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Abstract. Automatic speech recognition (ASR) systems, trained on speech signals from close-
talking microphones, generally fail in recognizing far-field speech. In this paper, we present a
Hilbert Envelope based feature extraction technique to alleviate the artifacts introduced by room
reverberations. The proposed technique is based on modeling temporal envelopes of the speech
signal in narrow sub-bands using Frequency Domain Linear Prediction (FDLP). ASR experiments
on far-field speech using the proposed FDLP features show significant performance improvements
when compared to other robust feature extraction techniques (average relative improvement of
43% in word error rate).
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1 Introduction

When speech is recorded in rooms using far-field microphones, the speech signal that reaches the
microphone is superimposed with multiple reflected versions of the original speech signal. These
superpositions can be modeled by the convolution of the room impulse response, that accounts for
individual reflection delays, with the original speech signal, i.e.,

r(t) = s(t) ∗ h(t), (1)

where s(t), h(t) and r(t) denote the original speech signal, the room impulse response and the rever-
berant speech respectively. The effect of reverberation on the short-time Fourier transform (STFT)
of the speech signal s(t) can be represented as

R(t, ωk) = S(t, ωk)H(t, ωk), (2)

where S(t, ωk) and R(t, ωk) are the STFT’s of the clean speech signal s(t) and reverberant speech
r(t) respectively and H(t, ωk) denotes the STFT of the room impulse response h(t). For long analysis
windows, this effect of reverberation can be approximated as multiplicative in the frequency domain
[1], i.e., H(t, ωk) is not a function of time and Eq. (2) becomes

R(t, ωk) ≃ S(t, ωk)H(ωk). (3)

In the techniques reported in [2, 3], the effect of reverberation is compensated by subtracting from
log

(

R(t, ωk)
)

, its mean.

In this paper, we propose a technique that uses gain normalized temporal trajectories of sub-
band energies to compensate for the room reverberation artifacts. Hilbert envelopes of sub-band
signals are estimated by applying linear prediction in the frequency domain [4] (Sec. 2). Unlike
conventional approaches that use mean compensation for reverberant speech recognition [2, 3], the
proposed technique alleviates the reverberation artifacts present in long temporal envelopes of narrow
frequency sub-bands(Sec. 3). The application of the proposed compensation technique to the FDLP
features significantly improves the recognition accuracies for reverberant speech recorded using far-field
microphones (Sec. 4).

2 Frequency Domain Linear Prediction

Typically, Auto-Regressive (AR) models have been used in speech/audio applications for representing
the envelope of the power spectrum of the signal (Time Domain Linear Prediction (TDLP) [5]). This
paper utilizes AR models for obtaining smoothed, minimum phase, parametric models for temporal
rather than spectral envelopes (Fig. 1). Since we apply the LP technique to exploit the redundancies
in the frequency domain, this approach is called Frequency Domain Linear Prediction (FDLP) [4],
[6]. For the FDLP technique, the squared magnitude response of the all-pole filter approximates the
Hilbert envelope of the signal (in a manner similar to the approximation of the power spectrum of the
signal using TDLP [5]).

When speech is analyzed in narrow sub-bands using such long analysis windows, each sub-band
signal can be modeled in terms of the product of a slowly varying, positive, envelope function and an
instantaneous phase function [7]. In the case of far-field speech, each of these sub-band signals gets
modified by the room impulse response and can be approximated as the convolution of the Hilbert
envelope of the clean speech signal in that sub-band with that of the room impulse function [7].
Since the Hilbert envelope and the spectral autocorrelation function form Fourier transform pairs [4],
normalizing the gain of the sub-band FDLP envelopes suppresses the multiplicative effect present in
the spectral autocorrelation function of the reverberant speech.
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Figure 1: Linear Prediction in time and frequency domains for a portion of speech signal
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Figure 2: FDLP feature extraction for ASR

3 Features based on Frequency Domain Linear Prediction

For the purpose of feature extraction, segments of the input speech signal (of the order of 1000 ms)
are decomposed into sub-bands, where FDLP is applied to obtain a parametric model of the temporal
envelope. The whole set of sub-band temporal envelopes forms a two dimensional (time-frequency)
representation of the input signal energy. Each of these temporal envelopes is gain normalized to sup-
press the reverberation artifacts. This two-dimensional representation is convolved with a rectangular
window of duration 25 ms and resampled at a rate of 100 Hz (10 ms intervals, similar to the estima-
tion of short term power spectrum in conventional feature extraction techniques). These sub-sampled
short-term spectral energies are converted to short-term cepstral features similar to the PLP feature
extraction technique [8]. In our experiments, we use 39 dimensional cepstral features containing 13
cepstral coefficients along with the delta and double-delta features. The block schematic for the FDLP
feature extraction technique is shown in Fig. 2.
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4 Experiments and Results

We apply the proposed features and techniques to a connected word recognition task on a digits corpus
using the Aurora evaluation system [9] along with the “complex” version of the back end proposed
in [10]. We train models using a training dataset used in [3] which contains of 8400 clean speech
utterances, consisting of 4200 male and 4200 female utterances downsampled to 8 kHz. In order to
study the effect of finer spectral resolution for the proposed compensation technique, we first perform
experiments using a test set of 3003 clean utterances also used in [3]. We also create a test set for
artificially reverberated speech by convolving the clean test set with a room impulse response (with
RT60 of 0.5 seconds and a direct-to-reverberant energy ratio of 0 dB [12]).

The first set of experiments compare the performance of FDLP based features with the conventional
features for clean and artificially reverberated speech. We also study the effect of finer spectral
resolution for the proposed compensation technique by increasing the number of frequency sub-bands.
Table 1 shows the word accuracies for PLP features (PLP) and FDLP features when the number of
sub-bands is varied from 24 (FDLP-24) to 120 (FDLP-120). This is accomplished by increasing the
duration of the temporal analysis (from 1000 ms to 2400 ms) for a constant width and overlap of the
DCT windows. For all these experiments we employ gain normalized temporal envelopes along with
rectangular windows in the DCT domain.

Table 1: Word Accuracies (%) for PLP and FDLP features for clean and reverberant speech
Feature Set Clean Speech Revb. Speech

PLP 99.68 80.12
FDLP-24 99.18 89.49
FDLP-33 99.13 91.86
FDLP-67 99.09 92.93
FDLP-76 99.16 93.60
FDLP-96 99.07 94.79
FDLP-108 99.03 94.63
FDLP-120 98.91 94.55

Table 2: Word Accuracies (%) using different feature extraction techniques on far-field microphone
speech

Channel PLP CMS LDMN LTLSS FDLP

Channel E 68.1 71.2 73.2 74.0 85.2
Channel F 75.5 77.4 80.4 81.0 88.1
Channel 6 74.1 78.3 80.9 81.1 89.6
Channel 7 58.6 67.6 70.5 71.0 84.9

The next set of experiments are performed on the digits corpus recorded using far-field microphones
as part of the ICSI Meeting task [11]. The corpus consists of four sets of 2790 utterances each. Each
of these sets correspond to speech recorded simultaneously using four different far-field microphones
[11]. Each of these sets contain 9169 digits similar to those found in TIDIGITS corpus. The number
of sub-bands for the FDLP features is fixed at 96 along with a temporal analysis window of duration
2000 ms. We use the HMM models trained with the clean speech from earlier experiments. The results
for the proposed FDLP technique are compared with those obtained for several other robust feature
extraction techniques proposed for reverberant ASR namely Cepstral Mean Subtraction (CMS) [13],
Long Term Log Spectral Subtraction (LTLSS) [3] and Log-DFT Mean Normalization (LDMN) [2]. In
our LTLSS experiments, we calculated the means independently for each individual utterance (which
differs from the approach of grouping multiple utterances for the same speaker described in [3]) using
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a shorter analysis window of 32 ms, with a shift of 8 ms. Table 2 shows the word accuracies for the
different feature extraction techniques using the far-field test data, where we obtain a relative error
improvement of about 43% over the best other feature extraction technique.

5 Conclusions

Unlike many single microphone based far-field speech recognition approaches, the proposed technique
does not normalize speech signals using long term mean subtraction in spectral domain. We show
that the effect of reverberation is reduced when features are extracted from gain normalized tem-
poral envelopes of long duration in narrow sub-bands. FDLP provides an efficient way to suppress
the reverberation artifacts and hence, FDLP features extracted in reverberant environments provide
significant improvements over other robust feature extraction techniques.
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