chance of a packet drop is very low in the ort@nd the as-
signed weight to that could be low. A more complicated apgnozan analyze
the log files to obtain the probability of different sequeméesvents. Bayesian

networks [6] sounds like a right match for this purpose.

28

4.5.2 Initial state

The root state in the explored state graph is normally thelrstate of the soft-
ware system and the environment. Due to state explosiongmplthe depth of
a complete exploration would be limited to few steps. Thisgloot allow the
system to be stressed against complicated configuratiotetin§ a complete
exploration after a long random walk would alleviate thiskgem. In [8], it is
proposed to disable the faulty events such as packet drog@mtection break
during the random walk. This allows the system to get intcablststate before
starting the complete search.

Another approach is to obtain a system state from an acuetiin and use
this state as the initial state in the exploration [15]. Ttesatage of this approach
is that the exploration starts from a state in which the sydtas gone through
complicated interleaving of events. Moreover, the exgl@a®ates would be more
relevant as they are accessible from a state taken fromviaeun. After a few
steps, the exploration can be restarted from another dtate¢aken from the live

run.

4.5.3 Event Interleaving

The non-determinism in event interleaving is a major cbuotor to exponential
growth of the state space. POR techniques, which are souhdamplete, alle-
viate this problem slightly. Nevertheless, the state esiplo still manifests after

a few steps. Because of that, most of the developed tools ddeehthecking of

29

software systems were forced to eventually rely on randotksn8, 17].
Realistically speaking, in large software systems the detapess property of
POR techniques is not appealing as much. Therefore, théstiesiwhich are not
complete but leads the search to more relevant states aeeimeresting. One
example isConsequence Prediction, which is proposed in CrystalBall [15]. It
filters a non-network handler, if the handler is already ranle same node local

state, i.e., the process state.

5 Related Tools

In this section, we explain the design of the developed tfmrlsnodel checking
of software systems implementations.

Verisoft To avoid challenges of large state size in software syst¥argsoft [2]
takes the stateless approach. POR techniques are theedhpplalleviate the
drawbacks of the stateless approach. Since efficient pamsisets require infor-
mation about the static program structure, POR technigsed in Verisoft are
mostly successful in reducing the number of transitiongghee of using sleep
sets) rather than number of visited states.

It uses test drivers as a model for the application layer. t€sedriver should
use Verisoft specialized functions: M8ss and VSassert. VSoss() is offered
to pick a random number between 0 amd Calls to communication objects is
intercepted and handled by models of the communicationctsyjalthough the

paper does not discuss the methods for intercepting the @alcommunication

30

objects. In an operating system with more than hundreddfefent system calls,
intercepting all of them and replacing them with a model ig/\a@allenging.

The safety properties checked by Verisoft are deadlocksused-specified
assert statements. Verisoft does not discuss the randorbararthat are used
inside the program as well as the time issue.

Verisoft takes big steps in model checking by dividing th&iiactions in two
visible and invisible groups. A visible instruction exeesitan operation on a
shared object. The set of invisible instructions betweem\tisible ones are con-
sidered atomic with the last visible instruction.

A free download is available at [13].

Java Pathfinder Java Pathfiner (JPF) [4], is an explicit state model cheaier f
Java bytecode. It checks for deadlocks and user-specifssitatatements. JPF
follows the stateful approach for state exploration. TheaJdirtual Machine
(JVM) is instrumented to store/load the application andl@gtion algorithm
states.

JPF offers specialized methods for picking a random value,
Verify.randomintg). It also offers a random function for double values,
Verify.randomDouble(). However, the returned values do systematically
cover the whole range, and a user-defined heuristic modekid to choose only
one single returned value.

To model the environment, the user has to write some modssetawhich
emulate the environment. For each method in the model dad8¢ automati-

cally intercepts the corresponding calls from the appliceand return the control

31

to the model class (instead of original class in JVM).

It applies on-the-fly POR, which is similar in spirit to DPOtR,alleviate the
state explosion problem. To identify dependent operatixman-time, they mon-
itor read/write operations on the shared objects. To malesd expensive, they
suggest that the monitoring piggybacks on garbage callecti

In the original version of JPF, the upper layer applicatiarstbe modeled by
a test driver. The recent version of JPF is instrumented syithbolic execution
to address this limitation [14]. The developed techniqaegle the aliasing and
dynamically generated objects. They use late bindinggddtzy initialization)
to make the state space graph smaller. Note that the envénoinmust still be
modeled.

The source code is available at [5].

CMC In contrast to Verisoft [2], CMC [11] takes the stateful apgch for model

checking of C programs. The global variables and the heafenbis stored and
loaded for switching the state. The user also specifies soereany locations

that she thinks are not necessary for the model checkingparpo be eliminated
from the saved states.

CMC applies on event-driven applications, and the wholeemgntation of
a handler is taken as a big atomic step. However, the useomaartually specify
the handler boundaries. The user also has to define someofuméor initializa-
tion. CMC checks for user-specified asserts as well as meleakg.

The upper layer application is modeled by test programs. Offegating sys-

tem calls and specially the network calls are also replagesoime models. To

32

model time, CMC offers a specialized function to obtain theent time, gettime-

ofday(), which will be replaced with an autonomic counteridg model check-

ing. The random values also can be obtained by invoking CMio&#&() function.

During model checking, the returned values will cover thelelmange of options.
The paper, however, does not specify that how it motivatesuiers to use only
this particular offered functions.

The exploration algorithm is BFS. Since the elements in guea referenced
in order, the queue of states in BFS can be kept mostly in higidrdther than
memory. This alleviates the problem of keeping track ofdastptes. Neverthe-
less, loading and storing of large states still is a timescomng task.

To my knowledge, the source code of CMC is not available.

MaceMC CMC [11] requires user involvement in various phases sucpas-
ifying initialization functions, the handler boundariegd the important parts of
state. MaceMC [8] takes advantage of the fact that these stiepmostly done
in structured programs written in Mace framework [7]. In Mdanguage, the
initialization function and the handler boundaries are pathe language. The
framework also offers some utility functions such as semddilon of state into a
stream.

Similar to CMC, the big steps are specified by handler bouesaThe up-
per layer application is modeled by a test program. In Manguage, the used
services by the program are explicitly specified in the seeare. During model
checking, the user can make an instance of such serviceg itesh driver and

pass them to the Mace program. The alternative solutionrisae a correspond-

33

ing model class and pass it instead. The native operatirtgrayservices are not
modeled and hence are beyond the control of MaceMc. It, hervelfers some

wrappers for services such as UDP and TCP, and the devekpacouraged to
use them. These wrappers must be replaced with corresgpntbdels offered

by Mace, in the test drivers.

The exploration algorithm is stateful and consists from mlocmation of I-
BDFS followed by random walks. The state is loaded only feating the initial
state and the intermediate states are obtained by rerutirereyent handlers.

The offered randint() function for random values is instamnted to cover the
whole range during model checking. Moreover, if the devetagses the special-
ized time function offered by Mace, it will be replaced by amotonic counter
during model checking.

The source code is available at [9].

Modist Modist [17] is a stateless model checker for unmodified ithisted sys-
tems in Windows. The big steps for model checking are the tateeen two
system calls. It instruments the application binary toaeplthe system calls with
some API wrappers. The wrapper mostly contacts the expboragack-end with
RPC and then invokes the original system call or returnsifajldepending on
the back-end response. In the case of networking APIs, tapper redirects the
call from the original networking API to a network model. Thdel is imple-
mented by an asynchronous 10 channel as well as a proxy tfoeadercepting
the packets. Therefore, the other processes can be logatethote machines.

The time issue is addressed by using symbolic executiotirgjadrom the

34

invocation position of the time function. The back-enddrdifferent values of
time that cover all the branches in the code till a certairtlilephe paper does not
propose a solution to random functions and their appeariartbe application or
the operating system can cause difficulties in determaaltyi replaying the error
path.

The exploration algorithms are a heuristic inspired fromdb® as well as
random walks. To alleviate the state explosion problemntimaber of injected
faults into the system calls is limited.

The source code is not publicly available.

6 Conclusions

State Explosion phenomenon is still the major hurdle in rhodecking of large
system implementations. Therefore complete search tgebsisuch as partial
order reduction are not compelling anymore. Instead, bgcsifor moving the
search towards more relevant states are totally welcome hEaristic can be
applied in different parts of the model checking processhsas modeling the
environment, exploration algorithm, and initial state.

Storing/Loading of states in large software systems is egpensive, both in
terms of time and memory. The stateful approach used to lEseary to achieve
complete search. Having feasibility been prioritized cx@mpleteness, stateless
approach sounds more realistic for quick exploration itesspace.

Currently, modeling the environment is achieved mostly eyristics. Precise

35

definition of the process as well as tools for automation ¢f grocess would
make the effective model checking of software systems @apedoser to reality.
Time and random values are still two big problems in modekkimg. Al-
though application-specific solutions have been proposeste is still no ap-
proach to force the developers to use them. Perhaps, thee fptogramming
languages can bmodel checking-aware in the sense that they force the develop-
ers to use only the mechanisms that are already instrumentexiused in model

checkers.

References

[1] Cormac Flanagan and Patrice Godefroid. Dynamic Pa@iraler Reduction
for Model Checking Software. IROPL, 2005.

[2] P. Godefroid. Model checking for programming languagsisg VeriSoft. In
Proceedings of the 24th ACM S GPLAN-SGACT symposium on Principles
of programming languages, pages 174-186. ACM New York, NY, USA,
1997.

[3] T. Gvero, S. Khurshid, V. Kuncak, and D. Marinov. On DedayChoice
Execution for Falsification. Technical Report TR-2008-BBFL, 2008.

[4] K. Havelund and T. Pressburger. Model checking java ot using java
pathfinder.International Journal on Software Tools for Technology Transfer

(STTT), 2(4):366-381, 2000.

36

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Java pathfinder download page. http://javapathfindarceforge.net.

P. Judea. Bayesian networks: a model of self-activatethory for eviden-

tial reasoning Cognitive Science Society, UC Irvine, pages 329-334, 1985.

Charles E. Killian, James W. Anderson, Ryan Braud, Raifjiala, and
Amin M. Vahdat. Mace: Language Support for Building Distitied Sys-
tems. InPLDI, 2007.

Charles E. Killian, James W. Anderson, Ranjit Jhala, Amdn Vahdat. Life,
Death, and the Critical Transition: Finding Liveness BugSystems Code.

In NSDI, 2007.
Macemc download page. http://www.macesystems.org.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Najreand |. Neamtiu.
Finding and reproducing heisenbugs in concurrent programi&oceedings

of the Eighth Symposium on Operating Systems Design and I mplementation

(OSDI1.08), pages 267—280, 2008.

Madanlal Musuvathi, David Y. W. Park, Andy Chou, Daw$®nEngler, and
David L. Dill. CMC: A Pragmatic Approach to Model Checking &&€ode.
S GOPS Oper. Syst. Rev., 36(Sl):75-88, 2002.

H. Sivaraj and G. Gopalakrishnan. Random walk basedsteualgorithms
for distributed memory model checkingElectronic Notes in Theoretical

Computer Science, 89(1):51-67, 2003.

37

[13] Verisoft download page. http://cm.bell-labs.coméidod/verisoft.

[14]

[15]

[16]

[17]

W. Visser, C.S. P.s.reanu, and S. Khurshid. Test inpatgation with Java
PathFinder. ACM S GSOFT Software Engineering Notes, 29(4):97-107,
2004.

Maysam Yabandeh, Nikola Kaevic, Dejan Kostt, and Viktor Kuncak.
CrystalBall: Predicting and Preventing Inconsistencreeployed Dis-

tributed Systems. INSDI, 2009.

Maysam Yabandeh and Dejan Kostic. DPOR-DS: Dynamididta®rder
Reduction in Distributed Systems. Technical Report TR2208, EPFL,
2009.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezbéiu, Haoxiang
Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIS
Transparent Model Checking of Unmodified Distributed SysteInNSDI,
April 2009.

38

