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soumis à publication

Résumé. We propose a technique for generating alternative models for keywords in a hybrid
hidden Markov model - artificial neural network (HMM-ANN) keyword spotting paradigm. Given
a base pronunciation for a keyword from the lookup dictionary, our algorithm generates a new
model for a keyword which takes into account the systematic errors made by the neural network
and avoiding those models that can be confused with other words in the language. The new
keyword model improves the keyword detection rate while minimally increasing the number of
false alarms.
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1 Introduction

Keyword spotting refers to identifying a word (or phrase) of interest in unconstrained speech
recording. Keyword spotting approaches are broadly classified into two categories. One based on large
vocabulary continuous speech recognition (LVCSR) and the other based on acoustic match between
the keyword (modeled by its phonetic string) and the data. In LVCSR based word spotting, the
keywords are spotted from the word lattices generated by the ASR. While this approach is more
accurate for words in the ASR dictionary, it is not suitable for out-of-vocabulary (OOV) words and is
computationally expensive. On the other hand, acoustic word spotting can be used for any keyword
but this approach generates a large number false positives, especially for shorter words as each word
is processed independently and language constraints are not exploited.

In this paper, we will discuss the acoustic keyword spotter (described in section 2) based on
hybrid hidden Markov model - artificial neural network (HMM-ANN) paradigm. Here, a multi-layered
perceptron (MLP) neural network is discriminatively trained to estimate the posterior probability of
phonemes with acoustic evidence as its input. The keyword is represented by its phonetic string and
each phoneme in the keyword is modeled by an HMM. The phoneme posterior probabilities are used
as the emission probabilities for the HMM state and Viterbi algorithm is applied to spot the keyword.

An advantage of this approach is that the MLP is able to estimate the phoneme identity with
sufficient accuracy because it is trained using sufficiently long temporal context and has learned to
discriminate between phonemes. Moreover, the errors by the MLP are systematic and can be captured
in the form of a confusion matrix [3]. However, a disadvantage of the above approach is that if there
is a mismatch between the phonetic string of the keyword (obtained from the lookup dictionary) and
the phoneme posteriors from the MLP, the keyword detection rate falls. This mismatch is due to the
following :

– Speaker Error : Speaker did not pronounce the word according to the dictionary
– Machine Error : MLP classification error due to acoustic confusability
Dictionaries with multiple pronunciations capture the speaker error to some extent but the dictio-

nary entries are based on the expected way to pronounce the word. In this study, we also incorporate
the knowledge about the systematic errors made by the MLP. This knowledge is captured in the form
of acoustic confusion matrix. Given a base pronunciation for a keyword, the acoustic confusion matrix
hypothesizes different alternatives for phoneme in the keyword based on the confusability among pho-
nemes. The language confusion matrix will prune out those candidates that are likely to be confused
with other words and hence minimize the increase in false alarms.

Phoneme confusion matrix has been used in phoneme recognition based spoken document retrieval.
In [1], phoneme confusion matrix has been used in query expansion. In [2], it has been used for
document expansion. This work is similar to the query expansion in the sense that we expand the
phonetic string of the keyword to increase the keyword detection. We also use a language confusion
matrix to minimize false alarms.

2 Acoustic Keyword Spotting

In acoustic keyword spotting, the keyword is modeled by its phonetic string and all non-keyword
speech is modeled by a garbage model connected in parallel to the keyword model as shown in Fig.
1. Additionally, there is a transition from the end of this parallel model to its beginning to enable
spotting more than one keyword in the utterance.

A garbage model is a generic model to absorb all speech and satisfying the following inequalities :

p(XWi
| MWi

) > p(XWi
| MG) (1)

p(XG | MG) > p(XG | MWi
) (2)

where XWi
and MWi

is the acoustic evidence and the model respectively for the keyword Wi. Similarly,
XG is the speech corresponding to non-keywords and MG is the garbage model. Eqn (1) controls the
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keyword detection rate and Eqn (2) controls the number of false alarms.

PKW
Keyword Model (MWi

)

Garbage Model (MG)

Fig. 1 – Acoustic keyword spotting architecture. PKW is the keyword entrance probability.

The keyword model is the concatenation of the hidden Markov models (HMMs) corresponding to
the constituent phonemes in the keyword. However, garbage models are obtained in different ways.
One way of obtaining smoothed garbage model is to train a GMM or HMM explicitly on non-keyword
speech. Multiple garbage models could also be trained for different classes of sounds (vowels, plosives,
nasals etc). A garbage model could also be a generic word model modeled as an ergodic network of
context dependent or independent phonemes. Smoothing can also be done at the score level rather
than model level as done in the online garbage model [6]. Here, the likelihood of a garbage HMM
state is the average of the top likelihoods at that time frame. The observation likelihood for an HMM
state could be obtained by a Gaussian mixture model (GMM) or from an MLP. In our experiments,
we have used hybrid HMM-ANN decoding with an online garbage model.

3 Baseline System

The baseline system consists of a keyword model connected in parallel with the garbage model
as shown in Fig. 1. The HMM for the keyword is the concatenation of the HMMs of the constituent
phonemes. The phonetic string for the keyword is obtained from a lookup dictionary with multiple
pronunciations. Each phoneme is modeled as an HMM with 3 emitting states (minimum duration 30
ms). The self and next state transition probability is fixed at 0.5 each. The emission probability in each
state is obtained from an MLP. The MLP estimates the posterior probability of the 46 output classes
with multi RASTA [5] features as input. The garbage model has 5 states and the output likelihood
in the garbage state for a given frame is the average of top N = 3 scaled likelihoods for that frame.
Scaled likelihoods are obtained by normalizing the posterior probability vector from the MLP by the
phoneme prior probabilities. The Viterbi algorithm is used to find the best path through the trellis
and to spot the keywords.

4 Our Approach

We propose a systematic approach to derive a pronunciation model for the keyword that takes
into account the errors by the MLP in phoneme posterior estimation. An LVCSR language model and
dictionary are also analyzed to avoid pronunciation models that could be confused with other valid
phoneme sequences in the language in order to minimize the increase in false alarms.

The new pronunciation model is obtained by adding acoustically confusing phonemes in parallel to
the phonemes in the base pronunciation (see Fig. 2). The new pronunciation model for keyword M

′

Wi

will also include the base pronunciation MWi
and in a Viterbi decoding framework, p(XWi

|M
′

Wi
) ≥

p(XWi
|MWi

). Hence from Eqn (1), we get :

p(XWi
| M

′

Wi
) ≥ p(XWi

| MWi
) > p(XWi

| MG) (3)
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It is evident from Eqn (3) that the keyword detection rate for the new model increases or remains the
same. However, Eqn (4) must also be satisfied to ensure the minimal or no increase in false alarms

p(XG | MG) > p(XG | M
′

Wi
) ≥ p(XG | MWi

) (4)

Depending on the words spoken, there is a risk that the false alarm rates could increase as p(XG | M
′

Wi
)

approaches p(XG | MG) in Eqn (4). We try to minimize this risk by avoiding those models that are
likely to be confused with other words. This information is obtained by analyzing the similarity of
the keyword to other words in the language. The language confusion matrix captures this information
and is derived from LVCSR dictionary and the language model. This is explained in section 4.2

4.1 Acoustic Confusion Matrix (ACM)

An acoustic confusion matrix (ACM) captures the systematic errors made by the MLP. Given P
phonemes, the ACM is a P by P matrix and each element is the probability P (pj |pi) that phoneme
pj was reported by the recognizer when phoneme pi was said. To obtain the acoustic confusion matrix,
phoneme recognition (described in 5.4) is performed on development set and the recognized phoneme
sequence is time aligned to the true phoneme sequence. The substitution counts from the alignment
are then normalized to obtain the acoustic confusion matrix.

Dynamic time alignment is done in two stages [8]. In the first stage, Levenstein’s algorithm with
equal substitution costs for all phoneme pairs is used to obtain a preliminary confusion matrix. This
matrix will not capture the true confusions because of the equal substitution cost assumption. To
improve the alignment, the preliminary confusion matrix is used to update the substitution costs for
the Levenstein’s algorithm and new confusion matrix is obtained. Table 1 shows the top confusions
and the probability for the phonemes /ah/, /ax/, /s/ and /m/.

Tab. 1 – Table illustrating the top confusions for the phonemes /ah/, /ax/, /m/ and /s/

Phoneme Phoneme Probability
Said Recognized

/ah/
/ah/ 0.367
/ax/ 0.324
/ae/ 0.036

/ax/
/ax/ 0.698
/ih/ 0.093

/m/
/m/ 0.766
/n/ 0.053

/s/
/s/ 0.878
/t/ 0.017

The acoustic confusion matrix is not a symmetric matrix. For example, P (/ax/|/ah/) = 0.32 but
P (/ah/|/ax/) = 0.02. Also, some phonemes e.g. /ah/ are easily confused P (/ah/|/ah/) = 0.36 but
some other phonemes e.g /s/ are not easily confused P (/s/|/s/) = 0.87.

4.2 Language Confusion Matrix (LCM)

While we have a single acoustic confusion matrix for a task, we derive a different language confusion
matrix for each keyword. Suppose that the keyword has the base pronunciation p̄0 = p0

1
, ...p0

k, ...p0

K .
The language confusion matrix is obtained in the following steps.

[1] Compute the joint probabilities of word triplets in the trigram language model. Typically language
models give conditional probabilities.
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[2] Estimate the joint probability P (p̄) of all phoneme K-tuples p̄ using the joint probability of the
word triplets and the lookup dictionary. Denote this set as PK . K is the number of phonemes in
the keyword.

[3] By dynamic time alignment (dta), compute the edit distance d(p̄0, p̄) and alignment between the
base pronunciation p̄0 and every phoneme K-tuple p̄ in the set PK .

[4] Extract a subset PE
K ⊂ PK such that 0 < d(p̄0, p̄) ≤ E, where E is the threshold on the edit

distance. The set PE
K will contain all valid phoneme sequences with edit distances 1, 2 . . . , E from

the keyword phoneme sequence. The threshold E can be set higher for keywords with more number
of phonemes.

[5] Align every phoneme sequence p̄ in PE
K to p̄0 and if dta(p0

k) is the phoneme aligned to p0

k in the
base pronunciation, update the language confusion matrix as follows :

LCM(p0

k, dta(p0

k)) = LCM(p0

k, dta(p0

k)) + P (p̄)

The entries in the LCM are row normalized so that they sum upto one. In step-4, alternative pronun-
ciations for the keyword should not be included in set PE

K . The top language confusions for the word
‘something’ is listed in the third column in Table 2

4.3 Pronunciation Model

For every phoneme p0

k in the keyword with base pronunciation p̄0 = p0

1
, ...p0

k, ...p0

K , the acoustic
confusion matrix gives a list of phonemes A(p0

k) that the MLP is likely to have misclassified. Similarly,
the language confusion matrix gives a list of phonemes L(p0

k) that should not be associated with a
phoneme in the keyword.

A(p0

k) = {1 ≤ i ≤ P, pi 6= p0

k | ACM(p0

k, pi) > Atr} (5)

L(p0

k) = {1 ≤ i ≤ P, pi 6= p0

k | LCM(p0

k, pi) > Ltr} (6)

Atr is the threshold on the acoustic confusion matrix, Ltr is the threshold on the language confusion
matrix and P is the number of phonemes. A phoneme is added in parallel to p0

k only if it is present
in the list A(p0

k) and not present in L(p0

k). The depth of the pronunciation model is controlled by the
parameters Atr and Ltr. Table 2 illustrates how pronunciation is obtained for the word ‘something’
and Fig. 2 shows the final pronunciation model for different values of the thresholds Atr and Ltr.

Tab. 2 – Table illustrating the construction of the pronunciation model for the word ‘something’. The
phoneme /n/ is not present in the final phonetic string because LCM hypothesizes it as a conflicting
phoneme

keyword top acoustic top language final
‘something’ confusions confusions pronunciation

/s/ - /r/ /s/
/ah/ /ax/ /ey/ /ah/,/ax/
/m/ /n/ /n/,/ch/, /ax/ /m/
/th/ /t/ /b/ /th/, /t/
/ax/ /ih/ /iy/ /ax/,/ih/
/ng/ /n/ /dx/, /t/, /v/ /ng/,/n/
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/ax/

/s/

/ax/

/ih//t/

/th/

/ax/

/ng/.

/m/

/ah/

/n/

/ax/ /ng/./s/ /m/ /th/

/ax/

/ah/

/s/

/ah/

/ng/./m/ /th/

/ih//ax/

Atr = 0.09

Ltr = 0.05

Atr = 0.15

Ltr = 0.05

Atr = 0.05

Ltr = 0.05

Fig. 2 – Pronunciation models for the word ‘something’ for different values of Atr and Ltr. The bold
line is the base pronunciation from the dictionary. Dotted lines are the phoneme links added by the
algorithm.

5 Experiments

5.1 Database

Experiments were conducted on the conversational telephone speech (CTS) development data
distributed by NIST for the 2006 Spoken term detection task. Of the six hours of two channel speech,
4 hours was used for development and the rest was used for evaluation. A set of 25 single-word
keywords were selected from the search list distributed by NIST. The keywords include words like
different, getting, everything, something and affected. Each of the keyword had at least 4 phonemes in
it.

5.2 Acoustic Features

Speech was first segmented to speech/silence classes using a neural network based phoneme reco-
gnizer [9] where all the phonemes were linked as speech class. Multi-resolution RASTA [5] features
were used to obtain the phoneme posteriors. Critical band spectral analysis (Auditory Spectral Ana-
lysis step in the PLP technique) is first performed on the speech signal with a window length of 25
msec and step size of 10 msec. The resulting critical band spectrogram is then filtered using a bank of
2-D filters with varying temporal resolution to obtain a 448 dimensional feature vector every frame.

5.3 Phoneme Posteriors

The phoneme posteriors were estimated every 10 ms by a discriminatively trained MLP trained
on 30 hours of Fishers conversational telephone speech (CTS) [12] data using multi-RASTA features
of 448 dimension. The 46 output classes included 41 phonemes, a silence class and 4 classes for speech
artifacts. The hard target labels for training were obtained by forced alignment. There were 2000
hidden layers and a softmax non-linearity function was used. 10% of the training data was used for
cross validation. The MLP training was done using the Quicknet software [11].
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5.4 Phoneme Recognition

To estimate the acoustic confusion matrix, phoneme recognition was performed on development set.
A hybrid HMM-ANN [4] phoneme recognizer was used where each phoneme was modeled by a standard
3 state left-right HMM. The transition probabilities are fixed a priori. The emission probability for
the HMM state was estimated from an MLP trained on MRASTA features. We assume equal prior
distribution of the phonemes to obtain the scaled likelihoods. On 41 phoneme set, using a uniform
language model, the phoneme error rate (PER) was 47%.

5.5 Dictionary and Language model

To obtain the language confusion matrix, the AMI dictionary with 50000 entries and the AMI
language model with approximately 40 million trigram entries were used [7]. From this LM, 1 million
trigrams with the highest word triplet joint probability were used for the language confusion analysis.

6 Results

The performance of the keyword spotter is evaluated using the figure-of-merit (FOM) [10] measure
which is the average of the keyword detection rates at false alarm rates of 1, 2, ...10 false alarms per
keyword per hour of speech. FOM approximates the keyword detection rate of the system at 5 false
alarms per keyword per hour of speech. ROC is computed by varying the word entrance probability
(PKW in Fig. 1). The baseline system gives a FOM of 64.30%.

The performance of the proposed method is compared against the baseline system for different
values of Atr and Ltr. In deriving the language confusion matrix, the threshold E = 2 was used for
all keywords.

Tab. 3 – The FOM of the baseline system compared to the proposed method for different values of Atr

and Ltr

experiment threshold threshold FOM
number Atr Ltr

1 (baseline) 1.00 1.00 64.3
2 0.09 1.00 61.9
3 0.15 0.05 65.5
4 0.09 0.05 66.3
5 0.05 0.05 66.5

Experiment 1 is the baseline system as a high threshold of Atr = 1.0 does not hypothesize any
alternative phonemes and the base pronunciation is used. In experiment 2, only the acoustic matrix
is used to generate the new pronunciation as a high Ltr will not prune out any pronunciation that
could lead to false alarms. The poor FOM compared to the other experiments confirms the impor-
tance of the language confusion matrix. Experiment 3, 4 and 5 show that using both acoustic and
language confusion matrices for generating the keyword pronunciation gives better performance than
the baseline system.

7 Conclusions

In this paper, a systematic approach to building a pronunciation model in a hybrid HMM-ANN
keyword spotter is presented. The systematic errors by the neural network in estimating the posterior
probability of phonemes is captured in the form of a confusion matrix. This information is used to
expand the pronunciation to improve the keyword detection rate. The risk of increase in false alarms
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is minimized by analyzing the confusion of the keyword to other words in the language captured in
the form of language confusion matrix.
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