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ABSTRACT

We develop a syntax-independent rule-based specification
in a set-theoretical framework. The reactants of rules are
usually defined as partially defined objects, called pat-
terns, to denote that we can apply a reaction by substi-
tuting a pattern with any species that contains the context
described by the pattern. We choose a very general data
structure to represent the patterns: we write a pattern as a
set of species which comply the pattern, and we call it a
macro-species. We define the deterministic (ODE) seman-
tics on such a rule set, and we define its reduction imposed
by aggregation of species. We characterize for which ag-
gregations we can correctly compute the reduced ODE se-
mantics directly from the rule set, ie which aggregations
are self-consistent. Finally, we propose an algorithm that,
given a set of initial aggregates, computes the least-refined
self-consistent aggregation which contains the initial ag-
gregates.

1. INTRODUCTION

Rule-based models give a compact description of protein-
protein interactions in spite of combinatorial number of
protein complexes interacting in the cellular system [1, 2].
Still, the computation of ODE semantics of a rule set is
hard or often infeasible. People have proposed reduction
algorithms for ODE semantics of a rule set expressed in
a rule-based language Kappa [3]. Reduction is done by
introducing a formal framework which allows to compute
the ODE semantics directly on typically far fewer aggre-
gates of species rather then on concrete species. How-
ever, a particular syntax gives limitations to which sets of
species can be aggregated, and this leads to limitations in
both specification and the aggregation process. For those
reasons, we develop a framework in which any macro-
species or aggregate is represented as a set of species.
We characterize the set of least-refined (minimal) self-
consistent aggregations. The implication of our work is
the following. It gives theoretical grounds to developing
the self-consistent reduction of the ODE semantics in any
concrete implementation of rule-based models. Moreover,
since we characterize the least-refined aggregations, it can
indicate improvements in current implementations.

2. PRELIMINARIES

We denote the set of species of the biochemical system
by S = {s1, ..., sn}. For each observed species, more
copies of the species may be occurring in the system (’re-
action soup’). Any multi-set on species c : T → N0

n,
where T = R≥0 is the continuous-time domain, we call a
configuration. Instead of working with copy numbers, we
rather scale it to the concentration units, and we denote it
by x : T → Rn

≥0. The i-th component of this vector we
denote by xi(t) or [si] := xi(t). The dynamics is speci-
fied by a set of reactions. One reaction consists of the two
configurations - left- and right-hand side (lhs and rhs in
further text), and it means that if the left-hand side multi-
set is a subset of the configuration of the whole system, it
can be replaced by the multiset on the right-hand side.

Definition 1 (Reaction-based biochemical system) Given
a finite set of species S = {s1, ..., sn}, a reaction-based
biochemical system S = (S,x0, {r1, ..., rN}) is given by
an initial configuration x0 ∈ Rn

≥0, and a set of reactions
{r1, ..., rN}, such that

ri : a1is1 + ...+ anisn
ki→ b1is1 + ...+ b1nsn,

where a1i, ..., ani, b1i, ..., bni ∈ N0 are called stoichio-
metric coefficients. We will say that the reaction is of type
(l, d), if there are l non-zero coefficients on the lhs of the
rule, and if there are d non-zero coefficients on the rhs of
the rule. Note that each reaction ri is defined by a triple
(L,α, k)i, where (i) L ∈ Nn

0 is the lhs of the reaction ri,
(ii) α : L → Nn

0 is a bijection from lhs to the rhs, and (iii)
k ∈ R≥0 is the reaction rate.

Definition 2 (ODE semantics of a reaction-based biochem-
ical system) Given a reaction-based biochemical system
S = (S,x0, {r1, ..., rN}), we assume the mass-action
law. Then, the derivatives of the mean change of concen-
trations of species over time is specified by the following
system of differential maps

F(x(t)) =
d

dt
x(t) =

N∑

i

(ν̂(x(t), ri)− ν̆(x(t), ri)) ,
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where the consumption and production terms of species sj
with respect to the reaction ri are computed as ν̆(xj(t), ri) =

kiaji
∏n

l=1

(xl(t)
ali

)
, and ν̂(xj(t), ri) = kibji

∏n
l=1

(xl(t)
ali

)
.

The solution to this system of ODE equations, such that it
satisfies the initial condition x0 we call the ODE seman-
tics of S .

3. RULE-BASED MODELING WITH SETS

Using a rule-based language enables grouping certain re-
actions which have the same rate. The reactants in rules
are patterns, partially defined species. We can execute a
rule by substituting a pattern with any species that con-
tains the context described by the pattern. We here define
a pattern as a set of species, macro-species, to specify that
any species which belongs to that set can equally probably
be chosen to take part in the rule application.

Definition 3 (Rule-based biochemical system) Given a fi-
nite set of species S = {s1, ..., sn}, and a finite set of
macro-species C = {C1, ..., Cñ}, Ci ⊆ S, a rule-based
biochemical system S̃ = (S, C,x0, {R1, ..., RM}) is given
by an initial configuration x0 ∈ Nn

0 , and a set of rules
{R1, ..., RM}. The rules are specified in the following
form

R : a1L1 + ...+ alLl
ki→ b1D1 + ...+ bdDd,

where a1, ..., al, b1, ..., bd ∈ N are positive integer coef-
ficients, and L1, ..., Ll ∈ C and D1, ..., Dd ∈ C. This
rule is a rule of type (l, d). Note that each rule Ri can
be seen as a triple (L,β, k)i, where (i) L is a Cartesian
set product L1 × ... × Ll, (ii) β is an isomorphism be-
tween the Cartesian set product of the macro-species on
lhs, and the macro-species on the rhs: β : L1× ...×Ll →
D1 × ...×Dd, and (iii) k ∈ R≥0 is a rule rate.

Any tuple of species (c1, ..., cl) such that (c1, ..., cl) ∈
L1 × ... × Ll specifies one reaction. Thus, writing one
rule R = (L,β, k) is equivalent to writing |L1| · ... · |Ll|
distinct reactions of type (l, d), all with the same reaction
rate k.

Definition 4 (Well-formed rules) We will say that the rule
is well-formed, if the sets L1×L2...×Ll and D1×...×Dd

are isomorphic. We will restrict our attention to the rules
where all coefficients on the left-hand side are equal to
one: a1 = ... = al = 1. Moreover, we assume that
each two macro-species that appear on the lhs of the rule
are mutually disjoint. We assume the same for the rhs.
The map β being an isomorphism allows us to define its
inverse β−1 : D1 × ...×Dd → L1 × ...× Ll. From now
on, we will assume to be working only with well-formed
rule-based biochemical systems.

Definition 5 (ODE semantics of a rule-based biochem-
ical system) Given a rule-based biochemical system S̃ ,
we define its ODE semantics as the ODE semantics of its
equivalent reaction-based biochemical system S .

4. REDUCTIONS OF ODE SEMANTICS OF
RULE-BASED MODELS

If we compute the ODE semantics of a rule-based bio-
chemical system by translating it to reactions, we however
again end up solving the system of differential equations,
whose dimension is equal to the number of species. Since
the rules are specified on macro-species, we search for a
set of macro-species, that we call aggregates, such that in-
stead of computing the ODE semantics over the tuple of
species, we can compute it over the tuple of aggregates.

Definition 6 (Aggregation) Let A = {A1, ..., Am}, where
Ai ⊆ S are macro-species on S. We call A an aggrega-
tion on S, and A1,...,Am we call aggregates. The set of
all aggregations of S we denote by A .

Given an aggregation A = {A1, ..., Am}, we define the
m× n matrix Π ∈ {0, 1}m×n, such that

Πij =

{
1 if sj ∈ Ai,
0 otherwise.

If we denote the multiset configuration over the aggre-
gates by cA, and the same multiset configuration over the
species by cS , then it holds that: cA = Π · cS (vectors
are written in column notation). The same applies for the
configurations of concentrations, ie for any vector of con-
centrations over species xS , we can write it as a vector
over the aggregates xA = Π · xS . In other words, the
matrix Π defines a change of basis from the vector over
species to the vector over aggregates.

Definition 7 (A-reduction of ODE semantics of reaction-
based biochemical system) We consider a reaction-based
biochemical system S = (S,x0, {r1, ..., rN}), and an ag-
gregation A, which defines the (linear) transform Π. Then,
if xS is the ODE semantics of the system S , the function
xA = Π ·xS , is the A-reduction of ODE semantics of S .

Given a vector xA, we write the change of concentration
of the aggregate Ai as [Ai] := xAi(t) =

∑
{[sj ]|sj ∈

Ai}. Note that, since the differentiation is a linear opera-
tor, we have that F(xA) = Π · F(xS) defines the differ-
ential maps of the A-reduction of the ODE semantics on
the aggregates.

5. MAXIMAL SELF-CONSISTENT REDUCTIONS

Not all aggregations allow us to describe the reduced ODE
semantics self-consistently. Let us assume that we have
an aggregation A = {A1}, where A1 = {s1, s2} and the
ODE maps are F([s1]) = k1[s1], F([s2]) = −k1[s1] +
k2[s2]. We can write the map F([A1]) = F([s1])+F([s2]),
and furthermore we compute F([A1]) = k2[s2]. However,
this quantity cannot be expressed by using only the con-
centrations of the aggregates in A, because we need to
know the concentration of the macro-species {s2}.

Definition 8 (Self-consistent aggregation) We consider a
rule-based biochemical system S̃ , an aggregation A =



{A1, ..., Am}, and the system of differential maps F(x)
as specified in Dfn.2. If the quantity F(xA) = Π ·F(xS)
can be written as a vector of polynomials G(xA) over the
variables [A1],...,[Am], then we say that the aggregation A
is ODE self-consistent with respect to the rule set S̃ .

Let us observe an aggregation A = {A1, A2, A3},
where A3 = A1 ⊕ A2. Then we can express the con-
centration of A3 as [A3] = [A1] + [A2]. Also, we can
express [A1] as [A1] = [A3]− [A2]. This tells us that, if A
is self-consistent with respect to the rule set, we can also
instead use the aggregation {A1, A2}, or {A2, A3}, and
preserve the self-consistency.

Definition 9 (Expressiveness of the aggregation) The ex-
pressiveness of the aggregation A = {A1, ..., Am}, de-
noted span(A), we define as a set of all macro-species
over S that can be formed by finite application of disjoint
union ⊕, or its inverse ' over the aggregates from A.

Let us observe again the aggregation A = {A1, A2, A3},
where A3 = A1 ⊕ A2. The aggregations {A1, A2} and
{A2, A3} have the same expressiveness as {A1, A2, A3}.

Definition 10 (Refinement on aggregations) Let A1,A2

be two fragmentations on S. We will say that A1 refines
A2, written A1 ( A2, if span(A2) ⊆ span(A1).

We observe that the expressiveness of the aggregation Â =
{{s1}, ..., {sn}} are all subsets of S, ie span(Â) = 2S .
Moreover, any set of aggregates A = {A1, ..., Am} gen-
erates a group G (A) = (span(A),⊕). The set of all sub-
groups of G (Â) forms a complete lattice with respect to
the subgroup relation [4]. Consequently, the set of all
the aggregations on S, ordered by the refinement rela-
tion ( forms a complete lattice (A ,(). Given a group
G (A) = (span(A),⊕), there are many different repre-
sentations (generating subsets of elements) of it. Those
of them with minimal cardinality, we define as the least-
refined aggregations that generate G (A).

6. ALGORITHM

We assume that we can use the following operations: (1)
the intersection of two macro-species (written C1 ∩ C2),
(2) (disjoint) union and difference of macro-species (writ-
ten C1⊕C2 and C1'C2 respectively), (3) rule application
β to a tuple of macro-species (written β(C1, ..., Cm)), (4)
inverse rule application β−1 on a tuple of macro-species
(written β−1(C1, ..., Cm)), (5) the i-th component of a
tuple of macro-species (written πi(C1, ..., Cm) = Ci). In
order to be able to compute the least-refined aggregation,
we assume to have the operation of (6) membership check
C ∈ span(A), ie we are able to decide whether a given
macro-specie is expressive within the aggregation. We
may now define the following problem.

INPUT. The initial aggregation A0, and a rule-based bio-
chemical system S̃ = (S, C,x0, {R1, ..., RM});

OUTPUT. The least-refined aggregation A on S, such
that (i) A (A 0; and (ii) A is self-consistent with
respect to S̃ .

We recall the complete lattice (A ,() of all the aggre-
gations on S ordered by the relation (. The ’necessary’
aggregates for ensuring self-consistency of an aggregation
with respect to a set of rules are characterized by the fol-
lowing Theorem (Thm. 1).

Theorem 1 An aggregation A = {A1, ..., Am} is ODE
self-consistent with respect to the rule-based biochemical
system S̃ = (S, C,x0, {R1, ..., RM}) if and only if for all
A ∈ A, and for all rules Rj = (L,β, k), the following
conditions are satisfied:

(i) If Rj is a rule of type C → D, where C,D ∈ C,
then (Ai ∩ C) ' (β−1(Ai ∩ D) ∈ span(A), and
(β−1(Ai ∩D)' (Ai ∩ C)) ∈ span(A);

(ii) Else, if Rj is of type C1, ..., Cl → D1, ..., Dd, where
C1, .., Cl, D1, ..., Dd ∈ C, then

(a) For all i = 1, ..., l, if A ∩ Ci *= ∅, then
C1, ..., Ci−1, Ci∩A,Ci+1, ..., Cm ∈ span(A);

(b) For all i = 1, ..., d, if Ai ∩Di *= ∅, then
πj(β−1(D1 × ... × (Di ∩ Ai) × ... × Dm))
(where j = 1, ..., l), belongs to span(A).

Proof 1 (Sketch) We observe the production and the con-
sumption terms for an aggregate Ai with respect to a rule
Rj , ie ν̂([Ai], Rj), and ν̆([Ai], Rj). We can write them
as ν̂([Ai], Rj) =

∑
s∈Ai

ν̂([s], Rj) and ν̆([Ai], Rj) =∑
s∈Ai

ν̆(s,Rj). We develop these expressions by using
the Dfn.2, and we derive which are the aggregates that
are necessary to be included in span(A), by using the
operations of intersection and set difference over macro-
species.

We may now define the function φ : A×{R1, ..., RM} →
A , such that φ(Ai, Rj) is the set of macro-species A′

which is self-consistent on the aggregate Ai with respect
to the rule Rj . Moreover, we define a monotone operator
Φ : A → A , such that

Φ(A) = µA′.(span(A′) =

span(A) ∪
⋃

Ai∈A,1≤j≤M

φ(Ai, Rj)).

The result of application of Φ to the aggregation A is an
aggregation A′, which is a minimal aggregation that is
self-consistent for each of the aggregates in A. Finally,
the algorithm computes the least fixed point of Φ which
contains A0, ie

A = µA. (Φ(A) = A and A (A 0) .

We recall that the least-refined aggregation is not unique.
Which one the algorithm is going to output, depends on
the order in which the rules are enumerated in the rule-
set, and on the initial aggregation.



6.1. Complexity remark

We think of an implementation of rule-based models, which
uses some particular data structure for representing macro-
species and aggregates. We assume that each of the oper-
ations (1) − (6) takes a constant number of instructions.
The presented algorithm finds one least-refined aggrega-
tion, ie one of the minimal representations of the group
span(µA.Φ(A0)), with complexity O(Mg2(l̂+d̂)), where
M is the number of rules, g is the cardinality of the least-
refined aggregation, l̂ is the maximum number of macro-
species on the lhs of the rules in S̃ , and d̂ the maximal
number of macro-species on rhs of the rules in S̃ .

7. EXAMPLE

We illustrate a small case study, specified in a rule-based
syntax Kappa. We present the terminology, and how the
self-consistency condition propagates the refinement to the
current aggregation along the rules.

Example 1 (A variation of the birth-death process) Let us
consider a biochemical system S where we have agents A
and B. The interface of agent A contains two sites a and
b, and each of them has two possible internal states. The
interface of agent B has n sites a1,...,an, each of them
with two internal states. The internal states of both A and
B species alternate with rates k1+, k1− for A, and k2+,
k2− for B.

R1 : A(au)
k1+−⇀↽−
k1−

A(ap) R2 : A(bu)
k1+−⇀↽−
k1−

A(bp)

R3 : B(au1)
k2+−⇀↽−
k2−

B(ap1) · · · Rn+2 : B(aun)
k2+−⇀↽−
k2−

B(apn).

We set the initial condition to be nA0 copy numbers of
species A(au, bu) and nB0 copy numbers of the species
B(au1, ..., a

u
n). If we would translate the rules into reac-

tions, we would have in total 2 · (4 + n · 2n−1) reac-
tions instead of 2 · (n + 2) rules. The reachable set of
species S contains all the modifications of both of the
agents, and therefore we have the total number of reach-
able species to be |S| = 4+2n. Let us denote some of the
species: s1 = A(au, bu), s2 = A(au, bp), s3 = A(ap, bu),
s4 = A(ap, bp). The macro-species that are used in the
rule-based description are for example C1 = {s1, s2},
which is the lhs of rule R1, whose transformation function
is given by β((s1, s2)) = (s3, s4), and C2 = {s1, s3}, the
lhs of rule R2, with transformation β((s1, s3)) = (s2, s4).
We illustrate the dependency propagation for the aggre-
gation A0 = {{s1}, {s1, s2, s3, s4}}. We compute that
φ({s1}, R1) = {{s3}}, and φ({s1}, R2) = {{s2}}. Fur-
thermore, for φ({s2}, R1) = {{s4}}, but, since {s4} =
{s1, s2, s3, s4} ' {s1} ' {s2} ' {s3}, the least-refined
aggregation which will be output by the algorithm is A =
{{s1}, {s2}, {s3}, {s1, s2, s3, s4}}. On the other hand,
for the initial aggregation A0 = {{s1, s2}}, we get that
φ({s1, s2}, R1) = {{s3, s4}}, and φ({s1, s2}, Rj) = ∅,
for j = 2, ..., n + 2 (the rules are silent with respect to
the aggregate). Therefore, the algorithm will output the

aggregation A = {{s1, s2}, {s3, s4}}. Note that this ag-
gregation does not contain the agents of type B. Any re-
duction approach that does not consider the initial aggre-
gation will involve the analysis of the rules R3, ..., Rn+2.

Let us consider the case when the parameters are such
that k+1 = k+2 , k−1 = k−2 . Let A0 = {s1, s2} ∪ C3, where
C3 = {B(au1, au2, ..., aun), ..., B(au1, a

p
2, ..., a

p
n)}. The algo-

rithm outputs the solution A = {{s1, s2}∪C3, {s3, s4}∪
C ′

3}, where C ′
3 = {B(ap1, au2, ..., aun), ..., B(a

p
1, a

p
2, ..., a

p
n)}.

Moreover, note that in this case, the system could have
been described with a single rule in the set notations, where
L = {s1, s2, s3} ∪ C3. Since the current Kappa syntax
does not support aggregating agents of different types, nor
such a specification, nor the reduction are possible to ex-
press in Kappa. The more radical examples which illus-
trate the limitations of using a particular syntax for rep-
resenting aggregates can be formed when rules include
complexations, but we do not present them here due to
the limited space.

8. CONCLUSIONS

This paper is the theoretical characterization of maximal
reductions of ODE semantics of rule-based systems. The
implication of the work is that it gives theoretical grounds
to developing reductions of the ODE semantics in any
concrete implementation of rule-based models. Efficient
representation of the species in a graph structure, the ag-
gregates as partially defined species, and the subset re-
lation as the topological embedding relation between the
two raises plenty of questions to research. Moreover, since
we characterize the maximal reduction, it can indicate im-
provements in current implementations. Another exten-
sion is the analysis of reductions of stochastic semantics
in the same framework, and combining the two.

9. ACKNOWLEDGEMENTS

The authors would like to thank to Vincent Danos and
Jerome Feret, for the inspiration and many useful discus-
sions on the topic. Heinz Koeppl acknowledges the sup-
port from the Swiss National Science Foundation, grant
no. 200020-117975/1. Tatjana Petrov acknowledges the
support from the Swiss Initiative in Systems Biology.

10. REFERENCES

[1] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Pos-
ner, M. Hucka, and W. Fontana, “Rules for Modeling
Signal-Transduction Systems,” Science’s STKE, vol.
2006, no. 344, 2006.

[2] H. Conzelmann, D. Fey, and E. D. Gilles, “Exact
model reduction of combinatorial reaction,” BMC
Syst Biol, vol. 2, no. 78, pp. 342–351, 2008.

[3] J. Feret, V. Danos, J. Krivine, R. Harmer, and
W. Fontana, “Internal coarse-graining of molecular
systems,” Proceedings of the National Academy of
Sciences, vol. 106, no. 16, pp. 6453–6458, April 2009.

[4] B. Davey, Introduction to Lattices and Order, Uni-
versity of Oxford, 2002.


