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Vivek Tyagi Hervé Bourlard Christian Wellekens

September 2006

published in

Speech Communication, Vol. 48, No. 9,September 2006

Abstract. It is often acknowledged that speech signals contain short-term and long-term tempo-
ral properties [15] that are difficult to capture and model by using the usual fixed scale (typically
20ms) short time spectral analysis used in hidden Markov models (HMMs), based on piecewise
stationarity and state conditional independence assumptions of acoustic vectors. For example,
vowels are typically quasi-stationary over 40-80ms segments, while plosive typically require anal-
ysis below 20ms segments. Thus, fixed scale analysis is clearly sub-optimal for “optimal” time-
frequency resolution and modeling of different stationary phones found in the speech signal. In
the present paper, we investigate the potential advantages of using variable size analysis windows
towards improving state-of-the-art speech recognition systems. Based on the usual assumption
that the speech signal can be modeled by a time-varying autoregressive (AR) Gaussian process,
we estimate the largest piecewise quasi-stationary speech segments, based on the likelihood that
a segment was generated by the same AR process. This likelihood is estimated from the Lin-
ear Prediction (LP) residual error. Each of these quasi-stationary segments is then used as an
analysis window from which spectral features are extracted. Such an approach thus results in a
variable scale time spectral analysis, adaptively estimating the largest possible analysis window
size such that the signal remains quasi-stationary, thus the best temporal/frequency resolution
tradeoff. The speech recognition experiments on the OGI Numbers95 database[19], show that
the proposed variable-scale piecewise stationary spectral analysis based features indeed yield im-
proved recognition accuracy in clean conditions, compared to features based on minimum cross
entropy spectrum [1] as well as those based on fixed scale spectral analysis.
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1 Introduction

Most of the Automatic Speech Recognition (ASR) acoustic features, such as Mel-Frequency Cepstral
Coefficient (MFCC)[16] or Perceptual Linear Prediction (PLP)[17], are based on some sort of repre-
sentation of the smoothed spectral envelope, usually estimated over fixed analysis windows of typically
20ms to 30ms of the speech signal [16, 15]. Such analysis is based on the assumption that the speech
signal can be assumed to be quasi-stationary over these segment durations. Typically, the vowels
last for 40 to 400ms while the stops last for 3 to 250ms. However, the sustained-stationary segments
in a vowel can typically last from 30 to 80ms, while stops are time-limited by less than 20ms [15].
Therefore, it implies that the spectral analysis based on a fixed size window of 20ms or 30ms has some
limitations, including:

• The frequency resolution obtained for quasi-stationary segments (QSS) longer than 20 or 30ms
is quite low compared to what could be obtained using larger analysis windows. Although, most
of the frequency resolution is lost due to averaging by 24 Mel filters. However, power spectrum
estimation (DFT) over quasi-stationary segments will still lead to low-variance Mel-filter bank
energies as compared to those obtained with a fixed scale spectral analysis that does not take
quasi-stationarity into account.

• In certain cases, the analysis window can span the transition between two QSSs, thus blurring the
spectral properties of the QSSs, as well as of the transitions. Indeed, in theory, Power Spectral
Density (PSD) cannot even be defined for such non stationary segments [9]. Furthermore, on a
more practical note, the feature vectors extracted from such transition segments do not belong
to a single unique (stationary) class and may lead to poor discrimination in a pattern recognition
problem.

In this work, we make the usual assumption that the piecewise quasi-stationary segments (QSS)
of the speech signal can be modeled by a Gaussian AR process of a fixed order p as in [2, 4, 10,
11]. We then formulate the problem of detecting QSSs as a Maximum Likelihood (ML) detection
problem, defining a QSSs as the longest segment that has most probably been generated by the same
AR process.1 As is well known, given a pth order AR Gaussian QSS, the Minimum Mean Square
Error (MMSE) linear prediction (LP) filter parameters [a(1), a(2), ... a(p)] are the most “compact”
representation of that QSS amongst all the pth order all pole filters [9]. In other words, the normalized
“coding error”2 is minimum amongst all the pth order LP filters. When erroneously analyzing two
distinct pth order AR Gaussian QSSs in the same non-stationary analysis window, it can be shown that
the “coding error” will then always be greater than the ones resulting of QSSs analyzed individually
in stationary windows[14]. This is intuitively satisfying since, in the former case, we are trying to
encode ′2p′ free parameters (the LP filter coefficients of each of the QSS) using only p parameters
(as the two distinct QSS are now analyzed within the same window). Therefore, higher coding error
is expected in the former case as compared to the optimal case when each QSS is analyzed in a
stationary window. As further explained in the next sections, this forms the basis of our criteria
to detect piecewise quasi-stationary segments. Once the “start” and the “end” points of a QSS are
known, all the speech samples coming from this QSS are analyzed within that window, resulting in
(variable-scale) acoustic vectors.

Working under the similar framework, Brandt [10] had proposed a maximum likelihood algorithm
for speech segmentation. However, there are certain subtle theoretical as well practical differences
in the proposed approach and the Brandt’s algorithm which are described in Section 3. Brandt’s
approach was again followed in [11], where the authors proposed several speech segmentation algo-
rithms. However, none of these papers[10, 11] attempted to perform stationary spectral analysis as
has been done in this paper. Using a parametric model that the speech signal is generated by a
time-varying auto-regressive process, we have shown the relationship between ML segmentation and

1Equivalent to the detection of the transition point between the two adjoining QSSs.
2The power of the residual signal normalized by the number of samples in the window
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piece-wise stationary spectral analysis in Section 4. Although, there has been plenty of research on
speech signal segmentation (including speaker change detection), quite limited work has been done to
interlink signal segmentation and quasi-stationary spectral analysis as has been done in this work.

In [11], the author has illustrated certain speech waveforms with segmentation boundaries overlaid.
The validity of their algorithm is shown by a segmentation experiment, which on an average, segments
phonemes into 2.2 segments. This result is quite useful as a pre-processor for the manual transcription
of speech signals. However, the author in [11] did not discuss or extend the ML segmentation algorithm
as a variable-scale quasi-stationary spectral analysis technique suitable for ASR, as done in the present
work.

In [3], Atal has described a temporal decomposition technique, with applications in speech coding,
to represent the continuous variation of the LPC parameters as a linearly weighted sum of a number of
discrete elementary components. These elementary components are designed such that they have the
minimum temporal spread (highly localized in time) resulting in superior coding efficiency. However,
the relationship between the optimization criterion of “the minimum temporal spread” and the quasi-
stationarity is not obvious. Therefore, the discrete elementary components are not necessarily quasi-
stationary and vice-versa.

Coifman et al [6] have described a minimum entropy basis selection algorithm to achieve the
minimum information cost of a signal relative to the designed orthonormal basis. In [8], Srinivasan
et. al. have proposed a multi-scale QSS technique for noisy speech enhancement which is based on
Coifman’s technique [6]. In [4], Svendsen et al have proposed a ML segmentation algorithm using a
single fixed window size for speech analysis, followed by a clustering of the frames which were spectrally
similar for sub-word unit design. We emphasize here that this is different from the approach proposed
here where we use variable size windows to achieve the objective of piecewise quasi-stationary spectral
analysis. More recently, Achan et al [13] have proposed a segmental HMM for speech waveforms which
identifies waveform samples at the boundaries between glottal pulse periods with applications in pitch
estimation and time-scale modifications.

Our emphasis in this paper is on better spectral modeling of the speech signal rather than achieving
better coding efficiency or reduced information cost. Nevertheless, we believe that these two objectives
are somewhat fundamentally related. The main contribution of the present paper is to demonstrate
that the variable-scale QSS spectral analysis technique can possibly improve the ASR performance
as compared to the fixed scale spectrum analysis. Moreover, we show the relationship between the
maximum likelihood QSS detection algorithm and the well known spectral matching property of the
LP error measure [5]. Finally, we do a comparative study of the proposed variable-scale spectrum based
features and the minimum cross-entropy time-frequency distributions developed by Loughlin et al [1].

In the sequel of this paper, Section 2 formulates the ML detection problem for identifying the
transition points between QSS. Section 3 compares the proposed approach with Brandt’s[10] approach.
In Section 4, we illustrate an analogy of the proposed technique with spectral matching property of
the LP error measure. Finally, the experimental setup and results are described in Section 5.

2 ML Detection of the change-point in an AR Gaussian ran-

dom process

Consider an instance of a pth order AR Gaussian process, x[n], n ∈ [1, N ] whose generative LP filter pa-
rameters can either be A0 = [1, a0(1), a0(2)....a0(p)] or can change from A1 = [1, a1(1), a1(2)....a1(p)]
to A2 = [1, a2(1), a2(2)....a2(p)] at time n1 where n1 ∈ [1, N ]. As usual, the excitation signal is as-
sumed to be drawn from a white Gaussian process and its power can change from σ = σ1 to σ = σ2.
The general form of the Power Spectral Density (PSD) of this signal is then known to be

Pxx(f) =
σ2

|1 −
∑p

i=1 a(i) exp(−j2πif) |2
(1)

where a(i)s are the LPC parameters. The hypothesis test consists of:



4 IDIAP–RR 05-09

• H0: No change in the PSD of the signal x(n) over all n ∈ [1, N ], LP filter parameters are A0

and the excitation (residual) signal power is σ0.

• H1: Change in the PSD of the signal x(n) at n1, where n1 ∈ [1, N ], LP filter parameters change
from A1 to A2 and the excitation(residual) signal power changes from σ1 to σ2.

Let, Â0 denote the maximum likelihood estimate (MLE) of the LP filter parameters and σ̂0 denote the
MLE of the residual signal power under the hypothesis H0. The MLE estimate of the filter parameters
is equal to their MMSE estimate due to the Gaussian distribution assumption [2] and, hence, can be
computed using the Levinson Durbin algorithm [9] without significant computational cost.

Let x1 denote [x(1), x(2), ...x(n1)] and x2 denote [x(n1 + 1), ...x(N)]. Under hypothesis H1, (Â1,

σ̂1) are the MLE of (A1, σ1) estimated on x1, and (Â2, σ̂2) are the MLE of (A2, σ2) estimated on
x2, where x1 and x2 have been assumed to be independent of each other. A Generalized Likelihood
Ratio Test (GLRT) [14] would then pick hypothesis H1 if

log L(x) = log(
p(x1|Â1, σ̂1)p(x2|Â2, σ̂2)

p(x|Â0, σ̂0)
) > γ (2)

where γ is a decision threshold that will have to be tuned on some development set. Given that the
total number of samples in x1 and x2 is the same as in x0, their likelihoods can be compared directly
in (2). Under the hypothesis H0 the entire segment x = [x(1)...x(N)] is considered stationary and the

MLE Â0 is computed via the Levinson-Durbin algorithm using all the samples in segment x. It can
be shown that the MLE σ̂0 is the power of the residual signal [2, 14]. Under H1, we assume that there

are two distinct QSS, namely x1 and x2. The MLE Â1 and Â2 are computed via the Levinson-Durbin
algorithm using samples from their corresponding QSS. MLE σ̂1 and σ̂2 are computed as the power
of the corresponding residual signals. In fact, p(x|Â0, σ̂0) is equal to the probability of residual signal

obtained using the filter parameters Â0, yielding:

p(x|Â0, σ̂0) =
1

(2πσ̂2
0)N/2

exp

[

−1

2σ̂2
0

N
∑

n=1

(e2
0(n))

]

(3)

where e0(n) is the residual error and

e0(n) = x(n) −

p
∑

i=1

a0(i)x(n − i), n ∈ [1, N ]

and

σ̂2
0 =

1

N

N
∑

n=1

e2
0(n)

Similarly, p(x1|Â1, σ̂1) and p(x2|Â2, σ̂2) are the likelihoods of the residual signal vectors of the AR
models A1 and A2, respectively, and have the same functional forms as above. Substituting these
expressions into (2) yields

log L(x) =
1

2
log

[

σ̂N
0

σ̂n1

1 σ̂
(N−n1)
2

]

(4)

In the present form, the GLRT log L(x) has now a natural interpretation. Indeed, if there is a
transition point in the segment x then it has, in effect, 2p degrees of freedom. Under hypothesis H0,
we encode x using only p degrees of freedom (LP parameters Â0) and, therefore, the coding (residual)
error σ̂2

0 will be high. However, under hypothesis H1, we use 2p degrees of freedom (LP parameters

Â1 and Â2) to encode x. Therefore, the coding (residual) errors σ̂2
1 and σ̂2

2 can be minimized to
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reach the lowest possible value.3 This will result in L(x) > 1. On the other hand, if there is no AR
switching point in the segment x then it can be shown that, for large n1 and N , the coding errors are
all equal (σ̂2

0 = σ̂2
1 = σ̂2

2). This will result in L(x) ≃ 1.
An interesting and useful property of the GLRT in (4) is that it is invariant to any multplicative

scale factor of signal x. For example let us consider a scaled segment y = c×x, where c is a constant.
As the LP filter and the inverse LP filter are both linear filters, a scaled input signal will result in an
output signal with the same multiplicative scale factor. Therefore, the residual signals obtained after
analyzing y will be e

y
0(n) = c× e0(n), e

y
1(n) = c× e1(n), e

y
2(n) = c× e2(n) ∀n ∈ [1, N ]. Therefore the

GLRT in (4) will become,

log L(y) =
1

2
log

[

cN σ̂N
0

cn1 σ̂n1

1 cN−n1 σ̂
(N−n1)
2

]

(5)

= log L(x)

This ensures that even if the speech signal might have varying power levels (different scale factors)
GLRT in (5) can still be compared to a fixed threshold γ. However, if there are abrupt energy changes
within a segment, then the GLRT will most likely classify them as different QSSs.

100 200 300 400 500 600 700 800 900 1000 1100

−1500

−1000

−500

0

500

1000

1500

discrete time sampled at 8Khz

100 200 300 400 500 600 700 800 900 1000 1100
−4

−2

0

2

4

Plot of GLRT

discrete time sampled at 8Khz

Figure 1: Typical plot of the Generalized log likelihood ratio test (GLRT) for a voiced speech segment.
The sharp downward spikes in the GLRT are due to the presence of a glottal pulse at the beginning of
the right analysis window (x2). The GLRT peaks around the sample 500 which marks as a strong AR
model switching point

An example is illustrated in Fig. 1. The top pane shows a segment of a voiced speech signal. In the
bottom figure, we plot the GLRT as the function of the hypothesized change over point n. Whenever,
the right window i.e the segment x2 spans the glottal pulse in the beginning of the window, the GLRT
exhibits strong downward spikes (negative values of the GLRT), which is due to the fact that the LP
filter cannot predict large samples occurring in the beginning of the window. However, these negative
spikes of the GLRT do not affect our decision as we are comparing GLRT to a large positive threshold

3When Â
1

and Â
2

are estimated, strictly based on the samples from the corresponding quasi-stationary segments.
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Figure 2: Typical plot of the Generalized log likelihood ratio test (GLRT) for an unvoiced speech
segment that consists of two piece-wise quasi-stationary segments (PQSS). The GLRT peaks around
the sample 200 which is indeed an AR model switching point.

(typically 3.5). Therefore, in a way, we are comparing only the positive envelope of the GLRT to a
pre-selected positive threshold. Consequently, the sharp negative spikes in GLRT caused due to the
occurrence of a glottal pulse in right window i.e x2 will bring down the GLRT value, thus preventing
the GLRT from exceeding a positive threshold. This has a desirable effect that as long as the pitch
periods are nearly similar(stationary voiced segment), they will never be segmented into different
QSSs. Instead, they will be glued together to form one QSS. The minimum sizes of the left and the
right windows are 160 and 100 samples respectively and the reasons for this choice are explained in
Section 5. This also explains the zero value of the GLRT at the beginning and the end of the whole
test segment. The GLRT peaks around sample 500 which marks a strong AR model switching point.
In Fig. 2, we plot the GLRT of an unvoiced speech segment that consists of two QSSs. As can be
seen from the Fig. 2, in the case of the unvoiced speech, the GLRT has a rather smooth envelope due
to the absence of the glottal pulses. The GLRT peaks around sample 200 that marks an AR model
switching point. The algorithm presented in this paper does not make any distinction between voiced
and unvoiced speech segments. GLRT of all the segments in an utterance are compared to a fixed
threshold that has been tuned on a development set. This results in a sequence of speech segments
that are usually of variable lengths. We note that the segments returned by the algorithm are quasi-
stationary only in a probabilistic sense that the event that two adjacent segments are instances of
the same stationary process is e−Threshold times as likely as the event that they are instances of two
different stationary processes. Therefore the choice of the threshold decides the trade-off between
false acceptance and false rejection of QSSs. However, as we are primarily interested in improved
recognition accuracies, we have tuned the threshold on a development set based on the recognition
accuracies.

3 Comparison with Brandt’s algorithm

The GLRTs in both Brandt’s approach and the proposed approach are the same as in (4). This
is not surprising as in both the approaches GLRT is a maximum likelihood solution under the as-
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sumption that the speech signal is a realization of a Gaussian AR process where the AR parame-
ters can change over time. However, the differences lie in the methods employed to estimate the
residual powers σ0, σ1, σ2. In our approach, the AR parameters A0,A1,A2 and the residual powers
σ0, σ1, σ2. are estimated by solving the least squares equations [9] over their corresponding segments,
x0,x1,x2 respectively. To solve these least squares equations, we use the so-called autocorrelation
method [9](page:486) that leads to an autocorrelation matrix that is Toeplitz. Toeplitz matrices
can be inverted quite efficiently using the Levinson Durbin algorithm[9](pages:254). Therefore the
computational overload of our approach is quite low.

Whereas, Brandt used the so-called covariance method [9](page:486) to solve for the AR pa-
rameters and the residual powers, σ0, σ1, σ2.. This method leads to an autocorrelation matrix that
is non-Toeplitz, thus excluding the use of fast Levinson-Durbin algorithm. Brandt has used the
lattice-filters[9](pages:280) to estimate the AR parameters and the residual powers. Lattice filters
are also quite efficient as compared to the Gram-Schmidt orthogonalization, but less so as compared
to Levinson-Durbin algorithm. Therefore, the proposed approach is faster than Brandt’s approach.
Use of the autocorrelation method [9] guarantees a minimum phase all-pole filter[9]. However, the
covariance method [9] does not necessarily lead to a minimum phase all-pole filter. Therefore, the
proposed approach ensures a stable all-pole filter as opposed to Brandt’s approach.

In Brandt’s algorithm, the left window i.e x1 uses a growing memory covariance ladder algorithm
and the right window x2 uses a sliding memory covariance ladder algorithm. Initialization of the
growing memory covariance ladder algorithm requires certain intermediate quantities that are provided
by the sliding memory covariance ladder algorithm which operates on x2. Hence, the AR parameters
A1 and the residual power σ1 are indirectly influenced by the samples in the right window x2. To
compensate for this, Brandt’s algorithm uses a second search called “jump time optimization process”
to estimate the stationarity change-over point.

Whereas, in our approach the AR parameters A1,A2 and the residuals σ1, σ2 are estimated using
samples strictly from their corresponding segments i.e. x1,x2 respectively. Therefore, in the proposed
approach there is just one step stationarity change point detection. Whenever the GLRT in (4) exceeds
the threshold γ, a stationarity change point is recorded. This is in contrast to Brandt’s method where
this step is followed by a “jump time optimization process” which, finally estimates the stationarity
change point.

4 Relation of GLRT to Spectral Matching

In the section will show the relationship between the maximum likelihood segmentation and the
spectral matching which is one of the main contributions of this paper. As is well known the LP error
measure possesses the spectral matching property [5]. Specifically, given a speech segment x, let its
power spectrum (periodogram) be denoted by X(ejω). Let the all pole model spectrum of the segment

x be denoted as X̂0(e
jω). Then it can be shown that the MMSE error σ2

0 of the LP filter estimated
over the entire segment x is given by [5].

σ2
0 =

∫ π

−π

X(ejω)

X̂0(ejω)
dω where, (6)

X̂0(e
jω) =

1

|1 −
∑p

i=1 a0(i) exp(−j2πif) |2
(7)

Therefore minimizing the residual error σ2
0 is equivalent to the minimization of the integrated ratio of

the signal power spectrum X(ejω) to its approximation X̂0(e
jω) [5]. Substituting (6) in (4) we obtain,
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log L(x) =
1

2
log

(

∫ π

−π
X(ejω)

X̂0(ejω)
dω

)N

(

∫ π

−π
X1(ejω)

X̂1(ejω)
dω

)n1
(

∫ π

−π
X2(ejω)

X̂2(ejω)
dω

)N−n1

(8)

where, X(ejω), X1(e
jω) and X2(e

jω) are the power spectra of the segments x, x1 and x2 respectively.

Similarly X̂0(e
jω), X̂1(e

jω) and X̂2(e
jω) are the MMSE pth order all-pole model spectra estimated

over the segments x, x1 and x2 respectively. Therefore, X̂0(e
jω), X̂1(e

jω) and X̂2(e
jω) are the best

LP spectral matches to their corresponding power spectra. One way of interpreting (8) is that it is
a measure of the relative goodness between the best LP spectral match achieved by modeling x as a
single QSS and the best LP spectral matches obtained by assuming x to consist of two distinct QSS,
namely x1 and x2. This is further explained as follows. If x1 and x2 are indeed two distinct QSS,
then X1(e

jω) and X2(e
jω) will be quite different and X(ejω) will be a gross average of these two

spectra. In other words, the frequency support of X(ejω) will be a union of those of the X1(e
jω) and

X2(e
jω). X̂1(e

jω) and X̂2(e
jω), having p poles each, will match their corresponding power spectra

reasonably well, resulting in a lower value of the denominator in (8). However, X̂0(e
jω) will be a

relatively poorer spectral match to X(ejω) as it has only p poles to account for the wider frequency
support. Therefore we incur a higher spectral mismatch by assuming x to be a single QSS when in
fact it is composed of two distinct QSS x1 and x2. This results in the GLRT log L(x) taking up a
high value. Whereas if x1 and x2 are the instances of the same quasi-stationary process, then so is x.
Therefore X1(e

jω), X2(e
jω) and X(ejω) are nearly the same with similar all-pole models, resulting in

a value of the GLRT close to zero. The above discussion points to the fact that the QSS analysis based
on the proposed GLRT is constantly striving to achieve a better time varying spectral modeling of the
underlying signal as compared to single fixed scale spectral analysis. However, the above discussion
is true only if the speech signal can be assumed to have been generated from a Gaussian AR process
of a fixed order p, where the AR parameters can change over time. This limitation arises from the
fact that one needs to assume a signal generative model based on which one can develop a criterion
of stationarity.
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Figure 3: Quasi stationary segments (QSS) of a speech signal as detected by the algorithm with
γ = 3.5 and LP order p = 14.

5 Experiments and Results

We have used the GLRT L(x) in (4) to perform QSS spectral analysis of speech signals for ASR
applications. We initialize the algorithm with a left window size W L = 20ms and a right window size
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W R = 12.5ms. We compute their corresponding MMSE residuals and the MMSE residual of the union
of the two windows using the Levinson-Durbin algorithm. Then, the GLRT is computed using (4) and
is compared to the threshold. The choice of the threshold γ = 3.5 was decided on the basis of ASR
results on a development set. In figure (3), we illustrate the boundaries of the QSS as detected by the
algorithm with γ = 3.5. In general, the ASR results are slightly sensitive to the threshold, although
not in a huge way. If the GLRT is greater than the threshold γ, W L is considered the largest possible
QSS and we obtain a spectral estimate using all the samples in W L. Otherwise,W L is incremented
by INCR=1.25ms and the whole process is repeated until GLRT exceeds γ or W L becomes equal to
the maximum window size WMAX=60ms. The computation of a MFCC feature vector from a very
small segment (such as 10ms) is inherently very noisy.4 Therefore, the minimum duration of a QSS
as detected by the algorithm was constrained to be 20ms. Ideally the right window size W R should
be as small as possible so that we can instantaneously detect a stationarity change point. However, a
reliable estimate of the AR parameters and the corresponding residual signal requires sufficiently large
number of samples in the analysis window. Therefore as a compromise between these two opposing
factors, we have chosen the W R = 12.5ms. Throughout the experiments, a fixed LP order p = 14 was
used.

The likelihood ratio test is quite widely used for speaker segmentation [12] where the average length
of a single speaker segment may last from 1sec to several seconds. This provides a relatively large
amount of samples to estimate the parameters of the probability density functions as compared to the
present problem where we have to first estimate the generative AR parameters and the corresponding
residuals to detect stationarity change over point within 20ms to 60ms. Moreover, in speaker change
detection one can use the apriori-information that a speaker will at least speak for a second or so.
Therefore most of the time it can be safely assumed that there will not be more than two speakers
within one second long speech segment. Hence, a local maxima of the GLRT within a time-span of
one second can be used as a speaker-change point. This approach has been successfully used in [12].
However, in our case the QSSs can have much more variable durations ranging from 3ms to 80ms5.
Therefore, there is no minimum duration in which we can assume that only two QSSs will be present,
thus excluding the use of local maxima of the GLRT as an estimate of the stationarity change-over
point.

Before proceeding further, however, we feel necessary to briefly discuss certain inconsistencies
between variable-scale spectral analysis and state-of-the-art Hidden Markov models ASR using Gaus-
sian mixture models (HMM-GMM). HMM-GMM systems typically use spectral features based on a
constant window size (typically 20ms) and a constant shift size (typically 10ms). The shift size deter-
mines the Nyquist frequency of the cepstral modulation spectrum [7], which is typically measured by
the delta features of the static MFCC or PLP features. In a variable-scale piecewise quasi-stationary
analysis, the shift size should preferably be equal to the size of the detected QSS. Otherwise, if the
shift size is x% of the duration of the QSS, then the next detected QSS will be the same but of
duration (100 − x)% and the following one will be of duration (100 − 2x)% and so on until we have
shifted past the entire duration of the QSS. This results in the undesirable effect that the same QSS
gets analyzed by successively smaller windows, hence increasing the variance of the feature vector of
this QSS. On the other hand, the use of a shift size equal to the variable window size will change
the Nyquist frequency of the cepstral modulation spectrum [7]. Therefore, the modulation frequency
pass-band of the delta filters [7] will vary from frame to frame and may suffer from aliasing for shift
sizes in excess of 20ms.

To avoid fluctuating Nyquist frequency of the cepstral modulation spectrum[7], a fixed shift size
of 12.5ms was used in the algorithm. As explained above, this sometimes resulted in the undesirable
effect that the same QSS gets analyzed by progressively smaller windows. To alleviate this problem,
the zeroth cepstral coefficient c(0), which is a non-linear function of the windowed signal energy and,

4Due to very few DFT samples falling under the the Mel-filter bins resulting in high variance of the mel-filter bank
energies

5However, as we require sufficiently large number of samples to reasonably estimate the AR parameters and the
residuals to compute the GLRT, the proposed algorithm can only detect QSSs larger than and equal to 20ms
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hence, of the window size, was normalized such that its dependence on the window size is minimized.
In order to assess the effectiveness of the proposed algorithm, speech recognition experiments were

conducted on the OGI Numbers corpus [19]. This database contains spontaneously spoken free-format
connected numbers over a telephone channel. The lexicon consists of 31 words. Figure (4) illustrates
the distribution of the QSSs as detected by the proposed algorithm. Nearly 47% segments were
analyzed with the smallest window size of 20ms and they mostly corresponded to short-time limited
segments. However, voiced segments and long silences were mostly analyzed by using longer windows
in the range 30ms − 60ms. The short peak at 60ms is due to the accumulated value over all the
segments that should have been longer than 60ms but were constrained by our choice of the largest
window size.
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Figure 4: Distribution of the QSS window sizes detected and then used in the training set

Throughout the experiments, MFCC coefficients and their temporal derivatives were used as speech
features. However, five feature sets were compared. In [1], Loughlin et al proposed using a geometric
mean of multiple spectrograms of different window sizes to overcome the time-frequency limitation
of any single spectrogram. They showed that combining the information content from multiple spec-
trograms in form of their geometric mean, is optimal for minimizing the cross entropy between the
multiple spectra. We have followed their approach to derive MFCC features (noted as Minimum
cross-entropy MFCC) from the geometric mean of the multiple power spectra computed over varying
window sizes, specifically 20ms, 30ms, 40ms and 50ms.

1. [39 dim. MFCC:] computed over a fixed window of length 20ms.

2. [39 dim. MFCC:] computed over a fixed window of length 50ms.

3. [78 dim. Concatenated MFCC:] a concatenation of the above two feature vectors.

4. [Minimum cross entropy,39 dim MFCC:] MFCC computed from the geometric mean of the power
spectra computed from 20ms, 30ms, 40ms and 50ms long windows.

5. [Variable-scale QSS MFCC+Deltas:] For a given frame, the window size is dynamically chosen
using the proposed algorithm ensuring that the windowed segment is quasi-stationary.

Hidden Markov Model and Gaussian Mixture Model (HMM-GMM) based speech recognition sys-
tems were trained using public domain software HTK [18] on the clean training set from the original
Numbers corpus. The speech recognition results in clean conditions for various spectral analysis
techniques are given in table 1. The fixed scale MFCC features using 20ms and 50ms long analy-
sis windows have 5.8% and 5.9% word error rate (WER) respectively. The concatenation of MFCC
feature vectors derived from 20ms and 50ms long windows has a 5.7% WER and it has twice the
number of HMM-GMM parameters as compared to the rest of the systems6. The slight improvement
in this case may be due to the multiple scale information present in this feature, albeit in an ad-hoc

6Due to twice the feature dimension as compared to the rest of the systems
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way. The minimum cross-entropy MFCC features which were derived from the geometric mean of the
power spectra computed over 20ms, 30ms, 40ms and 50ms long analysis windows, have a WER of
5.7%. The proposed variable-scale system which adaptively chooses a window size in the range [20ms,
60ms], followed by the usual MFCC computation, has a 5.0% WER. This corresponds to a relative
improvement of nearly 10% over the rest of the techniques

Table 1: Word error rate in clean conditions

MFCC 20ms 5.8
MFCC 50ms 5.9
Concat. MFCC (20ms, 50ms) 5.7
Min. Cross entropy based MFCC 5.7
Proposed Variable-scale QSS MFCC 5.0

6 Conclusion

We have demonstrated that the variable-scale piecewise quasi-stationary spectral analysis of speech
signal can possibly improve the state-of-the-art ASR. Such a technique can partially overcome the
time-frequency resolution limitations of the fixed scale spectral analysis techniques. However, it can
be argued that most of the frequency resolution is anyway lost due to Mel-filter binning of the DFT
samples. Nevertheless, a spectrum(DFT) estimated over a quasi-stationary segment will help to reduce
the variance of the estimated Mel-filter bank energies and consequently those of the MFCC feature
vectors. However, as we need certain minimum number of samples to estimate the AR parameters
and the residuals, our algorithm cannot detect QSSs below 20ms. Comparisons were drawn with the
other competing multi-scale techniques such as the minimum cross-entropy spectrum. The proposed
technique led to the minimum WER as compared to the rest of the techniques. Although, the per-
formance gains are modest, we believe that further work on variable scale quasi-stationary analysis
can overcome the limitations of a fixed scale spectral analysis of speech signal leading to better ASR
performances.
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