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Abstract. The approach to indexing an image collection depends on the type of data to organize.
Satellite images are likely to be searched with latitude and longitude coordinates, medical images
are often searched with an image example that serves as a visual query, and personal image
collections are generally browsed by event. A more general retrieval scenario is based on the use
of textual keywords to search for images containing a specific object, or representing a given scene
type. This requires the manual annotation of each image in the collection to allow for the retrieval
of relevant visual information based on a text query. This time-consuming and subjective process
is the current price to pay for a reliable and convenient text-based image search.
This dissertation investigates the use of probabilistic models to assist the automatic organization
of image collections, attempting to link the visual content of digital images with a potential
textual description. Relying on robust, patch-based image representations that have proven to
capture a variety of visual content, our work proposes to model images as mixtures of latent
aspects. These latent aspects are defined by multinomial distributions that capture patch co-
occurrence information observed in the collection. An image is not represented by the direct
count of its constituting elements, but as a mixture of latent aspects that can be estimated with
principled, generative unsupervised learning methods. An aspect-based image representation
therefore incorporates contextual information from the whole collection that can be exploited.
This emerging concept is explored for several fundamental tasks related to image retrieval -
namely classification, clustering, segmentation, and annotation - in what represents one of the
first coherent and comprehensive study of the subject.
We first investigate the possibility of classifying images based on their estimated aspect mixture
weights, interpreting latent aspect modeling as an unsupervised feature extraction process. Several
image categorization tasks are considered, where images are classified based on the present objects
or according to their global scene type. We demonstrate that the concept of latent aspects allows
to take advantage of non-labeled data to infer a robust image representation that achieves a
higher classification performance than the original patch-based representation. Secondly, further
exploring the concept, we show that aspects can correspond to an interesting soft clustering of an
image collection that can serve as a browsing structure. Images can be ranked given an aspect,
illustrating the corresponding co-occurrence context visually. In the third place, we derive a
principled method that relies on latent aspects to classify image patches into different categories.
This produces an image segmentation based on the resulting spatial class-densities. We finally
propose to model images and their caption with a single aspect model, merging the co-occurrence
contexts of the visual and the textual modalities in different ways. Once a model has been learned,
the distribution of words given an unseen image is inferred based on its visual representation, and
serves as textual indexing. Overall, we demonstrate with extensive experiments that the co-
occurrence context captured by latent aspects is suitable for the above mentioned tasks, making
it a promising approach for multimedia indexing.
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Chapter 1

Introduction

1.1 Retrieving images with keywords

The value of a media collection relies equally on the quality and the accessibility of its content. If
the billions of existing webpages were not continuously indexed by efficient search engines, a lifetime
would not suffice to browse through this unorganized information, and relevant webpages would be
unreachable. Off-line webpage indexing systems such as Google’s PageRank allow the formulation of
intuitive text-based queries, and make the retrieval of relevant documents practically independent of
the number of documents to search.

With the production of large digital image collections, favored by increasingly cheap digital record-
ing and storage devices, there is a similar need for efficient indexing and retrieval systems for images.
Digital photo collections constantly grow in size, and this information needs to be consequently or-
ganized to be accessible. To illustrate the size of current photo collections, we have computed basic
statistics from the Flickr (www.flickr.com) photo-sharing website in July 2006. Flickr is a popular
photo-sharing service that allows its registered users to upload and share their images on the World
Wide Web. According to Newsweek magazine, Flickr was a 2.5 million-member community in April
2006 [38], which gives an estimate of 1.2 billion photos. The histogram of the number of public photos
from 21′000 users is shown in Figure 1.1, for an average number of 480 photos per collection. This
photo-sharing website is emblematic of current and also future online image collections. They consist
of a huge number of photos that have to be organized and indexed in order to be accessible. The
ideal retrieval system should allow for intuitive search for the user, and require a minimal amount
of human interaction to be applicable to large collections. Two approaches, based on distinct query
types, coexist in the multimedia information retrieval literature.

One is based on the query-by-example (QBE) paradigm [60, 80, 84, 13, 79]. In QBE systems,
various low-level visual features are preliminarly extracted from the data set and stored as image
indices. The query is an image example that is indexed by its low-level visual features, and images
are ranked with respect to their similarity to this query index. Given that indices are directly derived
from the image content, this process requires no semantic labeling, thus no human interaction. The
QBE paradigm is therefore an interesting solution for particular image retrieval tasks such as medical
imaging [19], satellite images [39], or personal photo collections [50, 27]. These data sources tend
however to be specific, as the corresponding QBE solutions are too.

In general, however, no image example is available at the time of querying, and the formulation
of a more intuitive textual query is widely preferred. Commercial image collections such as Getty
images (www.gettyimages.com) and Corbis (www.corbis.com) are for instance designed to be searched
with text-based queries. Their customers want to retrieve photos related to a given event, location, or
concept, and these queries are naturally expressed by short textual queries. Despite the development
of systems and tools to assist it, manual annotation involves a substantial amount of work, and often
results in heavy costs. One solution, when applicable, is a collaborative annotation system. For

7
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Figure 1.1: Number of users vs. number of photos in collection for 21′000 users from the Flickr.com
website. This sample corresponds to an average of 480 photos per user that need to be organized for
accessibility.

example, Flickr takes advantage of its community members as potential annotators. Each user is
invited to attach tags to his own photos to organize his collection, simultaneously allowing other users
to access this collection.

Image annotation is however a subjective process: an image represents a large number of potential
words from which the annotator has to choose. Without any constraint, caption words can be sampled
from many semantic levels, as shown with the four annotated examples from Flickr on Figure 1.2:
they can refer to the global scene type (e.g. city street, kitchen, ocean), name particular entities in
the image (e.g. mountains, tree, leaf ), specify geographic locations (e.g. Salt Lake City, Mexico),
describe the main color distribution (e.g.yellow), describe the related event (e.g. birthday), or even
refer to objects that are not present, but only suggested by the image (e.g. cake). Depending on their
personal visual interpretation, an image will likely be annotated differently by two individuals: their
respective annotation depends on a set of subjective decisions. And given that queries are unknown
at the time of annotation, relevant images can be missed because the resulting subjective caption is
non-exhaustive. The words sky, buildings, or car are not in the caption of the image (a) on Figure 1.2,
although the image contains these instances. Similarly, the word rock is not part of the tags attached
to the image (b), because the tag yellow has been chosen instead. Other high-level descriptions could
be considered: images (a)-(b) could be labeled as outdoor, and image (d) as indoor.

We see on Figure 1.2 that some form of correspondence implicitly exists between the visual content
of images and the words that were chosen to describe it. This correspondence is however only partially
defined, because words are not explicitly attached to a given region in the image. For instance, the
word tree in image (c) only relates to an unspecified image region. Similarly, the word mountains only
describes a small region in the center of image (a). Caption words can also relate to the whole image:
city street for image (a), and kitchen for image (d). If some form of mapping between words and local
image characteristics could be learned, the prediction of a word caption given an unannotated image
would be possible. Learning this relationship is however a real challenge given the variety of concepts
to consider, and the loose correspondence provided between the textual description and the visual
content.
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(a) Utah, Salt Lake City, mountains, city street
(b) cabo, San, Lucas, Mexico, sky, ocean, land-
scape, yellow

(c) Japan, Kamogawa, kitten, tree, leaf (d) messy kitchen, kitchen, cake, birthday

Figure 1.2: Four images and their annotation tags from the Flickr website. Tags are attached by
the image owner, resulting in a subjective description of the image content. A significant number of
foreground objects, for instance, are not necessarily mentioned.

1.2 Problems addressed

In this dissertation, we investigate the use of local image representations and probabilistic models to
assist the automatic organization of image collections, attempting to link the visual content of digital
images with a textual description. Relying on patch-based, discrete image representations that have
proven to capture a variety of visual content, our work proposes to tackle the problem with the help of
latent aspect models. An image is not represented by the direct count of its constituting elements, but
as a mixture of latent aspects - modeled with multinomial distributions - that capture co-occurrence
of patches in the collection. An aspect-based image representation therefore incorporates contextual
information from the whole collection that we exploit for several fundamental tasks related to image
retrieval.

• Using the aspect mixture weights, estimated for each image, as an image representation for image
classification. Relying on a histogram of quantized image regions as initial image representation,
a latent aspect model allows to identify distinctive patterns of co-occurrence from unlabeled data,
improving the classification of images in scene and object categories.

• Ranking the images based on the probability of the images in a dataset given each aspect. This
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produces a soft clustering of an image collection based on the co-occurrence patterns of quantized
patches identified by the aspect model, that can correspond to concrete visual categories in the
collection.

• Classifying image patches in images to obtain a form of sparse image segmentation, taking ad-
vantage of the co-occurrence context identified by the aspect model. This further illustrates the
possible match between latent aspects and concepts in images in the case of image segmentation.

• Predicting a word distribution given an unannotated image for textual indexing, relying on the
aspect distribution inferred from the visual representation. Three ways of learning a mixture
of aspects from both the image description and the discrete local image representation are
investigated.

These lines of research are successively addressed throughout the thesis, investigating new implications
of the concept of mixture of aspects for images in each chapter. We build the analysis sequentially,
relying on the results from the previous investigations to tackle the next task.

1.3 Contributions and organization of the thesis

Our research has addressed each of the points listed in the previous Section and resulted in a number
of contributions. Each of them is presented in a chapter form, as follows 1.

Latent aspect models for text and images. Chapter 2 has two goals: explaining the motivations
behind the latent aspect models family [29, 7, 10], and providing an intuition of their choice to
model visual information. The use of latent aspect models for images is put in perspective with
the concept of a patch-based image representation.

Aspect-based image classification and clustering. Representing an image as a mixture of la-
tent aspects can be seen as a second-level feature extraction process. We explore this idea in
Chapter 3, proposing an approach to classify objects [54] and scenes [68] based on their aspect
mixture weights. This results in state-of-the-art performance, and we demonstrate that the
aspect model allows to infer a more effective image representation from non-labeled, auxiliary
data. Using the aspects as soft clusters, we also prove that the aspects can serve as a browsing
structure, because they can correspond to semantic concepts.

Mapping latent aspects and image regions. We show in Chapter 4 that, although no spatial in-
formation about the position of local patches is used, latent aspects can correspond to particular
image regions defined by patch co-occurrences [55]. We explore this idea on a natural vs. man-
made scene segmentation task, deriving a principled method to classify the local image patches
based on the latent aspect model. The results show that the co-occurrence context captured by
the aspects allows to improve the classification of the quantized patches. Also, the more stan-
dard spatial context information, generally exploited for image segmentation, can conveniently
be combined to the co-occurrence context.

Modeling semantic aspects for cross-media image indexing. In Chapter 5, we propose a num-
ber of principled approaches to learn a latent aspect model from the patch-based representation
of an image and its text caption. Different ways of modeling the co-occurrence between text
and images are possible. Given that keywords have context among themselves - the meaning of
a keyword depends on the context it appears in - there should be a correlation between these

1The work in Chapters 3 and 4 was done in collaboration with Pedro Quelhas. I was initially focusing on latent
aspect modeling, and Pedro brought his expertise on local descriptors. The resulting ideas and work presented in these
two chapters was divided equally between the two of us. A number of experiments and discussions for the evaluation
of different combinations of point detectors and descriptors discussed in [67] are not presented in Chapter 3, as these
results represent a contribution from Pedro’s own work.
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feature-based and keyword-based co-occurrence contexts. This approach is used to infer anno-
tation for unseen images, and compared with other state-of-the-art methods [53]. The results
show that if the aspect mixtures are estimated based on the textual information in the training
phase, the inferred annotations allow an improved retrieval performance.
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Chapter 2

Latent aspect models for text and
images

Within this chapter, we motivate and detail the probabilistic latent aspect model proposed by Hof-
mann [29]. Our discussion first focuses on the aspect model in the context of text collections, which
is its original purpose. We then extend the use of this model to the case of image collections, showing
that the concept of latent aspect is also adequate in the case of visual information. This image model
will be used throughout our work.

2.1 Limitations of the vector space model for text

The vector space model [71, 70] is the widely agreed representation method for text collections. It
summarizes a document into a N -dimensional vector that encodes the count of each vocabulary word
w in this document. This is equivalent to treating a text document as a bag-of-words, where each word
has been sampled from a vocabulary of size N . Discarding the punctuation information and the word
ordering, the bag-of-words assumption is an important simplification of the original text document
that casts documents of different lengths into a vectorial form. Only word stems are usually considered
to build the vocabulary, because variations due to plural forms and verb conjugation are not considered
as informative. Another common processing consists in discarding words from a stop word list, as
they do not contain discriminative information (e.g. above, again, where). A text document di is
represented by the count of its constituting word stems wj , expressed by n(wj , di).

The intuition behind the vector space model is simple: texts about different topics have a distinct
vectorial representation, because different words are used to express these topics. The notion of
similarity between texts, essential for any information retrieval tasks, is implicitly defined on a word
basis; texts sharing many words are more similar than texts with only a few words in common. The
similarity between a document di and a query q is computed as the cosine of the angle between their
respective bag-of-words representations, usually weighted by:

simcos(q, di) =

∑N
j n(wj , q)n(wj , di)√∑N

j n(wj , q)2
√∑N

j n(wj , di)2
, (2.1)

Please note that the term frequency and inverse document frequency weighting tfidf generally replaces
the word count to prevent a bias towards long text documents, and to minimize the influence of very
frequent words in the text corpus. The term frequency tf is defined as the count of the word wj in
the document di devided by the total number of words in this document, and the inverse document
frequency idf is defined as the logarithm of the number of documents in the corpus M divided by the

13
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number of documents in which the word wj appears:

tfidf(wj , di) =
n(wj , di)∑
l n(wl, di)︸ ︷︷ ︸

tf

log
M

|n(wj , d) > 0|︸ ︷︷ ︸
idf

.

With or without this tfidf weighting, basic information retrieval tasks are efficiently implemented
as simple linear algebra operations in a vector space, what explains the popularity of this approach [4].
Documents from a collection can be ranked based on their similarity with a text query, and documents
can be clustered based on their similarity.

The simplicity of the vector space model has limitations. Word-based similarity, although efficient
in general, can result in ambiguities [29]. Texts should ideally be compared at their topic level, and
not based on the specific words that were chosen to express these topics. For instance, the fact that
the term space appears many times in the previous paragraphs should not make this chapter closer
to documents about space research. This word should be interpreted in its context to avoid this
ambiguity: the term space co-occurs with the words vector, model, linear and algebra in the previous
discussion, thus defining a related linear algebra topic. Models that attempt to capture this type of
co-occurrence information from the bag-of-words representation have therefore attracted interest in
the recent information retrieval literature.

2.2 Modeling text documents as mixtures of latent aspects

Various probabilistic models [29, 7, 10] have been proposed to model topics in a text collection, moving
beyond the standard bag-of-words approach. These models are based on the same idea of capturing
patterns of word co-occurrences given latent variable with multinomial distributions. A document
is not represented as an isolated set of word occurrences, but modeled as a mixture of word co-
occurrences given a latent aspect observed within the collection. These word co-occurrences, modeled
with multinomial distributions over the vocabulary words, can be interpreted as topics existing in
the text collection [29, 7, 10, 49, 82]. The interpretation of multinomial word distributions as topics
gives a good intuition of the structure identified in the text collection, and this family of probabilistic
models is, therefore, often referred to as topic models [82]. Other names have been used (e.g. discrete
component analysis [10]), but we prefer the denomination of aspect models [49]. The word aspect has
the advantage of not being text specific, and can refer to multinomial over words and any other type
of discrete data.

Modeling texts with mixtures of aspects is a promising approach to handle the synonymy and the
polysemy issues that penalize the performance of bag-of-words text retrieval systems. On one side, a
text query will not necessarily match the words of a relevant document whenever different words have
been chosen to express the same idea. Documents that do not contain the exact same words as the
query, but synonyms, will not be retrieved. Conversely, polysemy makes irrelevant documents similar
to a text query if the same terms are used to express different concepts. Aspect models therefore
aim at identifying a disambiguated representation of text documents learned from their bag-of-words
representation.

We illustrate the concept of latent aspects for text documents in Figure 2.1, showing the decom-
position of a document into a mixture of 300 latent aspects. The text document is taken from the
Reuters-21578 text dataset (www.daviddlewis.com/resources/testcollections/reuters21578/), a collection
of documents from the 1987 Reuters newswire. The original text document is shown on the top-left
of Figure 2.1. Its corresponding bag-of-words representation, after word stemming and stopping, is
shown on the middle-left as a word histogram over a vocabulary of approximately 18000 word stems.
The mixture of aspects for this document, identified with the aspect model presented later in this
chapter in Section 2.4, is shown on the bottom-left of the figure. From this mixture, the three aspects
with the higher weights are shown on the right of Figure 2.1, characterized by their multinomial dis-
tributions over words. Observing the multinomial distributions and their most probable words gives
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The United States and Japan are not involved
in a trade war, despite U.S. sanctions announced
last week against Japanese semiconductors, U.S.
Trade Representative Clayton Yeutter said. ”In
my judgement, we’re not even close to a trade
war,” Yeutter told a House Agriculture Commit-
tee hearing. Yeutter said if Japan takes action
to honor its agreement with the U.S. on semicon-
ductor trade, ”Then the retaliatory response will
last a relatively short period.” Yeutter said Japan
must stop dumping chips in third countries and
buy more American computer chips.
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Figure 2.1: Representation of a text from the Reuters-21578 dataset as a mixture of aspects. The
original document is shown on the top-left, the corresponding bag-of-words histogram is shown on the
middle-left, the aspect decomposition is shown on the bottom-left, and the multinomial distributions
over words of the three most probable aspects are shown on the right. As can be interpreted based on
their most probable words, these three aspects are related to specific topics: aspects number 188 seems
related to issues regarding economical relationships with Japan; aspect number 284 contains words
related to international United States trade (Clayton Yeutter was the US trade representative at the
time the document was published); and aspect number 46 seems related to the Japanese semiconductor
industry.
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Figure 2.2: Two aspects learned on the Reuters-21578 text collection that include war as a highly
probable word. Aspect 188 (left) seems related to US economical relationships with Japan, while
aspect 57 (right) contains terms related to military tension in the Arabian Gulf.

an intuition of what the aspect thematics are: aspect number 188 seems related to issues regard-
ing economical relationships with Japan; aspect number 284 contains words related to international
United States trade (Clayton Yeutter was the US trade representative at the time the document was
published); and aspect number 46 seems related to the Japanese semiconductor industry.

Under the aspect model assumption, words are not attributed to one aspect exclusively, but as-
signed to each aspect with a given probability in the corresponding multinomial distribution. For
instance, the word said is highly probable for all three aspects on the right of Figure 2.1, and the
terms japanes and japan are in the top-ten words of both aspects 188 and 46. The latent aspect
approach is therefore very different from basic word clustering, because it allows terms to belong to
several aspects with a given probability. For instance, the term war is used in a very specific context
in the document (trade), but other documents in the collection contain the word war used in another
context (military conflict). Two aspects learned from the text collection, and capturing different con-
texts of the word war are shown on Figure 2.2 to illustrate how aspect models can take this into
account. Aspect 188, as already seen, is related to the topic of economical relationships between the
US and Japan. Aspect 57 corresponds to a different contextual use of the word war, defined by the
highly probable terms iran, missile, gulf, ship, kuwait, etc. The soft clustering of words with respect
to aspects, which is the core idea of aspect models, allows to model several co-occurrence contexts for
the same word. The bag-of-words representation in our example makes aspect 188 much more likely
than aspect 57, what seems a correct interpretation of the word war in the document.

Modeling aspects by multinomial word distributions also allows to tackle synonymy ambiguities.
For instance, japan and japanes coexist in our vocabulary of the Reuters-21578 text collection, and
can be seen as synonyms, created by a non-optimal stemming algorithm. In other words, a query
containing the word japanese will not match the bag-of-words representation of a document containing
the word japan, which is counter-intuitive. Capturing the probability of word co-occurrence with a
latent aspect can link two synonyms: on Figure 2.1, japan and japanes are both highly probable
given aspects 188 and 46. A mixture of aspects containing aspect 188 or 46 will implicitly make both
the words japan and japanese probable in the corresponding document, even is only one of them is
present.

The structure of aspect models, based on multinomial word distributions, make them suitable to
handle polysemy and synonymy ambiguities in text collections as we have seen. Their use is however
not restricted to text collections, and they have been investigated for a variety of tasks, from music
genre classification [3] to the analysis of voting records [11]. The concept of mixture of aspects is
in particular very promising for modeling visual information in image collections, as discussed in the
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following section.

2.3 Modeling images as mixtures of latent aspects

An image contains an almost endless amount of visual information that can be derived from its pixel
representation. Depending on the task, various types of image representation have been proposed to
capture a priori relevant information. Global color histograms, for instance, conveniently represent an
image with its color distribution. Being intrinsically robust to a variety of geometric transformations,
this compact representation appears to be efficient for a number of image retrieval tasks [69], where
color information is discriminant. However, a color histogram will not allow to discriminate between
images sharing a similar color distribution. An example of a more elaborate image representation,
tailored to a very specific task, is the representation based on spatial envelope properties for the
categorization of image scenes [61]. The spatial envelope describes the degree of some global properties
from the image (naturalness, openness, roughness, ...), that are estimated based on the analysis of
the image spatial frequencies. A good discrimination of different scene types is possible with this
representation.

To model a heterogeneous image collection, image representations designed for the classification of
specific objects are not adequate. We need an image representation that allows to deal with different
image scales, while still capturing sufficient information about the various concepts that have to be
modeled. We therefore consider a family of image representations that is intended to be more generic,
and therefore suitable for information retrieval tasks. These representations have received various
names in the literature, such as blobs [18], textons [30], parts [2], visual words [76], or visterms (for
visual term) [68, 32], but are all based on the same principle: the definition and quantization of
local image regions or patches. In this dissertation, we use the word visterm when referring to a
quantized version of image regions. The image regions can be sampled uniformly given a fixed grid
layout [57, 32], result from a principled image segmentation algorithm [18], or be identified at different
locations and scale using a point detector [2, 68, 30]. Depending on what visual information is a priori
relevant for a given task, a variety of descriptors can be considered to depict these regions. Color,
texture, shape, or a combination of these features are generally considered as relevant information.
The region descriptors are then quantized into a fixed set of possible visterms vj , that can be seen as
a visual vocabulary. Mapping similar image regions onto the same visterm simplifies the pixel-based
representation of an image di into a fixed-size histogram of the visterm count n(vj , di).

To give a first intuition of what type of visual information can be captured by a histogram of
visterms, we have constructed the two examples shown on Figure 2.3. We have recourse to these
constructed examples to simplify the discussion: the actual visterm construction is described in details
in each related chapter. In Figure 2.3, the image regions are sampled from a uniform grid and
represented by their color distribution and texture. Visually similar regions are quantized into the
same visterm, and images are represented as a count of co-occurring visterms describing their content.
The comparison of the two image representations shows the type of information that can be captured
by a visterm histogram. Both images contain regions that are quantized into visterm #1, which
corresponds to greenish regions covering grass and tree parts of the images. Visterm #2, #3 and
#22 contains blue and white colors corresponding to sky+clouds regions occurring in the two images.
Building regions from the two images are quantized into 7 visterms (#8, #9, #10, #11, #12, #14,
and #16). The building regions in the first image are mapped onto 6 of these visterms (#9, #10, #11,
#12, #14 and #16), while building regions in the second image are quantized into 4 visterms (#8, #9,
#12, #14). We see that the parts of the second image containing sea are quantized into 3 different
visterms (visterm #4, #18 and #21), which are almost not represented in the first image. Globally,
we see that visterm histograms allow an intuitive comparison of the visual content of their respective
images. The two images in Figure 2.3 contain tree, grass, sky and buildings, and this similarity in
visual content is reflected by the partial overlap of their respective visterm histograms. The absence
of sea in the first image translates in the empty visterms #4, #18, and #21.
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Figure 2.3: Representing an image as a visterm histogram: (left) in this case, image regions are defined
by a uniform grid; regions are quantized into a finite set of N = 22 visterms; (right) each image is
represented by the histogram of its constituting visterms.

A number of similarities exist between the bag-of-words representation for text and the visterm
histogram for images. A histogram of visterms discards the spatial layout of the image regions, what
is comparable to the bag-of-words simplification of a text document (words are treated as unordered
information). This justifies the bag-of-visterms denomination used in the rest of the dissertation. Vis-
term ambiguities, related to the one discussed for words in section 2.2, affect the bag-of-visterms repre-
sentation. The quantization of the image regions allows to obtain a convenient histogram-based image
representation, but at the same time creates ambiguities between the resulting quantized patches.
A given visterm can represent a variety of visual contents, what is equivalent to the polysemy issue
observed for words. In Figure 2.3, the patch #1 corresponds to both tree and grass regions in the
original images. Similarly, the patch #13 corresponds to both building and tree parts. Furthermore,
several visterms can represent the same concept: in the example, the sky regions are clearly splitted
into 6 visterms (#2, #3, #5, #17, #20 and #22), depending on the respective amount of cloud they
contain. Similarly, building parts are mapped onto various visterms depending on their respective
texture and color distribution (#8, #9, #10, #12, #14 and #16).

The decomposition of the bag-of-visterms representation into a mixture of visterm distributions,
similarly to what is done in the text case, is a possible approach to solve the intrinsic visterm ambi-
guities. Within a dataset of images containing buildings, sky, sea, or vegetation regions, interesting
visterm co-occurrence patterns related to these concepts are likely to exist. These patterns can be
modeled by multinomial distributions over visterms, characterizing a visual latent aspect of the col-
lection. As an illustration, in Figure 2.4 we show four visterm distributions that could be identified in
such a dataset. Four multinomial distributions over the same visterm vocabulary as the one used for
Figure 2.3 are shown in Figure 2.4, characterizing four visual aspects. Representative image patches
are shown on the x-axis to indicate what each of the 22 visterms correspond to. The distribution in
Figure 2.4 (a) corresponds to high probabilities for sky-related visterms, likely to co-occur throughout
an image collection in which sky regions exist. Such a multinomial distribution would nicely model the
visterm distribution corresponding to sky regions in the two images in Figure 2.3. The distributions
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(a)

(b)

(c)

(d)

Figure 2.4: Four multinomial distributions over visterms, with higher probabilities for specific types
of image regions: (a) sky-related visterms (visterms #2, #3, #17, #20, #22); (b) vegetation-related
visterms (visterms #1, #6, #13); (c) buildings-related visterms (visterms #8, #9, #10, #12, #14,
#16); (d) sea-related visterms (visterms #4, #18, #21). Representative image patches are shown on
the x-axis to indicate what the 22 visterms correspond to.
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in Figure 2.4 (b) and (c) show a predominance of vegetation and buildings visterms respectively. The
vegetation and buildings regions from the two images in Figure 2.3, mapped onto their corresponding
visterms, could be respectively modeled by these two visual aspects. As for the sea-related visterms,
only present in the second image, they could be modeled by the visterm distribution in Figure 2.4
(d). The two bag-of-visterms in Figure 2.3 can thus be modeled as a mixture of these four aspects,
defined by multinomial distributions over visterms, with different mixture weights reflecting their ac-
tual content. The first image in Figure 2.3 is a mixture of the sky, building and vegetation aspects.
The second image is a mixture of the same aspects, but also includes the sea aspect, defined by the
visterm distribution in Figure 2.4 (d).

From this basic example, the potential benefits of decomposing an image into a mixture of latent
aspects are clarified. If the number of aspects is chosen to be smaller than the size of the visterm
vocabulary, creating an image representation based on aspect mixture weights also represents a di-
mensionality reduction of the bag-of-visterms representation. At the same time, the aspect-based
image representation implicitly incorporates information from other images in the collection, in the
form of visterm co-occurrence patterns captured by multinomial distributions over visterms. The
obvious question is how to learn an aspect representation from an image collection. An unsupervised
approach, as used in other mixture models, is particularly attractive. Note however that an unsuper-
vised learning does not guarantee a coherent visual interpretation of the latent aspects. One model
to do this, that will be used throughout this dissertation, is introduced in the next section.

2.4 Probabilistic latent semantic analysis

The Probabilistic Latent Semantic Analysis model (PLSA) [29], the initial element of the aspect model
family, was proposed by Hofmann as a probabilistic alternative to the linear algebra-based Latent
Semantic Analysis (LSA) method [16]. It proposes an interesting probabilistic formulation of the
concept of topics in text collections, decomposing a document into a mixture of latent aspects defined
by a multinomial distribution over the words in the vocabulary. As we have seen in the previous
section, this formulation is not restricted to text collections, and will in particular be considered
to model visual information. In the following description of the PLSA model, the term document
therefore defines sets of discrete elements, referring to either text or image documents. Document
elements consequently correspond to either words or visterms, respectively.

Document elements are considered as the observation of a discrete random variable X, that can
take the values xj (j ∈ {1, . . . , N}), where N is the number of elements); xj ranges over the vocabulary
words in the text case, over the different visterms in the image case. Documents are represented by a
discrete random variable D, that can take the values di (i ∈ {1, . . . ,M}), where M is the number of
documents. Under the PLSA assumptions, the observation of X is conditionally independent of the
document under consideration given a hidden variable Z, referred to as a latent aspect. This discrete
variable is not observed, and can take the possible values zk (k ∈ {1, ..., L}), where L is the number
of aspects. The joint probability of observing xj and di is thus given by the marginalization over all
the possible values zk:

P (xj , di) =
L∑

k=1

P (xj , zk, di). (2.2)

The conditional independence assumption between xj and di given zk translates into the factorization
of the joint probability of xj , zk and di:

P (xj , di) =
L∑

k=1

P (xj | zk)P (zk | di)P (di)

= P (di)
L∑

k=1

P (xj | zk)P (zk | di) (2.3)
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Figure 2.5: Left: unwrapped representation of the PLSA model. Right: compact representation of
the same graphical model using the plate notation. Shaded nodes are observed. M is the number of
training documents di, and n(di) =

∑N
j n(xj , di) is the number of elements in document di.

The conditional independence assumption, expressed in Equation 2.3, makes each document di a
mixture of latent aspects, defined by the multinomial distribution P (z | di). Each latent aspect zk

is defined by the multinomial distribution P (x | zk), which gives the probability of each element xj

given an aspect zk. The graphical model shown in Figure 2.5 illustrates the conditional independence
assumption of the PLSA model. The unwrapped PLSA model is shown on the left and the compact
version is shown on the right, using the plate notation [9]. The variables x and d are observed and
represented as shaded nodes; z is not observed, and represented as a white node. The conditional
independence assumption between x and d given z is illustrated by the lack of link between the node
d and x.

2.4.1 Model parameters

The conditional probability distributions P (z | d) and P (x | z) are multinomial given that both z
and x are discrete random variables. The parameters of these distributions are estimated by the
Expectation-Maximization algorithm [29]. For a vocabulary of N different elements, P (x | z) is a
N -by-L table that stores the parameters of the L multinomial distributions P (x | zk). P (x | zk)
characterizes each aspect zk, and is valid for documents that are not part of the training set. On the
contrary, the L-by-M table P (z | d) is only relative to the M training documents, as it stores the
parameters of the M multinomial distributions P (z | di) that describes the training document di.

To illustrate these conditional probability distributions in the context of image captions, Fig-
ure 2.6(c) shows the PLSA decomposition of an image caption in L = 80 aspects, where the parame-
ters are learned on the captions of 5188 images (more details will be given in Chapter 5). The PLSA
model decomposes the caption into three main aspects, which are represented in Figure 2.6 (d)-(f)
by their multinomial distributions over words P (x | zk) and ranked by their probability P (z | d).
Each distribution P (x | z) has also been rearranged showing most probable words first. As can be
seen, aspect number 10 (Figure 2.6 (d)) is most likely to generate the word mountain (then valley);
aspect number 3 (Figure 2.6 (e)) generates the words temple, statues, sculpture and stairs with high
probabilities; aspects 47 (Figure 2.6 (f)) is related to the words stone, ruins, sculpture, pillars and
pyramids. Note that this decomposition of an image caption into a mixture of aspects can now be
related to the decomposition of the visual content of an image into a mixture of aspects, that we have
introduced before. The approach we have presented here thus offers the possibility to link the two
modalities through their aspect decomposition, which we investigate in Chapter 5.
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Figure 2.6: Aspect decomposition of the image caption mountain, ruins, temple, and tree for a PLSA
model trained with 80 aspects on 5188 image captions. (a) is the considered image di, (b) is the word
caption histogram w(di), (c) is the aspect distribution P (z | di), and (d-f) are the distributions of the
20 top-ranked words given the three most probable aspects (10, 3 and 47 respectively).
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2.4.2 Learning

If each element in each document in a collection was explicitly attributed to its corresponding aspect,
the estimation of the per-aspect multinomial distributions over words would only be a matter of
counting. Similarly, the distribution of aspects per document could be directly estimated by counting
the number of times each aspect is attached to its constituting element. The aspect attribution is
however not observed, and an Expectation-Maximization algorithm must therefore be derived from
the likelihood of the observed data (Equation 2.4) to estimate the parameters of the distributions
P (x | z) and P (z | d).

L =
M∏
i

N∏
j

P (di)
L∑
k

P (zk | di)P (xj | zk)n(xj ,di), (2.4)

where n(xj , di) is the count of element xj in document di. The two steps of the EM algorithm are the
following:

E-step : the conditional probability distribution of the latent aspect zk given the observation pair
(di, xj) is computed from the previous estimate of the model parameters.

P (zk | di, xj) =
P (xj | zk)P (zk | di)∑L
l=1 P (xj | zl)P (zl | di)

(2.5)

M-step : The parameters of the multinomial distribution P (x | z) and P (z | d) are updated with the
new expected values P (z | d, x).

P (xj | zk) =
∑M

i=1 n(di, xj)P (zk | di, xj)∑N
m=1

∑M
i=1 n(di, xm)P (zk | di, xm)

(2.6)

P (zk | di) =

∑N
j=1 n(di, xj)P (zk | di, xj)

n(di)
(2.7)

2.4.3 Inference of the aspect mixture weights of a new document

The conditional probability distribution over aspects P (z | dnew) can be inferred for an unseen docu-
ment dnew using the Algorithm 2.1. This folding-in method, proposed in [29], maximizes the likelihood
of the document dnew with a partial version of the EM algorithm described above, where P (x | z) is
kept fixed (i.e., not updated at each M-step). In doing so, P (z | dnew) maximizes the likelihood of the
document dnew with respect to the previously learned P (x | z) probability table.

2.4.4 Overfitting control

We control the overfitting of the model by early stopping, based on the likelihood of a validation set
Dvalid. We consider the folding-in likelihood, that allows good performance prediction and overfitting
control without the need for a tempered version of the EM algorithm [85]. The probability of aspects
given each validation document P (z | d′i) is first estimated using the folding-in method, as described
in Section 2.4.3. The folding-in likelihood of the validation set Dvalid given the current parameters
P (x | z) is then defined as:

L(Dvalid) =
Mvalid∏

i

N∏
j

P (xj | d′i)n(xj ,d′
i) (2.8)

=
Mvalid∏

i

N∏
j

L∑
k

(P (xj | zk)P (zk | d′i))n(xj ,d′
i), (2.9)
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Algorithm 2.1 Estimation of the P (z | dnew) distribution using the P (x | z) probability table

random initialization of the P (z | dnew) distribution

for iter < max iter do
[E-step]
for all (dnew, xj) pairs such that n(dnew, xj) > 0, and k ∈ {1, . . . , L} do

P (zk | dnew, xj) =
P (xj | zk)P (zk | dnew)∑L
l=1 P (xj | zl)P (zl | dnew))

end for

[Partial M-step]
for k ∈ {1, . . . , L} do

P (zk | dnew) =

∑N
j=1 n(dnew, xj)P (zk | dnew, xj)

n(dnew)

end for
end for

where P (zk | d′i) is estimated by folding-in (see Algorithm 2.1), and Mvalid is the number of validation
documents d′. The complete learning algorithm of a PLSA model, including the overfitting control
based on the folding-in likelihood computation of an evaluation set Dvalid, is detailed in Algorithm 2.2.
At each EM iteration, the folding-in likelihood of the validation set Dvalid is computed, and the model
parameters corresponding to the highest folding-in likelihood value are kept.
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Algorithm 2.2 Learning a PLSA model with overfitting control, using a validation set Dvalid

random initialization of the P (z | d) and P (x | z) probability tables

while increase in the likelihood of validation data L(Dvalid) > T do
[E-step]
for all (di, xj) pairs such that n(di, xj) > 0, and k ∈ {1, . . . , L} do

P (zk | dnew, xj) =
P (xj | zk)P (zk | di)∑L
l=1 P (xj | zl)P (zl | di))

end for
[M-step]
for j ∈ {1, . . . , N} and k ∈ {1, . . . , L} do

P (xj | zk) =
∑M

i=1 n(di, xj)P (zk | di, xj)∑N
m=1

∑M
i=1 n(di, xm)P (zk | di, xm)

end for
for k ∈ {1, . . . , L} and i ∈ {1, . . . ,M} do

P (zk | di) =

∑N
j=1 n(di, xj)P (zk | di, xj)

n(di)

end for
estimate P (z | d′), where d′ ∈ Dvalid by folding-in
compute folding-in likelihood of the validation data L(Dvalid)

end while
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2.5 Conclusion

Modeling an image as a mixture of hidden aspects, defined by multinomial distributions over vis-
terms, represents a promising approach to model visual information. In this chapter, we introduced
the concept of latent aspect and illustrated what visual latent aspects are, in perspective with the
concept of latent aspects in a text collection. But can latent aspect models really capture coherent
co-occurrence information from a bag-of-visterms representation? Given that aspects are obtained
by unsupervised learning, will they match semantic concepts? The concept of mixture of aspect for
images is systematically investigated in the following chapters to answer these questions.

The decomposition of an image into a mixture of aspects P (z | d) is first used as a novel image
representation estimated from the bag-of-visterms, which is evaluated for various image classification
tasks in Chapter 3. In the same chapter, an image ranking method is proposed to illustrate what
latent aspects are, relying on the probability of documents given an aspect P (d | z). The visterms v
themselves can be classified into different classes, producing a novel way of performing image segmen-
tation resulting from the class label density. We show in Chapter 4 that the conditional probability
of aspects given a document and a visterm, estimated in the E-step (Equation 2.5) P (z | d, v) can
serve as a basic visterm classifier. We then propose and evaluate two principled methods to learn a
visterm classifier based on the image decomposition into aspects. Finally, we propose three alterna-
tive learning procedures to merge the textual and visual aspects of annotated image in Chapter 5,
for which the aspect mixture weights are estimated from both the textual and visual modalities, the
visual modality only or the textual modality only. This allows to predict a word distribution P (w | z)
based on the bag-of-visterms representation of a new image that can serve as textual indexing.



Chapter 3

Aspect-based image
classification and ranking

In this Chapter, we evaluate the relevance of an aspect-based image representation for image classifi-
cation, and propose a ranking method derived from the aspect mixture weights. The intuition behind
the concept of mixture of aspects for images was given in Chapter 2, and a concrete application of the
aspect model for images is proposed here in the context of scene and object classification. Three of
our publications compose the base of this analysis: the first two [68, 67] investigated the classification
of images in different scene types, the third [54] addressed the problem of classifying images based on
what object they contain. Both introduced the concept of aspect-based image ranking.

We discuss the problem of scene and object classification, pointing out how the two problems are
related in Section 3.1. An overview of the related work, discussing recently proposed approaches for
scene and object classification is given in Section 3.2. In Section 3.3, we present the construction of
the bag-of-visterms representation - combining a point detector and an invariant region descriptor -
that we considered to learn the aspect-based image representation from. A parallel between words
and visterms is drawn, confirming the polysemy and synonymy ambiguities that result from the quan-
tization of image regions into visterms. Section 3.4 discusses the classifier that is considered, the
different scene and object classification datasets used for the evaluation, and the baseline methods
for the scene classification problems. The experimental investigation, contained in Section 3.5, starts
with the evaluation of the bag-of-visterms representation for scene and object classification, comparing
its performance to existing baseline methods and analyzing the influence of the visterm vocabulary
size. The aspect-based image representation is then compared to the bag-of-visterms representation
for scene and object classification, showing how the aspect-based image representation can take ad-
vantage of unlabeled data. Finally, we propose a method for unsupervised soft clustering of images in
Section 3.6, showing the type of structure captured by an aspect model in an image collection.

3.1 Scene and object classification

Scene and object classification are two tightly related problems, which can be difficult to specify
independently. A scene is composed of several entities (e.g. car, house, building, face, wall, door, tree,
forest, rocks), organized in often unpredictable layouts. If a majority of these entities are correctly
recognized, the interpretation of the corresponding scene might become straightforward. Conversely,
if the scene in which an object occurs is correctly identified, the recognition of this object might
be easier given this scene context. Scene and object classification are therefore two interdependent
problems, as illustrated with examples taken from our scene dataset (left column) and the objects
dataset (right column) in Figure 3.1. Image (a) is from the city scene category, and image (b) is
from the building object category. The correct identification of a city scene context could certainly

27
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scene classification object classification

(a) city (b) building

(c) indoor (d) book

(e) landscape (f) tree

Figure 3.1: Illustration of the scene and the object classification datasets. From the scene dataset,
examples from the categories city (a), indoor (c), and landscape (e) are shown. From the object
dataset, examples from the categories buildings (b), book (d), and tree (f) are shown.
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help the classification of an image as containing a building object. Conversely, an image classified as
containing a building is more likely to belong to the city class.

In the extreme case in which each object category is highly correlated with a single type of back-
ground, specific to each object category, the object classification task can be equivalently formulated
as a scene classification task. However, if the background regions surrounding an object are only
marginally correlated with their categories, the two problems differ. The indoor scene category, illus-
trated by the image (c) in Figure 3.1, does not necessarily imply the presence of a book (d) for instance.
The tree object category, exemplified by image (f), is not necessarily related to the forest scene cate-
gory, illustrated by image (e) if it appears in isolation. Furthermore, in that example, the background
of the tree object example is actually closer to the city category, showing that background information
is not sufficient for object classification. Object and scene classification are therefore distinct - though
related - problems.

On one hand, images of a given object are usually characterized by the presence of a limited set of
specific local image patches, organized into different view-dependent geometrical configurations. On
the other hand, the visual content (entities, layout) of a specific scene class exhibits a large variability,
characterized by the presence of a large number of different visual descriptors. In view of this, while
the specificity of an object strongly relies on the geometrical configuration of a relatively limited
number of visual descriptors [76, 25], the specificity of a scene class greatly rests on the particular
patterns of co-occurrence of a large number of visual descriptors. Their constitutive components are
nevertheless the same: local image patches that either characterize a scene class when distributed
over an image, or define an object category when organized in a specific configuration. We propose
to use the same representation for the two types of visual content, relying on visterms to capture the
relevant constitutive elements.

3.2 Related Work

The problem of scene classification using low-level features has been studied in image and video
retrieval for several years [28, 83, 88, 87, 61, 59, 64, 79]. Broadly speaking, the existing meth-
ods differ by the definition of the target scene classes, the specific image representations, and the
classification method. We focus the discussion on the first two points. With respect to scene
definition, most methods have aimed at classifying images into a small number of semantic scene
classes, including indoor/outdoor [83, 78], city/landscape [88], and sets of natural scenes (e.g. sun-
set/forest/mountain) [59]. However, as the number of categories increases, the issue of overlapping
between scene classes in images arises. To handle this issue, a continuous organization of scene classes
(e.g. from man-made to natural scenes) has been proposed [61]. Alternatively, the issue of scene
class overlap can be addressed by doing scene annotation (e.g. labeling a scene as depicting multiple
classes). This approach is followed by Boutell et al. [8], which exploits the output of one-against-all
classifiers to derive multiple class labels.

Regarding global image representations for scene classification, the work by Vailaya et al. is re-
garded as the representative of the literature in the field [88, 87]. This approach relies on a combination
of distinct low-level cues for different two-class problems (global edge features for city/landscape, and
local color features for indoor/outdoor). In the work by Oliva and Torralba [61], an intermediate
classification step into a set of global image properties (naturalness, openness, roughness, expansion,
and ruggedness) is proposed. Images are manually labeled with these properties, and a Discriminant
Spectral Template (DST) is estimated for each property. The DSTs are based on the Discrete Fourier
Transform (DFT) extracted from the whole image, or from a four-by-four grid to encode basic spatial
information. A new image is represented by the degree of each of the five properties based on the
corresponding estimated DST, and this representation is used for the classification into semantic scene
categories (coast, country, forest, mountain,...). Other approaches to scene classification also rely on
an intermediate supervised region classification step [59, 72, 20, 91]. Based on a Bayesian Network
formulation, Naphade and Huang defined a number of intermediate regional concepts (e.g. sky, water,
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rocks) in addition to the scene classes [59]. The relations between the regional and the global con-
cepts are specified in the network structure. Serrano et al. [72] propose a two-stage classification of
indoor/outdoor scenes, where features of individual image blocks from a spatial grid layout are first
classified into indoor or outdoor. These local classification outputs are further combined to create
the global scene representation used for the final image classification. Similarly, Vogel and Schiele
recently used a spatial grid layout in a two-stage framework to perform scene retrieval [91] and scene
classification [92]. The first stage does classification of image blocks into a set of regional classes, dif-
ferent from the scene target labels which extends the set of classes defined in [59] (this is thus different
from [72] and requires additional block ground-truth labeling). The second stage performs retrieval
or classification based on the occurrence of such regional concepts in query images. Alternatively,
Lim and Jin [42] successfully used the soft output of semi-supervised regional concept detectors in
an image indexing and retrieval application. In a different formulation, Kumar and Herbert used a
conditional random field model to detect and localize man-made scene structures, doing in this way
scene segmentation and classification [33]. Overall, a large number of local, regional, and global image
representations have been used for scene classification.

The combination of interest point detectors and local descriptors are increasingly popular for
object detection, recognition, and classification [43]. The literature in the field is too large to discuss
in exhaustively here [76, 25, 21, 17, 62, 77, 94, 37]. For the classification task, recent works include
[25, 21, 17, 62, 22, 94]. Most existing works have targeted a relatively small number of object classes
(an exception is [22]). Fergus et al. optimized, in a joint unsupervised model, a scale-invariant
localized appearance model and a spatial distribution model [25]. Fei-Fei et al. proposed a method to
learn object classes from a small number of training examples [21]. The same authors extended their
work to an incremental learning procedure, and tested it on a large number of object categories [22].
Dorko and Schmid performed feature selection to identify local descriptors relevant to a particular
object class, given weakly labeled training images [17]. Opelt et al. proposed to learn classifiers from
a set of visual features, including local invariant ones, via boosting [62]. Although our work shares
the use of invariant local descriptors with all these methods, scenes are different than objects in a
number of ways, as discussed in the Introduction, and pose specific challenges.

The analogy between invariant local descriptors and words has also been exploited recently [76, 77,
94]. Sivic and Zisserman proposed to cluster and quantize local invariant features into visterms, for
object matching in frames of a movie. Such approach allows to reduce noise sensitivity in matching and
to search efficiently through a given video for frames containing the same visual content (e.g. an object)
using inverted files [76, 77]. Csurka et al. extended the use of visterms creating a system for object
matching and classification based on a bag-of-words representation built from local invariant features
and various classifiers, reporting good results [94]. However, these methods neither investigated the
task of scene modeling and classification, nor considered latent aspect models.

In another research direction, a number of works have also relied on the definition of visterms
and/or on variations of latent space models to model annotated images, i.e. to link images with
(semantic) words [57, 5, 6, 31, 51, 52, 95]. However, all these methods have relied on traditional
regional image features without much viewpoint and/or illumination invariance. As an example, R.
Zhang and Z. Zhang [95] explored the use of a latent space model to discover semantic concepts for
content-based image retrieval. The model is learned from a set of quantized regions per image, and the
similarity between images is computed from the estimated posterior probability over aspects. In our
work, we characterize an image using local descriptors as visterms, taking into account the problems
that exist in the construction of a visterm vocabulary. We use latent space models not to annotate
images but to address some limitations of the visterm vocabulary, describing images with a model that
explicitly accounts for the importance of visterm co-occurrence. The problem of image annotation is
addressed in Chapter 5.

In parallel to our work [68], the joint use of local invariant descriptors and probabilistic latent
aspect models has been investigated by Sivic et al. for object clustering in image collections [75],
and by Fei-Fei and Perona for scene classification [23]. Although related, these two approaches differ
from ours in their assumptions, and do not take advantage of unlabeled data in their experiments.
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Sivic et al. [75] investigated the use of both Latent Dirichlet Allocation (LDA) [7] and PLSA for
clustering objects in image collections. With the same image representation as ours, they showed that
latent aspects closely correlate with object categories from the Caltech object database, though these
aspects are learned in an unsupervised manner. The number of aspects was chosen by hand to be
equal (or very close) to the number of object categories, so that images are seen as mixtures of one
’background’ aspect with one ’object’ aspect. This allows for a direct match between object categories
and aspects, but at the same time implies a strong coherence of the appearance of objects from the
same category: each category is defined by only one multinomial distribution over the quantized local
descriptors. Closer to our work, Fei-Fei and Perona [23] proposed two variations of LDA [7] to model
scene categories. They tested different region detection processes - ranging from random sampling
to fixed-grid segmentation - to build an image representation based on quantized local descriptors.
Contrarily to [75], Fei-Fei and Perona [23] propose to model a scene category as a mixtures of aspects,
and each aspect is defined by a multinomial distribution over the quantized local descriptors. This is
achieved by the introduction of an observed class node in their models [23], which explicitly requires
each image example to be labeled during the learning process.

In our approach, we model scene and object images using a probabilistic latent aspect model and
quantized local descriptors, but without assuming a one to one correspondence between categories and
aspects as in [75], and without learning a single distribution over aspects per scene category as in [23].
Images - not categories - are modeled as mixtures of aspects in a fully unsupervised way, without class
information. The distribution over aspects serves as image representation, that is inferred on new
images and used for supervised classification in a second step. These differences are crucial, as they
allow us to investigate the use of unlabeled data for learning the aspect-based image representation,
which is one contribution of this chapter. We also evaluate the performance of the bag-of-visterms
representation, learned from different data sources, with other types of image representations.

3.3 Image representation

In this section, we focus on the two image representations that we want to evaluate for image classi-
fication: the first one is the bag-of-visterms, built from automatically extracted and quantized local
descriptors, the second one is based on aspect mixture weights, as defined in Chapter 2.

3.3.1 Bag-of-visterms from interest points

The construction of the bag-of-visterms (BOV) feature vector sfrom an image d can be summarized
in the four steps illustrated in Figure 3.2 (a-d): (b) interest points are automatically detected in the
image, (c) local descriptors are computed over those regions, and (d) all the descriptors are quantized
into visterms, and counted to build the BOV representation of the image.

image detected regions region descriptors bag-of-patches

[3 0 0 ... 37 17 46]
[1 4 4 ... 54 23 8]

· · ·
[1 0 0 ... 11 19 30]

0 50 100 150 200 250 300 350 400 450 500
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sift index
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t
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Figure 3.2: Construction of the bag-of-patches representation of an image. Interest points are detected
at different locations and scales (b), regions properties are captured by local descriptors (c), and these
descriptors are quantized into patches, creating a bag-of-patches representation (d).
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A variety of point detectors and descriptors have been proposed in the literature, and thorough
evaluations of their combinations have been conducted for wide baseline matching tasks [46, 48, 47].
Their performance is therefore well established in this context, but the extrapolation of these results to
our case scenario is not obvious. We want to exploit the combination of point detectors and descriptors
to build an image representation that can discriminate between scene and object classes. This non-
standard application does not necessarily require the same invariance properties that are crucial
for matching the same points of a given object between two transformed images. The evaluation of
different detector and descriptor combinations should therefore ideally be reconducted to find the best
performing solution for each classification task, that could require a particular combination depending
of the specific classes that are considered. We do not discuss these experiments here. The results and
discussions can be found in [67], and they justify the choice made in this chapter.

In the following, we provide a description of the interest point detector and the local descriptor
used in this work, justifying our choice based on other studies.

Interest point detector

The goal of the interest point detector is to automatically extract characteristic points -and more
generally regions- from the image, which are invariant to some geometric and photometric transfor-
mations. This invariance property is interesting, as it ensures that given an image and its transformed
version, the same image points will be extracted from both and hence, the same image representation
will be obtained.

Several interest point detectors exist in the literature. They vary mostly by the amount of invari-
ance they theoretically ensure, the image property they exploit to achieve invariance, and the type of
image structures they are designed to detect [46, 86, 43, 48]. In this work, we use the difference of
Gaussians (DoG) point detector [43]. The DoG point detector is based on the difference of Gaussian
filters at various scales s. Its implementation can be summarized in the following four points:

• Convolution of the image with Gaussian filters at different scales (see Figure 3.3 (a) and (b)).

• Construction of the difference of Gaussian images (see Figure 3.3 (c)) from adjacent blurred
images.

• Scale-space extrema detection, illustrated in Figure 3.4: each pixel of a DoG image (in black) is
compared to its 8 neighboring pixels fomr the same image (in blue) and the 2 × 9 neighboring
pixels in the two adjacent DoG images (in green). This pixel is a valid candidate keypoint if it
is a minimum or a maximum.

• Post-processing :

– keypoints with low contrast are removed,

– responses along edges are eliminated,

– the keypoint is assigned an orientation and a scale.

This detector essentially identifies blob-like regions where a maximum or minimum of intensity
occurs in the image, and is invariant to translation, scale, rotation and constant illumination variations.
We chose this detector since it was shown to perform well in comparisons previously published by other
authors [47]. An additional reason to prefer this detector over fully affine-invariant ones [46, 86, 45] is
also motivated by the fact that an increase of the degree of invariance may remove information about
the local image content that is valuable for classification.

Local descriptor

Local descriptors are computed on the region around each interest point identified by the detector,
relatively to the scale at which the point was detected. We use the SIFT (for Scale Invariant Feature
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Figure 3.3: The difference of Gaussian (DoG) filtering of an image. A first Gaussian filter with a
standard deviation σ1 is applied to the image, resulting in a first Gaussian blurred version (a). A
second Gaussian filter with a standard deviation σ2 is applied to the image, resulting in a second
Gaussian blurred version (b). The difference of the two Gaussian blurred images (a) and (b) results
in the DoG image (c), which is equivalent to applying the difference of Gaussian filter.

Transform) feature as local descriptors [43]. This choice is motivated by the findings of several pub-
lications [47, 23]. The SIFT descriptor is computed from the grayscale information of images, and
was shown to perform best in terms of specificity of region representation and robustness to image
transformations [47]. Given the orientation of the image region estimated from the interest point de-
tector, the SIFT features are computed as local histograms of edge directions computed over different
parts of the interest region (see Figure 3.5 (right)). This allows to capture the structure of the local
image regions, which correspond to specific geometric configurations of edges or to more texture-like
content. In [43], it was shown that the use of 8 orientation directions and a grid of 4× 4 parts gives a
good compromise between descriptor size and accuracy of representation. We use the same settings,
that correspond to a descriptor of size 128.

Quantization of local descriptors into visterms

From the two preceding point detection and description steps, we obtain a set of real-valued local
descriptors. In order to obtain a simple, fixed size image representation, we quantize each local
descriptor s into a discrete set of visterms v according to a nearest neighbor rule:

s 7−→ Q(s) = vi ⇐⇒ dist(s, vi) ≤ dist(s, vj) ∀j ∈ {1, . . . , N} (3.1)

where N denotes the size of the visterm set. We will call vocabulary the set of all visterms.
The construction of the vocabulary is performed through clustering. We apply the K-means

algorithm to a set of local descriptors extracted from training images, each cluster corresponding to
a visterm. We used the Euclidean distance in the clustering (and in Equation 3.1) and choose the
number of clusters depending on the desired vocabulary size. The choice of the Euclidean distance to
compare SIFT features is common [43, 46].

Technically, the grouping of similar local descriptors into a specific visterm can be thought of
as being similar to the stemming preprocessing step of text documents, as already mentioned in
Chapter 2. The intuition behind stemming is that the meaning of words is carried by their stem
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Figure 3.4: Construction of the difference of Gaussian images from Gsuassian blurred images(left), and
scale-space extrema detection (right). DoG images are constructed by substracting Gaussian blurred
images at different σs. Given three adjacent DoG images, each pixel value (in black) is compared to
its 8 neighboring pixels from the same image (in blue) and its 2 × 9 neighboring pixels in the two
adjacent DoG images.

rather than by their morphological variations [4]. The terms test, tests and testing are for instance
mapped to the same stem test, and become equivalent in the bag-of-words representation of a text.
The same motivation applies to the quantization of similar descriptors, that are mapped onto a single
visterm. Furthermore, local descriptors will be considered as distinct whenever they are mapped to
different visterms, regardless of whether they are close or not in the SIFT feature space. This also
resembles the text modeling approach which considers that all information is in the stems, and that
any distance defined over their representation (e.g. strings in the case of text) carries no semantic
meaning.

To illustrate what visterms correspond to in practice, we show image patches sampled from three
visterms obtained when building the vocabulary V1000 (see Section 3.4.2 for details about the data) in
Figure 3.6. The quantization of local descriptors achieves the intended goal: image regions that contain
a similar type of visual content, in term of texture and edge directions in this case, are grouped into the
same set of image patches. The first visterm in Figure 3.6 (a) corresponds to image patches containing
vertical, corner-like sharp structures that can be found on windows. The visterm (b) contains image
patches that correspond to high frequency textures, very likely to occur in natural scenes (tree, rocks,
...). The visterm (c) corresponds to heterogeneous image patches, having a centered, darker spot in
common. The examples from visterm (d) are composed of both window and eyes patches, sharing a
similar look. As a first observation, it seems that the quantized local patches are good candidates to
represent object and scenes as sets of parts, as suggested in Section 3.1. A large number of visterms
should for instance allow to represent a variety of scene types. Visterms such as the one illustrated on
Figure 3.6 (a) represent local structures encountered in cities, while visterms such as the one illustrated
on Figure 3.6 (b) are likely to correspond to vegetation regions.

The visterms (c) and (d) in Figure 3.6 illustrates the ambiguity issue that arises from the quan-
tization of descriptors. The patches sampled from visterm (c) contain eyes, window parts, and a
variety of other content. This could be described as polysemy, as a single visterm represents different
visual content. The visterm (d) mostly contain eye regions, captured with a different orientation
than visterm (c), which illustrates the potential synonymy of visterms: two visterms characterize the
same image content. As we have discussed in Chapter 2, these ambiguities can be addressed by a
latent aspect model. Latent aspects, defined by multinomial distribution over visterms learned from
a relevant dataset, can potentially disambiguate the visterms from their co-occurrence context in the
image.
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Figure 3.5: The Scale Invariant Feature Transform (SIFT) descriptor. The detected regions are
segmented into a 4 × 4 grid, and each square is represented by an eight-bin histogram of the edge
directions in this region, resulting in a description vector of dimension 128.

Bag-of-visterms

The first image representation that we will evaluate for classification is the bag-of-visterms (BOV),
constructed from the local descriptors according to:

s(di) = {n(di, v1), . . . , n(di, vj), . . . , n(di, vN )}, (3.2)

where n(d, vi) denotes the number of occurrences of visterm vj in image d. This vector-space represen-
tation of an image contains no information about spatial relationship between visterms. The standard
bag-of-words text representation results in a very similar ’simplification’ of the data: even though
word ordering contains a significant amount of information about the original data, it is completely
removed from the final document representation.

3.3.2 Aspect-based image representation

We propose to evaluate an aspect-based image representation, estimated from the BOV representation
using a PLSA model. The PLSA model parameters are estimated on a first set of images, and
the mixture aspect weights are inferred on the documents to classify using the folding-in method
described in Section 2.4.3. As an illustration, the Figure 3.7 shows the distribution over aspects for
two images, for an aspect model trained on a collection of 6600 images of landscape and city images
for a vocabulary of 1000 visterms. The conditional distributions of visterms given the K = 60 aspects
are represented on the right column of Figure 3.7, representing an aspect by its specific visterm co-
occurrence pattern. We see in Figure 3.7 that the BOV representations of the two images are modeled
by two dissimilar distributions over aspects, reflecting their differences in content. The two images are
composed of different visterm co-occurrences that exist in the image collection, resulting in different
image-dependent contexts.

The aspect mixture parameters P (z|di) given an image di is proposed as an image representation
that for scene and object classification:

a(di) = {P (z1|di), . . . , P (zk|di), . . . , P (zL|di)} (3.3)

3.4 Experimental setup

In this section, we describe the scene and object classification tasks that we consider, the origin and
the composition of the corresponding datasets, and the baseline methods that were implemented for
comparison purposes. A description of the specific classifier used in experiments is given here.
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Figure 3.6: Illustration of 4 visterms based on 36 randomly sampled regions attributed to these
visterms. We see that similar image patches are mapped onto the same visterm.

3.4.1 SVM classification

To classify an input image d represented either by the BOV vectors s, the aspect parameters a, or
any of the feature vector of the baseline approach (see next section), we employed Support Vector
Machines (SVMs) [12]. SVMs have proven to be successful in solving machine learning problems
in computer vision and text categorization tasks, especially those involving large dimensional input
spaces. In the current work, we use Gaussian kernel, whose bandwidth was chosen based on a 5-fold
cross-validation procedure.

Standard SVMs are binary classifiers, which learn a decision function f(x) through margin opti-
mization [12], such that f(x) is large (and positive) when the input x belongs to the target class, and
negative otherwise. For multi-class classification, we adopt a one-against-all approach [93]. Given a
n-class problem, we train n SVMs, where each SVM learns to differentiate images of one class from
images of all other classes. In the testing phase, each test image is assigned to the class of the SVM
that delivers the highest output of its decision function.

3.4.2 Classification tasks

We investigate the relevance of the aspect-based image representation for scene and object classifica-
tion, comparing its performance with the BOV representation. In the case of scene classification, we
measure the effect of changing the vocabulary size, varying the number of aspects. Moreover, results
obtained with baseline approaches based on global descriptors are reported for comparison.

Scene classification

Four scene classification tasks, ranging from binary to five-class classification, have been considered to
evaluate the performance of the proposed approaches. We first considered two standard, unambiguous
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Figure 3.7: Two scene images and their decomposition into a mixture of K = 60 aspects, estimated
by the PLSA model. The second column is the histogram of 1000 visterms (BOV) corresponding to
the image on the same row, the third column shows the estimated distribution over aspects given this
BOV representation. The right column represents the K conditional distributions over visterms given
the aspects zk.

binary classification tasks: indoor vs. outdoor, and landscape vs. city. These two binary classification
tasks allow a first evaluation of the classification performance, and a fair comparison with approaches
that have been proposed for the same tasks [87]. For a more detailed analysis of the performance,
we then merged the two binary classification tasks to obtain a three-class problem (indoor vs. city
vs. landscape). We also subdivided the landscape class into mountain and forest, and the city class
into street view and panoramic view to obtain a five-class dataset. As discussed in Section 3.5, the
performance can vary depending on the classification tasks that is considered. In total, five datasets
were created for our scene classification experiments.

D1: this dataset of 6680 images contains a subset of the Corel database [87], and is composed of 2505
city and 4175 landscape images of 384×256 pixels.

D2: this set is composed of 2777 indoor images retrieved from the Internet. The size of these images
is on average 384×256 pixels. Original images with larger dimensions were resized using bilinear
interpolation. The image size in the dataset was kept approximately constant to avoid a potential
bias in the BOV representation, since it is known that the number of detected interest points is
highly dependent on the image resolution.

D3: this dataset is constituted by 3805 images from several sources: 1002 building images (ZuBud) [73],
144 images of people and outdoors [62], 435 indoor human faces [94], 490 indoor images (Corel) [87],
1516 city/landscape overlap images (Corel) [87], and 267 Internet photographic images.

D4: this dataset is composed of all images from the datasets D1 and D2. The total number of images
in this dataset is 9457.

D4v: this is a subset of D4 composed of 3805 randomly chosen images.
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D5: this is a five-class dataset. It comprises all images from the dataset D2, and images from D1
whose content corresponds to the selected classes. From the 6680 images of D1 we kept : 590
mountain images, 492 forest images, 1957 city street images (close-up of buildings), and 548 city
panoramic images (middle to far views from buildings). The datasets contains a total of 6364
images.

We use the dataset D1 for the city vs. landscape scene classification task, and the dataset D4
for indoor vs. outdoor scene classification. We also use D4 in the three-class case. Dataset D5 is
employed in the five-class problem. Alternative vocabularies were constructed from either D3 or D4v,
allowing us to study the data’s influence on the vocabulary model, and its impact on classification
performance. With 3805 images, we obtained in both cases approximately one million descriptors to
train the vocabulary models.

Object classification

In addition to the scene classification experiments, one object classification task is considered.

D6: The image classes are: faces (792), buildings (150), trees (150), cars (201), phones (216), bikes
(125) and books (142), adding up to a total of 1776 images. The size of the images varies
considerably: images can have between 10k and 1,2M pixels while most image sizes are around
100-150k pixels. We resize all images to 100k pixels since the local invariant feature extraction
process is highly dependent of the image size. This ensures that no class-dependent image size
information is included in the representation, but does introduce some resizing artifacts at the
same time.

3.4.3 Experimental protocol

The protocol for each of the classification experiments is as follows. The full dataset of a given exper-
iment was divided into 10 parts, defining 10 different splits of the full dataset. One split corresponds
to keeping one part of the data for testing, while using the other nine parts for training (hence the
amount of training data is 90% of the full dataset). In this way, we obtain 10 different classifica-
tion results. Reported values for all experiments correspond to the average error over all splits, and
standard deviations of the errors are provided in parentheses after the mean value.

Additional experiments were conducted with a decreasing amount of training data for the SVM
model, to test the robustness of the image representation. In that case, for each of the splits, images
were chosen randomly from the training part of the split to create a reduced training set. Care was
taken to keep the same class proportions in the reduced set as in the original set, and to use the same
reduced training set in those experiments involving two different representation models. The test data
of each split was left unchanged.

3.4.4 Baseline method for scene classification

As a baseline method, we use the image representations proposed by Vailaya et al. [87], combined
with the same SVM classification. We selected this approach, as it reports some of the best results
from all scene classification approaches for datasets with landscape, city and indoor images and since
it has already been proven to work on a significant enough dataset.

Two different representations are used for each binary classification tasks: color features are used
to classify images as indoor vs. outdoor, and edge features are used to classify outdoor images as city
or landscape. Color features are based on the LUV first- and second-order moments computed over
a 10×10 spatial grid of the image, resulting in a 600-dimensional feature vector. Edge features are
based on edge coherence histograms calculated on the whole image. Edge coherence histograms are
computed by extracting edges in only those neighborhoods exhibiting some edge direction coherence,
eliminating in this way areas where edges are noisy. Directions are then discretized into 72 directions,
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and their histogram is computed. An extra non-edge pixels bin is added to the histogram, leading to
a feature space of 73 dimensions.

In the three-class problem, this approach applies both methods in a hierarchical way [87]. Images
are first classified as indoor or outdoor given their color representation. All correctly classified outdoor
images are further classified as either city or landscape, according to their edge direction histogram
representation.

3.5 Classification results

This section reports the classification performance of the BOV and the aspect-based image representa-
tions for the different scene and object classification tasks presented above. The influence of different
parameters, related to the visterm construction and the aspect model is successively analyzed.

3.5.1 Image classification with bag-of-visterms

Binary scene classification

To analyze the effect of varying the size of the vocabulary employed to construct the BOV represen-
tation, we considered four vocabularies of 100, 300, 600, and 1000 visterms, denoted by V100, V300,
V600, and V1000, respectively, and constructed from D3 as described in Section 3.3. Additionally, four
vocabularies V ′

100, V ′
300, V ′

600, and V ′
1000 were constructed from D4v. Table 3.1 provides the classi-

fication error for the two binary classification tasks, indoor/outdoor and city/landscape, comparing
the 8 BOV representations and the baseline. We can observe that the BOV approach consistently
outperforms the baseline methods. This is confirmed in all cases with a paired T-test, for p = 0.05.
Note that, contrarily to the baseline methods, the BOV representation uses the same features for both
tasks, and no color information.

indoor/outdoor city/landscape

baseline 10.4 (0.8) 8.3 (1.5)

BOV V100 8.5 (1.0) 5.5 (0.8)
BOV V300 7.4 (0.8) 5.2 (1.1)
BOV V600 7.6 (0.9) 5.0 (0.8)
BOV V1000 7.6 (1.0) 5.3 (1.1)

BOV V ′
100 8.1 (0.5) 5.5 (0.9)

BOV V ′
300 7.6 (0.9) 5.1 (1.2)

BOV V ′
600 7.3 (0.8) 5.1 (0.7)

BOV V ′
1000 7.2 (1.0) 5.4 (0.9)

Table 3.1: Classification error for the baseline model and the BOV representation, for 8 different
vocabularies. The size of vocabulary is varied (100, 300, 600 and 1000 visterms) and the K-means
model are learned from the dataset D3 or D4v for the V and V ′ vocabularies, respectively. Means
and standard deviations over the ten splits are shown in parentheses.

Regarding the vocabulary size, we can see that for vocabularies of 300 visterms or more the
classification errors are equivalent. The comparison of the rows 2-5 and 6-9 in Table 3.1 shows
that using a vocabulary constructed from a dataset different than the one used for the classification
experiments does not affect the results (error rates differences are within random fluctuation values)
for these tasks. This result confirms the observations made in [94], and suggests that it might be
feasible to build a generic visterm vocabulary that can be used for different tasks. Based on these
results, we use the vocabularies built from D3 in all the remaining experiments.
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Three-class scene classification

Table 3.2 shows the results of the BOV approach for the three-class classification problem. First,
we can see that the aspect-based representation significantly outperforms the combination of repre-
sentations proposed in [87], according to a paired T-test with p = 0.05. Secondly, the classification
performance does not vary significantly with vocabularies of 300 or more visterms, the vocabulary of
1000 visterms giving slightly better performance. Based on these observations, the vocabulary V1000

is chosen for all experiments in the rest of this chapter.

indoor/city/landscape

baseline 15.9 (1.0)

BOV V100 12.3 (0.9)
BOV V300 11.6 (1.0)
BOV V600 11.5 (0.9)
BOV V1000 11.1 (0.8)

Table 3.2: Three-class classification error for the baseline and BOV representations. The baseline
system is hierarchical (cf Section 3.4.4).

We show the confusion matrix of the three-class task in Table 3.3, when the vocabulary V1000 is
used. Landscape images are well classified, but a confusion between the indoor and city classes exists.
This can be explained by the fact that both classes share not only similar local image structures (which
will be reflected in the same visterms appearing in both cases), but also similar visterm distributions,
due to the resemblance between some more general patterns (e.g. doors or windows). The two images
on the left of Figure 3.8 illustrate some typical errors made in this case, when city images contain a
majority of geometric shapes and little texture. In the third place, the confusion matrix also tells us
that city images are also misclassified as landscape. The main explanation is that city images often
contain natural elements (vegetation like trees or flowers, or natural textures), and specific structures
which produce many visterms. The two images on the right in Figure 3.8 illustrate typical mistakes
in this case.

Five-class scene classification

Table 3.4 presents the confusion matrix obtained with the BOV approach in the five-class experiment,
along with the baseline total classification error. The latter number was obtained using the edge
coherence histogram global feature [87]. The BOV representation performs much better than the
global features in this task, and the results show that we can apply the BOV approach to a larger
number of scene classes and obtain good results. Note that a random class attribution would lead to
an 80% error rate, and a majority class attribution (indoor in this case) to a 56% error rate. From the
confusion matrix, we see that mistakes are made between the forest and mountain classes, reflecting

classification performance (%)

indoor city landscape class error (%) # of images

indoor 89.7 9.0 1.3 10.3 2777

city 14.5 74.8 10.7 25.2 2505

landscape 1.2 2.0 96.8 3.1 4175

Total classification error: 11.1 (0.8), (baseline: 15.9 (1.0))

Table 3.3: Confusion matrix for the three-class classification problem, using vocabulary V1000. Per-
centage of correctly classified and misclassified images is presented, along with the class dependent
error-rates and the number of images per class. The total classification error is given below the table.
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Figure 3.8: Typical classification errors of city images in the three-class problem. Left: city images
classified as indoor. Right: city images classified as landscape.

classification performance (%)

mountain forest indoor city-panorama city-street class error (%) # of images

mountain 85.8 8.6 2.5 0.5 2.6 14.2 590

forest 8.9 80.3 1.6 2.4 6.7 19.7 492

indoor 0.4 0 91.1 0.4 8.1 8.9 2777

city-panorama 3.5 1.8 8.0 46.9 39.8 53.1 549

city-street 2.0 2.2 20.8 6.0 68.9 31.1 1957

Total classification error: 20.8 (2.1) (Baseline: 30.1 (1.1))

Table 3.4: Confusion matrix for the five-class scene classification problem, using vocabulary V1000.
Percentage of correctly classified and misclassified images in each class is presented, along with the
class dependent error-rates and the number of images per class. The total classification error is given
below the table.

the fact that they share similar textures, and the presence of forest in some mountain images. A second
observation is that city-panorama images are often confused with city-street images. This result is not
surprising given the ambiguous definition classes (see Figure 3.9) which was already perceived during
the human annotation process. The errors can be further explained by the scale-invariant nature
of the interest point detector, which makes no distinction between some far-field street views in the
city-panoramic images, and close-to middle-view similar structures in the city-street images. Finally,
the main source of confusion lays between the indoor images and the city-street images, for the same
reasons exposed in the three-class case.

Seven-class object classification

The confusion matrix shown on Figure 3.5 shows that the classification performance, obtained with
the V1000 visterm vocabulary, greatly depends on the object class. For instance, trees is a well defined
class, dominated by high frequency texture visterms, and therefore does not get confused with other
classes. Similarly, most faces image examples exhibit an homogeneous background and consistent
layout which will not create ambiguities with other classes in the BOV representation. This explains
the good performance of these two object classes. The buildings class shows the worst classification
performance, with a classification error of 33.3% that is largely explained by the confusion with the
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mountain forest indoor city-panorama city-street

Figure 3.9: Illustration of the five scene classes, with 8 randomly selected examples per class. From
left to right: mountain, forest, indoor, city-panorama, city-street. The definition of the city-panorama
and city-street classes is debatable. All images have been cropped to square size for convenient display.

cars and books classes: the similarity between the buildings and cars backgrounds makes the bag-of-
visterms representations of the two classes very similar; the vertical and horizontal structures from
the books images also explains the confusion with the buildings class. Overall, the total classification
error of 11.0% proves that the V1000 visterm vocabulary captures coherent information from each of
the classes.

3.5.2 Image classification with the aspect-based representation

We use the aspect mixture weights P (zk|di) given each document di as a L dimensional image repre-
sentation (Equation 3.3). Given that the PLSA parameters are estimated in an unsupervised way, this
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classification performance (%)

faces buildings trees phones cars bikes books class error (%) # of images

faces 97.5 0.3 0.9 0.4 0.4 0.3 0.4 2.5 (0.04) 792

buildings 4.0 67.7 4.0 3.3 8.0 3.3 10.6 33.3 (1.7) 150

trees 0.7 2.0 94.0 0.7 2.0 0.7 0 6.0 (0.6) 150

phones 6.5 0 0 85.2 2.8 0.9 3.2 13.4 (1.2) 216

cars 8.9 0.5 1.0 5.8 80.6 1.5 1.5 19.4 (1.5) 201

bikes 0 2.4 2.4 0.8 1.8 92.8 0 7.2 (0.4) 125

books 9.2 5.6 0 6.3 6.3 0.7 71.8 28.2 (1.9) 142

Total classification error: 11.0 (1.1)

Table 3.5: Confusion matrix for the seven-class object classification problem, using vocabulary V1000.
Percentage of correctly classified and misclassified images in each class is presented, along with the
class dependent error-rates and the number of images per class. The total classification error is given
below the table.

representation can be inferred based on a model learned from unlabeled data, different from the one
used to learn the SVM classifier. To test the influence of the PLSA training data on the classification
performance, we propose to use two aspect-based image representations for the scene classification
problems, which differ in the data used to estimate the initial PLSA model:

PLSA-I: For each dataset split, the labeled training data used to train the SVM classifier is used to
learn the PLSA model. The aspect-based representation a(di) is inferred for each test image,
using the folding-in method described in Chapter 2.

PLSA-O: A single PLSA model is learned from the D3 dataset, and the aspect-based representation
a(di) is inferred for each training and test document in each split, using the folding-in method
described in Chapter 2.

As the dataset D3 comprises city, outdoor, indoor, and city-landscape overlap images, a PLSA
model learned on this set should capture valid latent aspects for all the scene classification tasks
simultaneously. Only the PLSA-I representation is evaluated for the 7-class object classification prob-
lem, given that a majority of the object classes (eg. phones, books, bikes and cars) are not represented
in D3.

Binary and three-class classification

Table 3.6 shows the classification performance of the aspect-based representation for 20 and 60 aspects
for the PLSA-I and PLSA-O representations, using V1000. The corresponding results for BOV with
the same vocabulary are re-displayed for comparison purposes. The performance of the PLSA-I and
PLSA-O representations is comparable for the city/landscape scene classification, while the PLSA-
O representation improves over PLSA-I for the indoor/outdoor classification (paired T-test, with
p = 0.05). This suggests that an aspect-based representation learned on the same set used for SVM
training causes some over-fitting in the indoor/outdoor case. Since using PLSA-O allows to learn one
single model for all tasks, we chose this approach for the rest of the scene classification experiments.

Comparing the 60-aspect PLSA-O model with the BOV approach, we remark that their perfor-
mance is similar, and that PLSA performs better in the city/landscape case (although not signifi-
cantly), while the opposite holds for the three-class task. An aspect-based representation with L = 60
corresponds to a dimensionality reduction of a factor of 17, while keeping the discriminant informa-
tion contained in the original BOV representation. Note that PLSA-O representation with 60 aspects
performs better than the BOV representation with the vocabulary V100 in all cases (see Tables 3.1
and 3.2).
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indoor/outdoor city/landscape indoor/city/landscape

BOV 7.6 (1.0) 5.3 (1.1) 11.1 (0.8)

PLSA-I (L = 20) 9.5 (1.0) 5.5 (0.9) 12.6 (0.8)

PLSA-I (L = 60) 8.3 (0.8) 4.7 (0.9) 11.2 (1.3)

PLSA-O (L = 20) 8.9 (1.4) 5.6 (0.9) 12.3 (1.2)

PLSA-O (L = 60) 7.8 (1.2) 4.9 (0.9) 11.9 (1.0)

Table 3.6: Comparison of the BOV, PLSA-I, and PLSA-O representations on the indoor/outdoor,
city/landscape and indoor/city/landscape scene classification tasks, using L = 20 and L = 60 aspects.
All experiments were done with vocabulary V1000.

Table 3.7 displays the evolution of the error with the number of aspects for the city/landscape
classification task. The performance is relatively independent of the number of aspects in the range
[40,100], and L = 60 aspects will be considered for the rest of the chapter. For comparison purposes,
we present in Table 3.8 the confusion matrix in the three-class classification task. The errors are
similar to those obtained with the BOV (Table 3.3). The only noticeable difference is that more
indoor images were misclassified in the city class.

L 20 40 60 80 100

Classification error 5.6 (0.9) 4.9 (0.8) 4.9 (0.9) 4.8 (1.0) 5.0 (0.9)

Table 3.7: Classification results for the city/landscape task, using different number of aspects for
PLSA-O.

classification performance (%)

indoor city landscape class error(%) # of images

indoor 86.6 11.8 1.6 13.4 2777

city 14.8 75.4 9.8 24.5 2505

landscape 1.3 1.9 96.8 3.1 4175

Total classification error: 11.9 (1.0)

Table 3.8: Classification error and confusion matrix for the three-class problem using the PLSA-O
representation with L = 60 aspects.

Table 3.9 compares classification errors for the BOV and the PLSA representations for the different
tasks when the amount of labeled data to train the SVM classifier is decreased. The amount of training
data is given both in proportion to the full dataset size, and as the total number of training images.
The test sets remain identical in all cases.

For all image representations, a larger training set for the classifier translates in better results,
showing the need for building large and representative datasets for training (and evaluation) purposes.
Qualitatively, with the PLSA and BOV approaches, performance degrades smoothly initially, and
degrades sharply when using 1% of training data. With the baseline approach, on the other hand,
performance degrades more steadily. Comparing the different representations, we first see that PLSA
with 10% of training data outperforms the baseline approach with full training set (i.e. 90%), this is
confirmed in all cases by a paired T-test, with p = 0.05. BOV with 10% of training still outperforms the
baseline approach with full training set (i.e. 90%) for indoor/outdoor (paired T-test with p = 0.05).
More generally, we observe that both PLSA and BOV perform not worse than the baseline for -
almost- all cases of reduced training set. An exception is the city/landscape classification case, where
the baseline is better than the BOV when using 2.5% and 1% training data, and better than the PLSA
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Percentage of training data

90% 10% 5% 2.5% 1%

Indoor/Outdoor
# of training images 8511 945 472 236 90

PLSA-O 7.8 (1.2) 9.1 (1.3) 10.0 (1.2) 11.4 (1.1) 13.9 (1.0)
BOV 7.6 (1.0) 9.7 (1.4) 10.4 (0.9) 12.2 (1.0) 14.3 (2.4)
Baseline 10.4 (0.8) 15.9 (0.4) 19.0 (1.4) 23.0 (1.9) 26.0 (1.9)

City/Landscape
# of training images 6012 668 334 167 67

PLSA-O 4.9 (0.9) 5.8 (0.9) 6.6 (0.8) 8.1 (0.9) 17.1 (1.2)
BOV 5.3 (1.1) 7.4 (0.9) 8.6 (1.0) 12.4 (0.9) 30.8 (1.1)
Baseline 8.3 (1.5) 9.5 (0.8) 10.0 (1.1) 11.5 (0.9) 13.9 (1.3)

Indoor/City/Landscape
# of training images 8511 945 472 236 90

PLSA-O 11.9 (1.0) 14.6 (1.1) 15.1 (1.4) 16.7 (1.8) 22.5 (4.5)
BOV 11.1 (0.8) 15.4 (1.1) 16.6 (1.3) 20.7 (1.3) 31.7 (3.4)
Baseline 15.9 (1.0) 19.7 (1.4) 24.1 (1.4) 29.0 (1.6) 33.9 (2.1)

Table 3.9: Comparison of classification performance for PLSA-O with 60 aspects, BOV with vocabu-
lary V1000, and baseline approaches, when using a SVM classifier trained with progressively less data.
The amount of training data is first given in proportion of the full dataset, and then for each task, as
the actual number of training images.

model for 1%. This can be explained by the fact that edge orientation features are particularly well
adapted for this task, and that with only 25 city and 42 landscape images for training, global features
are competitive. Furthermore, we can notice from Table 3.9 that the performance of the aspect-based
representation deteriorates less as the training set is reduced than the BOV representation for all
percentages (although not always significantly better). Previous work on probabilistic latent space
modeling has reported similar behavior for text data [7]. The aspect-based representation describes an
image as a mixture of visterm co-occurrence patterns, which is less affected by the visterm ambiguities
discussed in Chapter 2 and Section 3.3.

Five-class scene classification

Table 3.10 reports the overall error rate and the confusion matrix obtained with PLSA-O in the
five-class problem, and with the full training set. As can be seen, the aspect-based representation
performs slightly worse than BOV, but still improves over the baseline. By comparing the confusion
matrix with that of the BOV case (Table 3.4), we see that, while the forest, mountain, and indoor
classification performance remains almost unchanged, the classification performance of the two city
classes are significantly altered. In particular, the classification performance of the city-panorama
class drops from 46.9% to 12.6%. As we already mentioned, these two classes contain very similar
image examples (see Figure 3.9), and similar visterm co-occurrence patterns are thus identified within
the two classes.

Table 3.11 presents the evolution of the classification error when less data is used to learn the
SVM classifier. The loss of discriminative power between the city-panorama and city-street classes
affects the PLSA-O representation, and in this particular case, the BOV representation outperforms
the PLSA-O representation in this particular case. Both representations, however, perform better
than the global image representation baseline.



46 IDIAP–RR 07-06

classification performance (%)

mountain forest indoor city-panorama city-street class error (%) # of images

mountain 85.5 12.2 0.8 0.3 1.2 14.5 590

forest 12.8 78.3 0.8 0.4 7.7 21.7 492

indoor 0.3 0.1 88.9 0.2 10.5 11.1 2777

city-panorama 3.6 4.9 8.8 12.6 70.1 87.4 549

city-street 1.6 1.4 20.4 1.7 74.9 25.1 1957

Total classification error: 23.1 (1.1) (BOV: 20.8 (2.1), Baseline: 30.1 (1.1))

Table 3.10: Classification error and confusion matrix for the five-class classification problem using
PLSA-O with 60 aspects, and using 90% training data to learn the SVM classifier.

Percentage of training data 90% 10% 5% 2.5% 1%

# of training images 5727 636 318 159 64

PLSA-O 23.1(1.2) 27.9(2.2) 29.7(2.0) 33.1(2.5) 38.5(2.6)

BOV 20.8(2.1) 25.5(1.7) 28.3(1.3) 30.8(1.6) 37.2(3.4)

Baseline 30.1(1.1) 36.8 (1.4) 39.3 (1.4) 42.8 (1.6) 49.9 (3)

Table 3.11: Comparison of the classification performance obtained with BOV, PLSA-O, and the
baseline method, when using a SVM classifier trained with progressively less data on the 5-class
problem.

Seven-class object classification

Table 3.12 shows the confusion matrix for the seven object classification problem and the per class
error when the aspect-based image representation is used. As we already mentioned, only the PLSA-
I representation is considered in this case, given that the bf D3 dataset is not representative of
the different classes. The aspect-based representation for training images is thus learned from the
SVM training data themselves, and inferred on the test data with the folding-in method. The total
classification error (11.1%) is comparable to the one obtained with the BOV representation (11.0).
The benefit of the aspect-based representation is shown in Table 3.13. The classification performance
of the PLSA-I and BOV representations is reported for 90% 50%, 10% and 5% of training data. The
aspect-based representation is learned from the 90% of training data each time. The total classification
errors show that the aspect-based representation outperforms the BOV representation for the same
amount of labeled data.

classification performance (%)

faces buildings trees phones cars bikes books class error (%) # of images

faces 97.5 0.3 0.6 0.1 1.3 0.1 0.1 2.5 (0.02) 792

buildings 1.3 75.4 2 2 12 3.3 4 24.6 (1.4) 150

trees 2 2 93.3 0 1.3 1.3 0 6.7 (0.4) 150

phones 4.2 2.3 0 76.9 10.6 0.9 5 23.1 (0.6) 216

cars 7.0 2.5 0 1.5 85.6 2 1.5 14.4 (0.7) 201

bikes 0 2.4 3.2 0 3.2 90.4 0.8 9.6 (0.7) 125

books 4.9 9.1 0 4.2 9.9 0 71.8 28.2 (1.5) 142

Total classification error: 11.1 (1.6) (BOV: 11.0 (2.1))

Table 3.12: Confusion matrix for the 7-class object classification problem using the PLSA-I repre-
sentation with L = 60. The standard deviation over the ten splits is given in parentheses, and the
number of image per class is given.
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Table 3.9, 3.11 and 3.13 the aspect-based representation allows to take advantage of unlabeled data
to improve the classification performance for the binary/three-class scene classification and the seven
object classification tasks. This makes the aspect-based representation suitable for scenarios where
data labeling is an expensive process, which is usually the case. The performance of a classification
system will be less affected by the size of the labeled training set if the aspect-based representation is
used.

Percentage of training data 90% 50% 10% 5%
# of training images 1598 888 178 89
PLSA-I (L = 60) 11.1(1.6) 12.5(1.5) 18.1(2.7) 21.7(1.7)
BOV 11.1(2.0) 13.5(2.0) 21.8(3.6) 26.7(2.8)

Table 3.13: Comparison between the bag-of-visterms (BOV) and the PLSA-based representation
(PLSA) for classification with an SVM classifier trained with progressively less training data on the
7-class problem. The number in brackets is the variance over the different data splits.
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3.6 Aspect-based image ranking

The aspect mixture weights can serve as an image representation which allows to take advantage of
unlabeled data to improve the classification performance. Without any classification step, an intrinsic
dependence between latent aspects and the classes that were considered in the previous section can
be shown. We propose to rank the images in a dataset with respect to their probability given a latent
aspect zk, to illustrate what this aspect captures in the dataset. Assuming that P (d) is uniform,
P (di|zk) becomes proportional to the corresponding aspect mixture weight:

P (di|zk) =
P (zk|di)P (di)

P (zk)
∝ P (zk | di), (3.4)

Given each latent aspect zk, the top-ranked images according to P (d|zk) illustrate its potential ’se-
mantic meaning’. Figure. 3.10 displays the 10 most probable images from the 668 test images of the
first split of the D1 dataset, for 7 out of 20 aspects learned on the D3 dataset. The top-ranked
images representing aspect 1, 6, 8, and 16 all belong to the landscape class. More precisely, aspect
1 is mainly related to horizon/panoramic scenes, aspect 6 and 8 to forest/vegetation, and aspect 16
to rocks. Conversely, aspect 4 and 12 are related to the city class. However, as aspects are identified
by analyzing the co-occurrence of visterms that are local texture patterns in our case, they may be
consistent from this point of view (e.g. aspect 19 is consistent in terms of texture) without allowing
for a direct semantic interpretation.

The same image ranking procedure is used for the seven object dataset, and seven aspects-based
ranking are shown on Figure 3.11, for a PLSA model learned on the D6 dataset. We observe that
aspects 3 and 17 are closely related to face images. The first ten images ranked with respect to aspect
8 are all bike images, while top-ranked images for aspect 10 mostly contain phones. Buildings are
present in aspect 5, and all top-ranked images with respect to aspect 7 are tree images. Similarly to
the ranking of scene one aspect (aspect #12) does not correspond to any specific object category.
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aspect 1 aspect 4 aspect 6 aspect 8 aspect 12 aspect 16 aspect 19

Figure 3.10: The 10 most probable images from the D1 dataset for six aspects (out of 20) learned on
the D3 dataset. Aspect 1 relates to horizon images, aspects 4 and 12 relate to building structures,
aspects 6, 8 and 12 relate to images containing vegetation/landscape, and aspect 19 relate to both
man-made and natural structures that contain high frequencies. All images have been cropped to
square size for convenient display.



50 IDIAP–RR 07-06

aspect 3 aspect 17 aspect 8 aspect 10 aspect 5 aspect 7 aspect 12

Figure 3.11: The 10 most probable images from the D6 dataset, for seven aspects (out of 20) learned on
the D6 dataset. In this case, aspect 3 and 17 clearly relate to faces, aspect 8 relates to bike examples,
aspect 10 mostly correspond to phone images, aspect 5 relates to buildings, aspect 7 corresponds to
trees, and aspect 12 relates to a variety of visual content. All images have been cropped to square size
for convenient display.
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Figure 3.12: Precision/recall curves for the image ranking based on each of the 20 individual aspects,
relative to the landscape (left) and city (right) query. Each curve represents a different aspect. Floor
precision values correspond to the proportion of landscape(resp. city) images in the dataset. Note
that the correspondence between aspects and visual concepts, observed on Figure 3.10 is confirmed:
aspects 6, 8 and 16 are related to the landscape class; aspects 4 and 12 are related to the city class.

The aspect-based image rankings shown on Figure 3.10 and 3.11 give an indication of how much
aspects can be related to a given type of image content. The quality of this ranking can be evaluated
as an information retrieval system, measuring the correspondence between aspects and scene/object
objectively. Defining the Precision and Recall paired values by:

Precision(r) = RelRet
Ret Recall(r) = RelRet

Rel ,

where Ret is the number of retrieved images, Rel is the total number of relevant images and RelRet is
the number of retrieved images that are relevant, we can compute the precision/recall curves associated
with each aspect-based image ranking considering either city and landscape queries, as illustrated
in Figure 3.12. Those curves prove that some aspects are clearly related to such concepts, and
confirm observations made previously with respect to aspects 4, 6, 8, 12, and 16 on Figure 3.10. As
expected, aspect 19 does not appear in either the city or landscape top precision/recall curves. The
landscape related ranking from aspect 1 does not hold as clearly for higher recall values, because the
co-occurrences of the visterm patterns appearing in horizons that it captures is not exclusive to the
landscape class.

The same precision and recall curves are shown on Figure 3.13 for four of the seven object classes
(eg. face, cars, bikes and trees) to measure the ranking obtained from P (d | zk). The top-left graph
shows that the homogeneous ranking holds on for more than 10 retrieved images in aspect 3 and 17,
confirming the observations made from Figure 3.11. We see that another aspect (13) is closely related
to faces images. The top-right graph from Figure 3.13 shows that top-ranked images with respect
to aspect 7 are mainly tree images. The bottom-left graph confirms that aspect 8 is linked to bike
images, as well as aspect 1 even if less obvious. The bottom-right graph from Figure 3.13 shows that
aspect number 12 is related to car images if looking deeper in the ranking, what is not obvious from
the observation of Figure 3.11. Note however that the precision/recall values are not as high as for
the faces case. Overall, these results illustrate that the latent structure identified by PLSA highly
correlates with the semantic structure of our data. This makes PLSA potentially a very attractive
tool for browsing/annotating unlabeled image collections.
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Figure 3.13: Precision and recall curves for the face, car, bike and tree categories, according to an
aspect-based unsupervised image ranking. The lowest precision values correspond to the proportion of
each class in the dataset. Note that the correspondence between aspects and visual concepts, observed
on Figure 3.11 is confirmed: aspects 17 and 3 are related to the faces class; aspect 7 is related to the
trees class; aspect 8 is related to the bike class. Interestingly, the aspect 12 appears to be related to
the cars class, although no correspondence was visible on Figure 3.11.

3.7 Conclusion

The bag-of-visterms representation proposed in this chapter, relying on the combination of the DoG
point detector and SIFT local descriptor, can capture a large variety of visual content, ranging from
different scene types to various object classes. This was shown with a large number of classification
experiments, for which the influence of the vocabulary size and the data used to learn this vocabulary
has been analyzed in details.

We also showed that an aspect-based image representation learned from the bag-of-visterms rep-
resentation can further improve the classification performance in cases when the available number of
labeled images used to learn the classifier is decreased. The visterm co-occurrence patterns identified
by the aspect model from unlabeled data allow to represent an image as a mixture of these visterm
co-occurrence patterns that define an aspect. If the aspects are consistent with the object or scene
classes, the resulting representation based on aspect mixture weights is more adequate for these re-
duced labeled data scenarios. We have illustrated what the aspects effectively capture in the dataset
by ranking the images in a dataset given an aspect. This confirms that latent aspects can correspond
to coherent information in an image collection, which can be seen as an interesting browsing structure
for unannotated image collections.



Chapter 4

Contextual scene segmentation
with aspect models

The aspect-based classification and the aspect-based image ranking, presented in Chapter 3, provided
clear insights on what type of information is captured by latent aspect models in images. In these two
tasks, only the aspect mixture weights P (z | di) were exploited. In this chapter, we propose to take
advantage of the aspect visterm distributions P (v | zk) to classify visterms in an image, producing a
form of image segmentation. Figure 4.1 illustrates how the density of classified visterms can lead to
the segmentation of a scene into a man-made and natural regions. We propose to include the visterm
class information in the aspect model formulation, taking advantage of both the visterm distributions
P (v | zk) and the aspect mixture weights P (z | di) to classify visterms. The intuition is the following:
two regions, indistinguishable from each other when analyzed independently, might be classified in the
correct class with the help of the context captured by the aspect model. This form of context differs
from the spatial context traditionally taken into consideration for image segmentation: no information
about the neighborhood of each image region to classify is exploited, which is generally modeled by a
Markov Random Field (MRF). The co-occurrence of visterms in an image, taken as a set, define the
context that drives the classification of the visterm in the image. We consider a man-made vs. natural
region classification task, two concepts that are well captured by the visterm representation, and show
that the contextual information learned from the visterm co-occurrence improves the performance
compared to a non-contextual approach. This constitutes a new application of the concept of mixture
of aspects for images, and simultaneously illustrates the type of information that is captured by the
latent aspects from a new perspective.

We discuss the closest related work in Section 4.1, Section 4.2 presents the baseline considered for
visterm classification, and introduces the two methods to incorporate visterm class information in the
aspect model. The visterm classification performance is evaluated in Section 4.3, with a comparison of
the baseline to the two aspect-based visterm classification strategies. The spatial context of visterms
in an image is exploited in Section 4.4 with an MRF model, combined with the other approaches. The
work presented here was first presented in [55] and [56].

4.1 Related work

Image segmentation is a research field that has been developed for many years, with evolving goals
that led to different approaches. Classic image segmentation is defined as a process of partitioning
the image into non-intersecting regions, such that each region is homogeneous and the union of no
two adjacent regions is homogeneous [65]. The main issue is defining the property for which we are
imposing homogeneity. In most cases the properties on which segmentation is based are: grayscale,
color, texture, or a combination of those properties. Image segmentation defined this way is performed

53
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(a) (b) (c)

Figure 4.1: Scene segmentation by classifying visterms in an image: (a) Image containing man-made
and natural structures; (b) local invariant regions (in yellow) are detected in the image, partially
covering both the man-made and natural image regions; (c) after the quantization of the region
descriptors into visterms, each visterm is classified in the man-made (in blue), or natural class (not
shown).

on each image independently.
A review of traditional region-based and boundary-based approaches are given in [65], and it is not

the purpose of this section to exhaustively review all the existing literature, but rather discuss closely
related ideas. More recent alternatives have been proposed. For instance, Carson et al. [14] present
a blob-based segmentation method that models the color, texture and position of all the pixels in a
given image with a Gaussian mixture model (GMM), and attribute the label of its most likely GMM
component to each pixel. This creates roughly homogeneous image regions called ’blobs’, that are used
for image retrieval, allowing the user to query the database at the blob level instead of the image level.
In [44] a direct global optimization strategy is employed based on normalized cuts. Quantized local
descriptors are used to build histogram representations of windowed image regions. The similarity
between these regions is then defined based on this histogram representation, and segmentation is
conducted for each individual image using a spectral clustering technique [44].

The perspective on image segmentation that we consider in this chapter differs from the above
approaches in two main aspects. First, we intend to segment an image based on class labels that are
predefined and applicable to the whole database, and not based on an homogeneity criterion of the
regions in an image. Second, our segmentation is based on a set of small image regions that do not
cover the whole image in general. The region descriptors are classified into categories, and the density
of the region class labels gives a sparse segmentation of the image. We present a selection of image
segmentation models that are based on class labels in the next paragraphs, with regions that cover
the whole image [33, 18, 91, 92], or only a part of it [17, 36, 75].

The work in [18] relies on the Normalized Cuts segmentation algorithm [74] to segment the image
into regions that are then quantized. Derived from the machine translation literature, an Expectation-
Maximization (EM) estimates the probability distributions linking a set of words and blobs. Once
the model parameters are learned, words are attached to each region. This region naming process is
comparable to image segmentation.

Extending the Markov Random Field (MRF) model, Kumar and Herbert proposed a Discriminative
Random Field (DRF) model that includes neighborhood interactions in the class labels, as well as
at the observation level. They apply the DRF model to the segmentation of man-made structures in
natural scenes [33], with an extraction of images features based on a grid of blocks that fully covers
the image. The DRF model is trained on a set of manually segmented images, and then used to infer
the segmentation into the two target classes.

Using a similar grid layout, Vogel and Schiele presented a two-stage classification framework to
perform scene retrieval [91] and scene classification [92]. This work performs an implicit scene seg-
mentation as an intermediate step, classifying each image block into a set of semantic classes such as
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grass, rocks, or foliage.
In [17], invariant local descriptors are used for an object segmentation task. All region descriptors

that belong to the object class in the training set are modeled with a Gaussian Mixture Model (GMM),
and a second GMM is trained on non-object regions. In this non-contextual approach, new descriptors
are independently classified depending on their relative likelihood with respect to the object and non-
object models. A similar approach introducing spatial contextual information through neighborhood
statistics of the GMM components collected on training images is proposed in [36], where the learned
prior statistics are used for relaxation of the original region classification.

As an extension to local descriptors’ representation of images, probabilistic aspect models have
been recently proposed to capture descriptors co-occurrence information with the use of a hidden
variable (latent aspect). The work in [23] proposed a hierarchical Bayesian model that extended LDA
for global categorization of natural scenes. This work showed that important visterms for a class in
an image can be found. However, the problem of region classification for scene segmentation was
not addressed. The combination of local descriptors and PLSA for image segmentation has been
illustrated in [75]. However this work has two limitations. First, visterms were classified into aspects,
not classes, unless we assume as in [75] that there is a direct correspondence between aspects and
semantic classes. This seems however a quite unrealistic assumption in practice. Secondly, evaluation
was limited, e.g. [75] does not conduct any objective evaluation of the segmentation performance.

Unlike these previous approaches, we propose a formal way to integrate the latent aspect modeling
in the class information. In addition, we explore the integration of the more traditional spatial MRF
model into our system and compare the obtained segmentations.

4.2 Scene segmentation by visterm classification

The visterm construction presented in Chapter 3, based on the combination of the DoG point detector
and the SIFT local descriptor, showed a good performance for city vs. landscape scene classification.
Here, we consider the man-made vs. natural scene segmentation, and we therefore have recourse to
the same visterm construction. As shown on Figure 4.1, the classification of regions sampled with
an the DoG interest point detector produces a sparse image segmentation. However, this approach
can take advantage of the interest point detection step to identify stable regions that should have a
better correspondence accross the images than an arbitrary grid segmentation. We therefore use an
interest point detector to sample the image regions that needs to be classified. Unlike [17] and [36],
we quantize the region descriptors into a fixed number of image patches (visterms), clustering similar
local descriptors into the same entity, as already described in Chapter 3.

We rely on likelihood ratio computation to classify each visterm v in a given image d into a class
c. The ratio is defined by:

LR(v) =
P (v|c = man-made)

P (v|c = natural)
, (4.1)

where the P (v|c) probabilities will be estimated using different strategies. The visterm classification
rule is :

LR(v) > T ⇒ v ∈ man-made, (4.2)

where T is a threshold value.

4.2.1 Baseline: empirical distribution

Given a set of training data, the P (v|c) probabilities can simply be estimated using the empirical
distribution of visterms, as done in [17]. Given a set of man-made or natural image regions, the
P (v|c) probabilities are simply estimated as the number of times the visterm v appears in regions of
class c, divided by the total number of occurrences of v. The empirical estimation is simple, but may
suffer from several drawbacks. A first one is that a significant amount of labeled training data might
be necessary to avoid noisy estimates, especially when using large vocabulary sizes. A second one is



56 IDIAP–RR 07-06

(a) (b) (c)

Figure 4.2: Regions (represented by visterms) can have different class labels depending of the images
where they are found. (a) : various regions (4 different colors, same color means same visterm) that
occur on natural parts of an image. (b) and (c) : the same visterms occur in man-made structures. All
these regions were correctly classified by our approach, switching the class label for the same visterms
depending on the context.

that such an estimation only reflects the individual visterm occurrences, and does not account for any
kind of relationship between them. Visterms however describe regions extracted from full images, and
should be interpreted in this context.

This visterm ambiguity is illustrated on Figure 4.2, where the same visterms appear both in natural
(a) and man-made image regions (b) and (c), depending on the image. This situation, although
expected since the visterm construction does not make use of class label information, constitutes a
problematic form of visual polysemy, already mentioned in Chapter 3. Our postulate is that the type
of co-occurrence context captured by aspect models could be used to identify the general context of
an image, changing the classification of image regions based on this information. This is investigated
in the following section.

4.2.2 Aspect and visterm class correspondence

As we have shown in Chapter 3 some aspects learned from city and landscape images do correlate
with the man-made or the natural classes. The conditional distribution of visterms given an aspect
P (v | z) can therefore be exploited for the classification of visterms in an image once a class label is
attached to the aspects. Based on the learned conditional distributions of visterms given aspects, the
most likely aspect is attributed to a given visterm according to:

zvj
= arg max z(P (z|vj))

= arg max z(
P (vj |z)P (z)

P (vj)
). (4.3)

In Figure 4.3, we show two examples of image segmentation based on the following procedure: from
the image ranking illustrated in Chapter 3, we selected the ten aspects that are the more closely
related to the city class and the ten aspects that are the more closely related to the landscape class.
Restricting the aspect attribution to these 20 man-made and natural aspects, each visterm can be
independently classified as a man-made or a natural descriptor, according to Equation 4.3. These two
examples show a reasonable match between the ground-truth segmentation and the density of red and
green points. The unsupervised learning based on co-occurrence thus allows to identify man-made and
natural latent aspects in the data, that can be later used to classify visterms into these two classes.
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Figure 4.3: Classification of visterms based on the 10 aspects that are the more closely related to the
man-made class, and the 10 aspects that are the more closely related to the natural class. The first
column is the original image, the second column is the ground-truth segmentation (white is man-made,
black is natural), and the last column is the segmentation based on classification of visterms. Red
circles correspond to visterms classified as man-made, green circles correspond to visterms classified
as natural (see text). The respective densities of red and green points show a good correspondence
with the ground-truth segmentation.

Based on this first observation, we introduce two aspect models that estimate visterm class-
likelihoods based on the decomposition of scenes in mixtures of aspects.

4.2.3 Aspect model 1

We propose to associate a class label c to each document-visterm observation pair, according to the
graphical model shown in Figure 4.4, leading to the joint probability defined by:

P (c, d, z, v) = P (c)P (d|c)P (z|d)P (v|z). (4.4)

This model introduces several conditional independence assumptions. The first one, traditionally
encountered in aspects models, is that the occurrence of a visterm v is independent of the image d it
belongs to, given an aspect z. The second assumption is that the occurrence of aspects is independent
of the class the document belongs to. The parameters of this model are learned using the maximum
likelihood (ML) principle [29]. The optimization is conducted using the Expectation-Maximization
(EM) algorithm, allowing us to learn the aspect distributions P (v|z) and the mixture parameters
P (z|d).

Given this model, the EM equations do not depend on the class label. Besides, the estimation of
the class-conditional probabilities P (d|c) do not require the use of the EM algorithm. We will exploit
these points to train the aspect models on a large dataset (denoted D) where only a small part of
it has been manually labeled according to the class (we denote this subset by Dlab). This allows
for the estimation of a precise aspect model, while alleviating the need for tedious manual labeling.
Regarding the class-conditional probabilities, as the labeled set will be composed of man-made-only
or natural -only images, we simply estimate them according to:

P (d|c) =
{

1/Nc if d belongs to class c
0 otherwise, (4.5)
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c d z v

Figure 4.4: Aspect model 1 and aspect model 2 (if including dashed line)

where Mc denotes the number of images belonging to class c in the labeled set Dlab. Given this model,
the likelihood we are looking for (cf. Equation 4.1) can be expressed as

P (v|c) =
L∑

k=1

P (v, zk|c) =
L∑

k=1

P (v|zk)P (zk|c), (4.6)

where the conditional probabilities P (zk|c) can in turn be estimated through marginalization over
labeled documents,

P (zk|c) =
∑

d∈Dlab

P (zk, d|c) =
∑

d∈Dlab

P (zk|d)P (d|c). (4.7)

These equations allow us to estimate the likelihood ratio defined in Equation 4.1, extending the PLSA
model by introducing the class variable.

4.2.4 Aspect model 2

From Equation 4.6, we see that, despite the fact that the above model captures co-occurrence of
the visterms in the distributions P (v|z), the context provided by the specific image d has no direct
impact on the likelihood. To explicitly introduce this context knowledge, we propose to evaluate the
likelihood ratio of visterms conditioned on the observed image d,

LR(v, d) =
P (v|d, c = man-made)

P (v|d, c = natural)
. (4.8)

The evaluation of P (v|d, c) can be obtained by marginalizing over the aspects,

P (v|d, c) =
L∑

k=1

P (v, zk|d, c) =
L∑

k=1

P (v|zk)P (zk|d, c), (4.9)

where we have exploited the conditional independence of visterm occurrence given the aspect variable.
Under the aspect model 1 assumptions, P (zk|d, c) reduces to P (zk|d), which clearly shows the limita-
tion of this model to introduce both context and class information. To overcome this, we assume that
the aspects depend on the class label as well (cf dashed link in Figure 4.4). The parameters of this
model are the aspect multinomial distributions P (v|zk) and the mixture multinomial distributions
P (z|d, c), which could be estimated from labeled data by EM as before. However, as our model is
not fully generative [7], only P (v|z) can be kept fixed, and we would have to estimate P (z|dnew, c)
for each new image dnew. Since the class is obviously unknown for new images, this means that in
practice all the dependencies between aspects and labels observed in the training data would be lost.
To avoid this, we propose to separate the contributions to the aspect likelihood due to the class-aspect
dependencies, from the contributions due to the image-aspect dependencies. Thus, we approximate
P (zk|d, c) as:

P (zk|d, c) ∝ P (zk|d)P (zk|c), (4.10)
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where P (zk|c) is still obtained using Equation 4.7. The complete expression is given by

P (v|d, c) ∝
L∑

k=1

P (v|zk)P (zk|c)P (zk|d). (4.11)

The main difference with Equation 4.6 is the introduction of the contextual term P (zk|d), which means
that visterms will not only be classified based on them being associated to class-likely aspects, but
also on the aspect distribution of these aspects in the given image.

Inference on new images

With aspect model 1 (and also with empirical distribution, cf. baseline model in Section 4.2.1), vis-
term classification is done once for all at training time, through the visterm co-occurrence analysis
on the training images. Thus, for a new image dnew, the extracted visterms are directly assigned to
their corresponding most likely label. For aspect model 2, however, the likelihood-ratio LR(v, dnew)
(Equation 4.8) involves the aspect mixture weights P (z|dnew) (Equation 4.11). Given our approxi-
mation (Equation 4.10), these parameters are inferred for each new image, with the folding-in PLSA
method presented in Chapter 2: P (zk|dnew) is estimated by maximizing the likelihood of the BOV
representation of dnew, fixing the learned P (v|zk) parameters in the Maximization step.

4.3 Experiments and discussion

We validate our proposed models on the segmentation of scenes into natural vs. man-made structures.
These two classes were chosen for our investigation, as we have shown that our visterm vocabulary is
well suited for classifying city vs. landscape images and finding city and landscape aspects. The same
visterms should therefore correspond to natural and man-made regions, and related latent aspects
are very likely to exist. In this Section, we first present the baseline segmentation model, then
our experimental setup. It is followed by detailed objective performance evaluation illustrated with
segmentation results on a few test images.

4.3.1 Experimental setup

Data sets

Three image subsets from the Corel Stock Photo Library were used in the experiments:

D: contains 6600 photos depicting mountains, forests, buildings, and cities. This dataset was used
to construct the vocabulary, and learn the class-independent aspect model parameters P (v | z)
and P (z | d).

Dlab: contains 600 images from D that have been hand-labeled globally as man-made or natural
images. These images were used to estimate the visterm likelihoods for each class.

Dtest: containing 485 images of man-made structures in natural landscapes, which were hand-
segmented with polygonal shapes (Figure 4.1), was used to test the methods.

The empirical distribution is estimated from the images Dlab, while aspect model 1 and aspect
model 2 are learned from both D and Dlab, according to the procedures described in Section 4.2.3
and 4.2.4.
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Performance evaluation

The global performance of the algorithm was assessed using the True Positive Rate (TPR, number of
positive visterms correctly classified over the total number of positive visterms), False Positive Rate
(FPR, number of false positives over the total number of negative visterms) and True Negative Rate
(TNR=1-FPR), where man-made is the positive class. The FPR, TPR and TNR values vary with
the threshold T applied for classification (see Equation 4.2).

Parameter settings

From the scene classification experiments presented in Chapter 3, we showed that a vocabulary size
of 1000 visterms, and PLSA model with 60 aspects allows to learn an effective image representation
for the classification of images in the city and landscape classes. We use the same hyper-parameters
to evaluate the visterm classification performance of the proposed methods.

4.3.2 Results

Figure 4.5 displays the Receiver Operating Curve (ROC, TPR vs. FPR) of the two aspect models
and the empirical distribution (baseline). As can be seen, the aspect model 1 performs slightly better
than the empirical distribution method, while aspect model 2 significantly outperforms the two other
methods.
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Figure 4.5: True Positive Rate vs. False Positive Rate for the three methods.

To further validate our approach, Table 4.1 reports the Half-Total-Recognition Rate (HTRR)
measured by 10-fold cross-validation. For each of the folds, 90% of the test data Dtest is used to
estimate the likelihood threshold TEER leading to Equal Error Rate (EER, obtained when TPR=TNR)
on this data. This threshold is then applied on the remaining 10% (unseen images) of Dtest, from
which the HTRR (HTRR=(TPR+TNR)/2) is computed. This table shows that the ranking observed
on the ROC curve is clearly maintained, and that aspect model 2 results in a 7.5% relative increase
in performance w.r.t. the baseline approach.

Empirical distribution Aspect model 1 Aspect model 2
HTRR 67.5 68.5 72.4

Table 4.1: Half Total Recognition Rate (in percent).

As mentioned in Section 4.2.2, aspect model 1 and the empirical distribution method assign specific
visterms to the man-made or natural class independently of the images in which those visterms occur.
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This sets a common limit on the maximum performance of both systems, which is referred here as
the ideal case. This optimal performance is achieved for an optimal estimation of the visterm class
likelihood, corresponding to the visterm class likelihood from the segmented test images. In our case,
this ideal case provides an HTRR of 71.0%, showing that the visterm class attribution from empirical
distribution and aspect model 1 is already close to the best achievable performance.
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Figure 4.6: P (v | c) for man-made and natural structures, estimated on the segmented test images.
The x axis is the visterm indices ordered with decreasing P (v | c = natural).

Indeed, the visterm class conditional probabilities shown in Figure 4.6 indicate that only a few
visterms are class-specific. The class conditional P (v | c) probabilities are obtained by dividing the
number of visterm occurrences in one class by the number of that visterm occurrences in both classes.
In Figure 4.6, these visterm class conditional probabilities were estimated from the segmented test
images. For instance, all visterms appear at least 15% of time in regions labeled as natural. To perform
better than the ideal case described above, visterms must be classified differently depending on the
specific image that is being considered. This is the case with aspect model 2, which outperforms
the ideal case in our experiments. Aspect model 2 switches visterm class labels according to the
contextual information identified by the visterm co-occurrences in an image. In our dataset, aspect
model 2 successfully switches visterm class labels depending on the image content for 792 out of the
1000 visterms in our vocabulary.

Segmentation examples

The impact of the contextual model can be observed on individual images. Figure 4.7 displays exam-
ples of man-made structure segmentation, where likelihood thresholds are estimated at EER value.
As can be seen, aspect model 2 improves the segmentation with respect to the two other methods in
two different ways. On one hand, in the first three examples, aspect model 2 increases the precision
of the man-made segmentation, producing a slight decrease in the corresponding recall. On the other
hand, the fourth example shows aspect model 2 producing a higher recall of man-made visterms while
maintaining a stable precision. In the fifth example, the occurrence of a strong context causes the
whole image to be taken as naturala scene, also improving the total visterm classification.

In Figure 4.8, five more examples of segmentation are shown. The first three rows illustrate natural
image context examples that are correctly estimated by aspect model 2. The fourth row shows a
correctly estimated marked man-made context that leads to an improved classification of visterms for
aspect model 2. In the fifth example, however, the overestimation of the man-made related aspects
leads to visterms that are dominantly classified as man-made. Nevertheless, overall, as indicated in
Figure 4.5 and Table 4.1, the introduction of context by co-occurrence is beneficial.
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empirical distribution aspect model 1 aspect model 2
correct: 227 correct: 229 correct: 244

correct: 279 correct: 279 correct: 299

correct: 282 correct: 280 correct: 294

correct: 230 correct: 229 correct: 236

correct: 100 correct: 107 correct: 123

Figure 4.7: Image segmentation examples at TEER. Results provided by: first column, empirical
distribution; second column, aspect model 1; third column, aspect model 2. The total number of
correctly classified regions (man-made + natural) is given per image. The five rows illustrate cases
where aspect model 2 outperforms the other approaches. In the fifth row, an extreme example of a
strong natural context that is correctly identified by aspect model 2 leads to the classification of all
regions as natural (though some should be labeled as man-made).
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empirical distribution aspect model 1 aspect model 2
correct: 266 correct: 272 correct: 280

correct: 245 correct: 234 correct: 250

correct: 276 correct: 273 correct: 288

correct: 260 correct: 258 correct: 325

correct: 180 correct: 184 correct: 181

Figure 4.8: Image segmentation examples at TEER. Results provided by: first column, empirical
distribution; second column, aspect model 1; third column, aspect model 2. The first three rows
illustrate the case of a correctly identified marked natural image context by aspect model 2, resulting
in a more accurate visterm classification as compared to aspect model 1 and empirical distribution.
The fourth row shows a correctly identified marked man-made image context by aspect model 2,
with an improved number of correctly classified points. The last row shows the confusion of the region
classification, when the context is not correctly identified (in this case, overestimated) by aspect model
2.
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4.4 Combining co-occurrence and spatial contexts

The contextual modeling with latent aspects can be conveniently integrated with traditional spatial
regularization schemes. To investigate this we present the embedding of our contextual model within
the MRF framework [26], though other schemes could be similarly employed [34, 36].

4.4.1 Markov Random Field

Let us denote by S the set of sites s, and by Q the set of cliques of two elements associated with a
second-order neighborhood system G defined over S. The segmentation can be classically formulated
using the Maximum A Posteriori (MAP) criterion as the estimation of the label field C = {cs, s ∈ S}
which is most likely to have produced the observation field V = {vs, s ∈ S}. In our case, the set of
sites is given by the set of interest points, the observations vs take their value in the set of visterms V,
and the labels cs belong to the class set {man−made, natural}. Assuming that the observations are
conditionally independent given the label field (i.e. p(V |C) =

∏
s p(vs|cs)), and that the label field

is an MRF over the graph (S,G), then due to the equivalence between MRF and Gibbs distribution
(p(x) = 1

Z e−U(x)), the MAP formulation is equivalent to minimizing an energy function [26]

U(C, V ) =
∑
s∈S

V1(cs) +
∑

{t,r}∈Q

V ′
1(ct, cr)︸ ︷︷ ︸

U1(C)

+
∑
s∈S

V2(vs, cs)︸ ︷︷ ︸
U2(C,V )

, (4.12)

where U1 is the regularization term which accounts for the prior spatial properties (homogeneity) of
the label field, whose local potentials are defined by:

V1(man-made) = βp and V1(natural) = 0,

V ′
1(ct, cr) = β if ct 6= cr, and V ′

1(ct, cr) = 0 otherwise. (4.13)

β is the cost of having neighbors with different labels, while βp is a potential that will favor the
man-made class label (if βp < 0) or the natural one ( if βp > 0), and U2 is the data-driven term for
which the local potential are defined by:

V2(vs, cs) = − log(p(vs|cs)). (4.14)

To implement the above regularization scheme, we need to specify a neighborhood system. Several
alternatives could be employed, exploiting for instance the scale of the invariant detector (e.g. see
[36]). Here we used a simpler scheme: two points t and r are defined to be neighbors if r is one of the
NN nearest neighbors of t, and vice-versa. For this set of experiments we defined the neighborhood
to be constituted by the five nearest neighbors. Finally, in the experiments, the minimization of the
energy function of Equation 4.12 was conducted using simulated annealing [41].

4.4.2 Results

We investigate the impact of the regularization on the segmentation. The level of regularization is
defined by β (a larger value implies a larger effect). The regularization is conducted by starting at the
Equal Error Rate point, as defined in the 10-fold cross-validation experiments described in preceding
Section. More precisely, for each of the folds, the threshold TEER is used to set the prior on the labels
by setting βp = − log(TEER). Thus, in the experiments, when β = 0 (i.e. no spatial regularization is
enforced), we obtain the same results as in Table 4.1. In Figure 4.9 we see that the best segmentation
performance corresponds to an HTRR of 73.1% and a β of 0.35 with the empirical modeling, and an
HTTR of 76.3% for a β of 0.2 and aspect model 2. This latter value of β is chosen for all the MRF
illustrations reported in Figure 4.10 and 4.11.
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Figure 4.9: Half Total Recognition Rate for different β values.

The inclusion of the MRF relaxation boosted the performance of both aspect model 2 and empirical
distribution. However, it is important to point out that aspect model 2 still outperforms the empirical
distribution model, though the boosting benefited most to the empirical distribution modeling. This
was to be expected, as aspect model 2 was already capturing some of the contextual information that
the spatial regularization can provide (notice also that the maximum is achieved for a smaller value
of β in aspect model 2).

Besides obtaining an increase of the HTRR value, we see a better spatial coherence of the segmen-
tation, as can be seen in Figure 4.10 and 4.11. The MRF relaxation process reduces the occurrence
of isolated points, and tends to increase the density of points within segmented regions. We show on
the last row of Figure 4.10 that, as can be expected when using prior modeling, the MRF step can
over-regularize the segmentation, causing the attribution of a single class to all the visterms in an
image.
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all detected points aspect model 2 MRF

Figure 4.10: Effect of the MRF regularization on the man-made structure segmentation. The first
three rows illustrate the benefit of the MRF regularization where wrongly classified isolated points
are removed. The last row shows the deletion of all man-made classified regions from an image when
natural regions dominate the scene.
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image man-made natural

Figure 4.11: Three other examples that illustrate the final segmentation obtained with aspect model
2 and MRF regularization. The display is different than in previous figures to avoid image clutter.
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4.5 Conclusion

After investigating the aspect mixture weights learned from a bag-of-visterms representation for image
classification, we have proposed to take advantage of the co-occurrence context identified by an aspect
model to classify visterms in an image. The interpretation of an image region certainly depends on the
image it appears in, and any form of image-related context therefore helps their classification. Con-
sidering a man-made vs. natural visterm classification task, we proposed an aspect-based formulation
of the problem by adding a class label to each document-visterm observation pair. Our experiments
proved that, if the aspect mixture weights are taken into account, the classification of visterms in an
image depends on what the other visterms in this image are. The proposed approach integrates this
intuition and outperforms an image-independent visterm classification. This visterm co-occurrence
information represents a novel form of context exploited for image segmentation, different from the
spatial context traditionally considered. Moreover, this additional co-occurrence information has been
successfully combined with the traditional spatial context modeled with a MRF. We can also envision
other ways of integrating the two types of context.

Other types of visterms should be considered for different scene segmentation tasks. Visterms
built from SIFT descriptors are particularly well suited for the classification of man-made vs. natural
regions, as these are characterized by specific textures. Other classes might require the use of additional
- or different - information for building a valid visterm vocabulary for segmentation.



Chapter 5

Aspect models for image annotation

The concept of images as mixtures of latent aspects has been introduced in Chapter 2, in perspective
with the concept of mixture of aspects for text documents. Text collections are indeed the standard
data on which the aspect models are traditionally applied, and the chapters 3 and 4 investigated and
justified their use in the context of image collections. In this chapter, we propose to model the textual
and the visual modalities of annotated images with a single aspect model, sharing the same aspect
mixture weights P (z | di) for the two modalities. Three learning procedures are investigated, differing
in which modality is used to estimate the aspect mixture weights for each image. Once an aspect
model for the two modalities has been learned, a distribution over words given a new, unnannotated
image can be inferred. Moreover, two other types of visterms than the one used in the chapters 3
and 4 are successively evaluated and combined with the DoG+SIFT visterms. The work presented
here appeared originally in [52] and [53].

5.1 Automatic image annotation

Automatic image annotation systems take advantage of existing annotated image datasets to build a
link between the visual and the textual modalities. While this framework seems very close to standard
object detection [89, 1], key differences make automatic image annotation a distinct research problem.
Although the vocabulary - the set of valid annotation words - might be constrained, captions from
image collections can exhibit a large variability in general. Several words can describe one or more
regions or even the whole image (see Figure 5.1), which differs from the standard scene and object
classification scenarios in Chapter 3. The manual segmentation into positive and negative examples
for supervised training is not as straightforward as for the face detection case (see Figure 5.1). Fur-
thermore, the development of class-specific features and classifiers [90] is difficult, as the vocabulary
size is usually much larger than the number of classes in standard object detection problems. Au-
tomatic image annotation systems therefore tend to rely on generic features, and usually learn one
model for the whole vocabulary [5, 6, 35, 24, 32, 57, 18, 31, 66, 51].

Independently of what features are chosen, the question is how to model the relation between
captions and visual features to achieve the best textual indexing. A whole range of methods, from
a simple empirical distribution estimation to complex generative probabilistic models, have been
proposed in the literature, offering a large variety of approaches. However, the difference in the nature
of text captions and image features has not yet been fully investigated and exploited. In general, the
textual and visual modalities are either considered as equivalent sources of data [57, 18, 51, 35, 66],
or the caption words are simply considered as a class label [81, 15, 40] instead of a modality as such.
The Corr-LDA (Correspondence Latent Dirichlet Allocation) [6] model is a notable exception, that
builds a language-based correspondence between text and images. It first generates a set of hidden
variables (latent aspects) that generate the regions of an image, decomposing an image into a mixture

69
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flowers, garden, house, tower buildings, people, sky, street clouds, formation, sky, sunset

Figure 5.1: Typical image captioning in the Corel Stock Photo Library.

of latent aspects. A subset of these latent aspects is then selected to generate the text caption, what
intuitively corresponds to the natural process of image annotation.

The Corr-LDA model acknowledges the complementarity of text and images as sources of infor-
mation, as well as their difference in carrying semantic content, which needs be taken into account to
model the relation between modalities more accurately, with the goal of generating a better textual
indexing. This chapter investigates this concept, proposing a new dependence between words and
image regions based on latent aspects. The contributions of this chapter are the following. First, we
present an alternative image representation to the standard Blob histogram, that combines quantized
local color information and quantized local texture descriptors. Quantized versions of invariant local
descriptors have been recently proposed as promising representations of objects and scenes [68, 23, 75],
and applied to small number of classes. However, to our knowledge, this representation has not been
previously used in the context of image annotation, a more challenging problem from the number of
concepts that is addressed.

The effect of each type of visual features and their combination is analyzed in details, and we prove
their complementarity by demonstrating improvement of the retrieval performance for a majority of
word queries for all the models that we consider. Second, we propose a probabilistic framework to
analyze the contribution of the textual and the visual modalities separately. We assume that the two
modalities share the same conditional probability distribution over a latent aspect variable, that can
be estimated from both or one of the two modalities for a given image. In this way, equal importance
can be given to the visual and the textual features in defining the latent space, or one of the two
modalities can dominate. Based on extensive experiments, this framework allows us to show that the
textual modality is more appropriate to learn a semantically meaningful latent space, what directly
translates into an improved annotation performance. Finally, a comparison between different recently
proposed methods is presented, and a detailed evaluation of the performance shows the validity of our
framework.

The chapter is organized as follows. Section 5.2 presents an overview of the research in automatic
image annotation and contrasts it with our work. Section 5.6.1 discusses the data and the visual
representation considered in this work. Section 5.4 describes our probabilistic framework for image
annotation. In Section 5.5 we discuss state-of-the-art models that we implemented for comparison.
Results and discussion are presented in Section 5.6.

5.2 Related work

Existing works in automatic image annotation can be differentiated by the way in which they represent
images, and by the specific auto-annotation model. These two aspects are used to guide the discussion
in the following paragraphs.

A common first step to all automatic image annotation methods is the image segmentation into
regions, either using a fixed grid layout or an image segmentation algorithm. Regions have been
described by standard set of features including spatial frequencies, color, shape and texture, and
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handled as continuous vectors [5, 6, 35, 24, 32, 40], or in quantized form [57, 18, 31, 66, 51]. Different
statistical assumptions about these quantized or continuous representations and image captions have
led to different models. A representative selection of recent approaches is presented here.

The original approach described in [57] is based on a fixed grid image segmentation and a vector
quantization step. The color and texture representations of all training image blocks are quantized
into a finite set of visual terms (visterms), which transforms an image into a set of visterms. All
words attached to an image are attributed to its constituting visterms, and the empirical distribution
of each word in the vocabulary given all visterms is computed from the set of training documents. A
new image is indexed by first computing its building visterms and then averaging the corresponding
posterior distributions over words.

Contrarily to [57], the work in [18] relies on the Normalized Cuts segmentation algorithm [74] to
identify arbitrary image regions and build blobs. These blobs coarsely match objects or object parts,
which naturally brings up a new assumption: the existence of an implicit one-to-one correspondence
between blobs and words in the annotated image. The idea is borrowed from the machine translation
literature, and considers the word and blob modalities as two different languages. An Expectation-
Maximization (EM) procedure to estimate the probability distributions linking words and blobs is
proposed. Once the model parameters are learned, words can be attached to a new image region.
This region naming process is comparable to object recognition, even if regions do not necessarily
match objects in the image, due to the obvious limitations of the segmentation algorithm. A new
image is annotated by the most probable words given its constituting blobs.

The cross-media relevance model described in [31], also relies on a quantized blob image represen-
tation. However, unlike [18], it does not assume a one-to-one correspondence between blobs and words
in images. Images are considered as sets of words and blobs, which are assumed independent given
the image. The conditional probability of a word (resp. blob) given a training image is estimated by
the count of this word (resp. blob) in this image smoothed by the average count of this word (resp.
blob) in the training set. These posterior distributions allow the estimation of the probability of a
potential caption (set of words) and an unseen image (set of blobs) as an expectation over all training
images. This annotation system improves the performance w.r.t the machine translation method [18].

Linear algebra-based methods applied on the word-by-document and Blob-by-document matrices
are proposed in [66] to estimate the probability of a keyword given a blob. The correlation and the
cosine measure between words and blobs are investigated to derive these conditional probabilities.
The use of a Singular Value Decomposition (SVD) of the word-by-document and blob-by-document
matrices, weighted with the tf-idf (term frequency - inverse document frequency) scheme, shows
an improvement of the annotation performance over the original data representation. A consistent
improvement over the model based on machine translation [18] is shown.

In [35] and [24], the authors of [31] abandon the quantization of image regions. With the same
conditional independence assumptions than in their previous model [31], the continuous image region
representation, modeled by a Gaussian Mixture Model (GMM), improves the image annotation per-
formance. An additional modification is proposed in [24], where a multiple-Bernoulli distribution for
image captions replaces the multinomial distribution.

A statistical model of 600 image categories is proposed in [40]. Categories are labeled with multiple
words, and images are manually classified in these categories. A two-dimensional Multi-resolution
Hidden Markov Model (2D-MHMM) is learned on a fixed-grid segmentation of all category examples.
The likelihood of a new image given each category’s 2D-MHMM allows to select caption words for this
image. This work is related to the model vector indexing approach [81], where one classifier (Support
Vector Machine) is trained for each semantic concept (7 concepts), and used for the indexing of a
new image. The Content-based soft annotation (CBSA) system [15] is also based on binary classifiers
(Based Point Machines and SVMs) trained for each word (116 words are considered), and index a new
image with the output of each classifier. The drawbacks are the learning of one classifier per word
[81, 15], or of one model per set of words [40].

Different models to represent the joint distribution of words and image regions are discussed in
[5, 6]. A hidden aspect variable is assumed in the data generative process, which links the textual and
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visual modalities through conditional relationships. This assumption translates into several variations
of Latent Dirichlet Allocation (LDA) based mixture models. Images are represented as a set of
continuous region-based image features, and modeled by Gaussian distributions conditioned on the
aspects, while caption words are modeled with multinomial distributions. For instance, in the Corr-
LDA model [6], words are conditioned on aspects that generated image regions. This additional
constraint on word generation improves the overall annotation performance over less constrained
LDA-based models.

A whole range of performance measures for automatic image annotation systems has been discussed
in the literature. The quality of short image captions (≤5 words), intended to be similar to human
annotations, has been evaluated with different measures [15, 18, 66, 31, 5, 51]. Specifically, the
retrieval of images based on these short captions is evaluated with the precision and recall values of
the retrieved image sets for a number of given queries in [81, 66, 18, 31]. Alternatively, the ratio of the
correctly predicted words per image divided by the number of words in the ground truth annotation
has also been used for the evaluation of short captions [66, 5]. Proposed by [5], another measure for
caption evaluation is the Normalized Score, which depends on the number of predicted words, and
allows to estimate the optimal number of words to predict [51]. The creation of short, human-like
text captions is justified when the task is related to object recognition. A few text labels are attached
to the new image, possibly describing the image content accurately. However, the main goal of image
annotation is to allow text-based queries for image retrieval, and this does not require the creation
of binary text captions. All approaches (binary classification, probabilistic model, linear-algebra-
based) actually provide a confidence value for each word, that can be used for ranking all images in a
collection. The confidence values for each word enables the construction of an image index, that can
be used for text-based image retrieval [81, 15, 31]. The average precision of a query (see Section 5.6.2),
summarized by the mean average precision (mAP) for a set of queries, is then the natural metric for the
retrieval performance. This way of annotating/indexing images and evaluating retrieval performance
has started to become consensual [81, 31], and we therefore use it in this chapter.

As it should be clear from this overview, the existing approaches proposed to learn relationships
between visual and textual modalities in annotated images differ in the way images are represented, in
the dependence assumptions that are made between image regions and words, and in the way model
learning is performed. In this chapter, we propose a probabilistic framework related to [5] and [6] that
includes a hidden aspect variable to link the visual and textual modalities. This approach allows to
consider regions and words from an image jointly, contrarily to [57], where image regions are considered
independently, and to [40] and [81], where categories (or words) are treated independently. Moreover,
given that only one model is learned for all the words in the vocabulary, this type of approach might
be better suited for large vocabularies than the supervised learning procedures proposed in [40, 81],
which need to learn one model for each word. Finally, words and image features are of different nature
and carry quite distinct level of semantics, and so we believe that these differences should influence
how these two modalities are learned. Words and blobs are assumed equivalent in [18] (translation
between two languages), and are treated equivalently in some of the models described in [5] and [6].
Unlike these works, we investigate different possibilities of learning the two modalities jointly while
changing their respective influence.

In this sense, the closest work to ours is Corr-LDA, which first samples a latent aspect variable to
generate an image region from a conditional Gaussian distribution, and then samples an aspect from
the same set of aspects to select a word from a conditional multinomial distribution. In contrast, in
our work we do it differently because we use multinomial distributions conditioned on aspects to model
the discrete visual features, and therefore we have the possibility to model a similar data generative
process as Corr-LDA, or to first generate the words and learn the related aspect distributions that
we later link to the visual features. As stated in the introduction, We also propose an enriched image
representation that includes quantized local image descriptors that has not been investigated in auto-
annotation, but used in very recent work for scene and object classification [23, 75, 68]. We conduct a
thorough study comparing various competitive methods with a consistent evaluation procedure, and
we show an improvement of performance.
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Figure 5.2: Empirical distribution of words in the training images (set #1). The most common words
are water (1124), sky (949), tree (929), people (853), and buildings (441). The least common words
are formula (21), f-16 (21), dunes (21), candy (21) and bay (21). The numbers in brackets indicate
the number of images in which each word occurs. Some other words, whose number of occurrence
ranges between these two extremes, are shown to illustrate the nature of the vocabulary.

5.3 Annotated image representation

5.3.1 Text caption representation

Images in our dataset are annotated with a few unordered words selected from a vocabulary of size
Nw. The representation of the caption of an image di is an histogram w(di) of size Nw :

w(di) = {n(di, w1), ..., n(di, wj), ..., n(di, wNw
)}, (5.1)

where n(di, wj) denotes the count of the word wj in the caption of the image di. This is a standard
representation for text documents, that could also be used in the case of free-text captions after the
word stopping and word stemming preprocessing steps. As shown in Figure 5.2, the distribution of
words is highly skewed. As the dataset mainly consists of outdoor images, the words water, sky, tree,
people, and buildings account for a big proportion of the probability mass. The empirical distribution
also shows that there are many words represented by only a few training examples that nevertheless
will have to be predicted, what advocates for a model that learns the co-occurrence of these infrequent
words with more frequent words in order to predict them with higher accuracy. Training a separate
model for a specific infrequent word seems difficult, while identifying the words with which this word
co-occurs could be, instead, a good strategy.

5.3.2 Image representation

We investigate three types of visterms, as illustrated on Figure 5.3. The first is the DOG+SIFT
combination presented in Chapter 3 (see Figure 5.3(a)). The second relies on large-scale image regions,
combining both texture and color information (see Figure 5.3(c)). The third image representation is
based on a larger number of smaller-scale image regions, uniformly extracted from a fixed grid (see
Figure 5.3(d). They capture color or texture information respectively. The three discrete feature
types are described in the following.

SIFT

The same visterm type as the one used in chapters 3 and 4 is used. An image di is represented by the
histogram s(di) of its constituting SIFT visterms (see Figure 5.3(b)):



74 IDIAP–RR 07-06

(a) (b)
0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

sift index

co
un

t

(c) (d)
0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

blob index

co
un

t

(e) (f)
0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

10

12

14

16

18

20

hs index

co
un

t

Figure 5.3: SIFT, Blobs, and HS image representations of the same image: (top) original image, (a)
regions detected by the Difference-of-Gaussians (DoG) point detector, (b) resulting histogram of the
quantized SIFT descriptors, (c) normalized cut image segmentation from which texture, color and
shape features are extracted, (d) resulting histogram of the quantized image region features (Blobs),
(e) uniform grid segmentation, color features are extracted, (f) resulting histogram of the quantized
image region features (HS),
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s(di) = {n(di, s1), ..., n(di, sj), ..., n(di, sNs)}, (5.2)

where n(di, sj) i the number of local descriptors in the image di that have been quantized into the
visterm sj . In the rest of the chapter, we refer to this representation as the SIFT representation.

Blobs

We consider an image representation originally proposed for region-based QBE [13], and later used
for image annotation [5, 18, 6, 31]. A maximum of 10 regions per image, identified by the normalized
cut segmentation algorithm [74], are represented by 36 features including color (18), texture (12),
and shape/location (6). The K-means clustering algorithm is then applied to the region descriptors,
quantizing them into a Nb-dimensional Blob representation. Note that the difference in the number
of feature components makes the resulting Blob representation intrinsically biased towards color. An
image di is segmented into a set of large image regions that are quantized and represented by the
corresponding histogram b(di) of size Nb (see Figure 5.3(d)):

b(di) = {n(di, b1), ..., n(di, bj), ..., n(di, bNb
)}, (5.3)

where n(di, bj) denotes the number of regions in image di that are quantized into the Blob bj . The
motivation behind this representation is a possible match between the automatically segmented image
regions and objects in the images. We see for instance on Figure 5.3 (a) that the green region matches
trees in the original image, and that sky is covered by exactly one blob. As mentioned in [24], the
match between the segmented regions and objects in the image is however relatively poor in general.

HS

No algorithm is currently available to automatically segment an image into meaningful parts. The
use of a segmentation algorithm is therefore difficult to justify, and we decided to extract image
regions from a uniform grid, as illustrated in Figure 5.3 (e). The pixel color distribution from the
resulting regions is represented by a 2D Hue-Saturation histogram, where the color brightness value
from the Hue-Saturation-Value (HSV) color-space is discarded for illumination invariance [63]. These
HS histograms are then quantized into Nh bins with the K-means clustering algorithm, to obtain the
corresponding histogram representation h(di) of size Nh for the image di (see Figure 5.3(f)):

h(di) = {n(di, h1), ..., n(di, hj), ..., n(di, hNh
)}, (5.4)

where n(di, hj) denotes the number of regions in image di that are quantized into the HS bin hj .
Contrarily to a global color histogram, h(di) encodes the distribution of color information from local
image regions. In the rest of the chapter, we refer to this representation of an image as the HS
representation.

The SIFT, Blobs, and HS image representations encode different image properties, and are there-
fore expected to achieve different performances. The Blob representation is based on the joint quan-
tization of shape, texture and color features, extracted from large image regions. The HS and SIFT
representations are respectively based on the quantization of color or texture information, extracted
from small-scale image regions. As we show on Figure 5.3, the number of regions that are considered
in each case also varies: a maximum of 10 regions per image in the Blob case, 96 32×32 pixels square
regions in the HS case, and an average of 240 detected points (depending on the image content)
in the SIFT case. This makes the Blob histogram more sparse than the HS and SIFT histograms
for an equivalent number of 500 K-means clusters, as shown in Figure 5.3 (b,d, and f). In sec-
tion 5.6, we investigate the combination of these image representations. Using a direct concatenation
of them in a first evaluation, the concatenation of the HS and SIFT features forms the complementary
v(di) = {h(di), s(di)} histogram of size Nv = Nh + Ns for instance. To take advantage of these com-
plementary source of visual information, the methods have to treat these unbalanced representations
efficiently.
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5.4 Modeling annotated images with PLSA

We discuss here three alternatives to learn a PLSA model for the co-occurrence of visual and textual
features in annotated images. The first is a direct application of PLSA, described in Chapter 2, to
the early integration of visual and textual modalities [51]. The two others are based on a variation
of the PLSA EM algorithm that constrains the estimation of the conditional distributions of latent
aspects given the training documents from one of the two modalities only. This allows to choose
between the textual and the visual modality to estimate the mixture of aspects in a given document,
what constrains the definition of the latent aspects on one or the other modality. The three learning
procedures estimate the probability tables P (v | z) and P (w | z) from a set of training documents in
different ways, allowing the annotation of a new image dnew.

5.4.1 PLSA-mixed

The PLSA-mixed [51] model learns a standard PLSA model from a concatenated representation
of the textual and the visual features x(d) = {w(d), v(d)}, as described in Algorithm 5.1. Using
a training set of captioned images, P (x | z) is learned for both textual and visual co-occurrences,
capturing simultaneous occurrence of visual features and words given an aspect. The distribution
over words given an aspect P (w | z), and the distribution over visterms given an aspect P (v | z) are
then extracted from P (x | z), and normalized such that

∑Nw

j=1 P (wj | zk) = 1 and
∑Nv

j=1 P (vj | zk) = 1.

Algorithm 5.1 Estimation of the P (v | z) and P (w | z) probability tables with PLSA-mixed

random initialization of the P (x | z), and P (z | d) probability tables
while increase in the likelihood of validation data L(Dvalid) > T do

{E-step}
for all (di, xj) pairs in training documents, and k ∈ {1, . . . , L} do

P (zk | di, xj) =
P (xj | zk)P (zk | di)∑L
l=1 P (xj | zl)P (zl | di))

end for
{M-step}
for j ∈ {1, . . . , N} and k ∈ {1, . . . , L} do

P (xj | zk) =
∑M

i=1 n(di, xj)P (zk | di, xj)∑N
m=1

∑M
i=1 n(di, xm)P (zk | di, xm)

end for
for k ∈ {1, . . . , L} and i ∈ {1, . . . ,M} do

P (zk | di) =

∑N
j=1 n(di, xj)P (zk | di, xj)

n(di)

end for
estimate P (z | d′), where d′ ∈ Dvalid by folding-in, using P (x | z)
compute the folding-in likelihood of the validation data L(Dvalid)

end while
extraction of P (w | z) and P (v | z) from P (x | z), such that

∑Nw

j=1 P (wj | zk) = 1, and
∑Nv

j=1 P (vj |
zk) = 1
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5.4.2 Asymmetric PLSA learning

We propose to model a set of annotated images with a PLSA model for which the conditional dis-
tributions over aspects P (z | di) are estimated from one of the two modality only. Contrarily to
PLSA-mixed, which learns P (z | di) from both the visual and the textual modalities, this formu-
lation allows to treat each modality differently, giving more importance to the text captions or the
image features in the latent space definition. We refer to this alternative learning algorithm as an
asymmetric PLSA learning. Intrinsically, PLSA-mixed assumes that the two modalities have an
equivalent importance in defining the latent space, given that the latent space is learned from their
concatenated representation. The only potential imbalance could result from a marked difference
between the number of words and the number of visual features in the images, and these values are
not freely controlled in practice.

An asymmetric PLSA learning gives a better control of the respective influence of each modality
in the latent space definition. This concretely allows to model an image as a mixture of latent aspects
that is either defined by its text captions or by its visual features, resulting in different aspect mixture
weights. The aspect distributions P (z | di) are learned for all training documents from one modality
only (visual or textual modality), and are kept fixed for the other modality (textual or visual modality
respectively). We refer to PLSA-features when the aspect distributions P (z | di) are learned on
the visual features, and to PLSA-words when the aspect distributions are learned on the image
captions. In the following, we describe how the parameters are learned in the asymmetric learning
case.

Learning parameters

The description of the learning process is valid for the PLSA-features and the PLSA-words
approaches, but differs on which modality the multinomial distribution over aspects are learned for the
training documents. The first and second modalities are therefore referred to as x1 and x2 respectively,
and correspond either to the visual or to the textual features in the following. The PLSA-features
and the PLSA-words learning procedures are described in details in Algorithm 5.2 and Algorithm 5.3
respectively. They consist in two steps, one for each modality:

Estimate P (x1 | zk) and P (z | di): The first modality is used to estimate the L conditional distribu-
tions P (x1 | zk) and the M conditional distributions P (z | di), using a standard PLSA learning
algorithm.

Estimate P (x2 | zk): We consider that the aspect mixture weights learned from the first modality
are correctly estimated for the training documents. The L conditional probability distributions
P (x2 | zk) for the second modality are therefore estimated by maximizing the likelihood of the
training data, defined by the second modality, keeping the P (z | d) probability table fixed. Note
that this technique is computationally similar to the PLSA folding-in procedure to estimate the
aspect mixture weights of an unseen document, introduced in Chapter 2. However, what we are
trying to do is, conceptually speaking, very different.

The multinomial distributions P (x1 | zk) and P (x2 | zk) are defining the latent aspects zk based
on the visual and textual modalities respectively for PLSA-features: conversely for PLSA-words.
Early stopping is performed for each of the two learning steps described above, using an evaluation
set Dvalid. The first step requires the estimation of the folding-in likelihood, but not the second step.
The aspect mixture weights of the validation documents P (z | d′), estimated from the first step, are
not re-estimated by folding-in.

5.4.3 Annotation by inference

Given new visual features v(dnew) and the previously estimated P (v | z) parameters, the conditional
probability distribution P (z | dnew) is inferred for a new image dnew using the standard folding-in
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Algorithm 5.2 Estimation of the P (v | z) and P (w | z) probability tables with PLSA-features

random initialization of the P (v | z) and P (z | d) probability tables

while increase in the likelihood of validation data Lvalid > T do
{E-step}
for all (di, vj) pairs in training documents, and k ∈ {1, . . . , L} do

P (zk | di, vj) =
P (vj | zk)P (zk | di)∑L
l=1 P (vj | zl)P (zl | di))

end for
{M-step}
for j ∈ {1, . . . , Nv} and k ∈ {1, . . . , L} do

P (vj | zk) =
∑M

i=1 n(di, vj)P (zk | di, vj)∑Nv

m=1

∑M
i=1 n(di, vm)P (zk | di, vm)

end for
for k ∈ {1, . . . , L} and i ∈ {1, . . . ,M} do

P (zk | di) =

∑Nv

j=1 n(di, xj)P (zk | di, xj)
n(di)

end for

estimate P (z | d′), where d′ ∈ Dvalid by folding-in, using P (v | z)
compute the folding-in likelihood of the validation data L(Dvalid)

end while

random initialization of the P (w | z) probability table
while increase in the likelihood of validation data Lvalid > T do

{E-step}
for all (di, wj) pairs in training documents, and k ∈ {1, . . . , L} do

P (zk | di, wj) =
P (wj | zk)P (zk | di)∑L
l=1 P (wj | zl)P (zl | di))

end for
{Partial M-step}
for j ∈ {1, . . . , Nw} and k ∈ {1, . . . , L} do

P (wj | zk) =
∑M

i=1 n(di, wj)P (zk | di, wj)∑Nw

m=1

∑M
i=1 n(di, wm)P (zk | di, wm)

end for

compute the likelihood of the validation data L(Dvalid) from P (w | z) and P (z | d′) from
previous modality

end while
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Algorithm 5.3 Estimation of the P (v | z) and P (w | z) probability tables with PLSA-words

random initialization of the P (w | z) and P (z | d) probability tables

while increase in the likelihood of validation data Lvalid > T do
{E-step}
for all (di, wj) pairs in training documents, and k ∈ {1, . . . , L} do

P (zk | di, wj) =
P (wj | zk)P (zk | di)∑L
l=1 P (wj | zl)P (zl | di))

end for
{M-step}
for j ∈ {1, . . . , Nw} and k ∈ {1, . . . , L} do

P (wj | zk) =
∑M

i=1 n(di, wj)P (zk | di, wj)∑Nw

m=1

∑M
i=1 n(di, wm)P (zk | di, wm)

end for
for k ∈ {1, . . . , L} and i ∈ {1, . . . ,M} do

P (zk | di) =

∑Nw

j=1 n(di, xj)P (zk | di, xj)
n(di)

end for

estimate P (z | d′), where d′ ∈ Dvalid by folding-in, using P (w | z)
compute the folding-in likelihood of the validation data L(Dvalid)

end while

random initialization of the P (v | z) probability table
while increase in the likelihood of validation data Lvalid > T do

{E-step}
for all (di, vj) pairs in training documents, and k ∈ {1, . . . , L} do

P (zk | di, vj) =
P (vj | zk)P (zk | di)∑L
l=1 P (vj | zl)P (zl | di))

end for
{Partial M-step}
for j ∈ {1, . . . , Nv} and k ∈ {1, . . . , L} do

P (vj | zk) =
∑M

i=1 n(di, vj)P (zk | di, vj)∑N
m=1

∑M
i=1 n(di, vm)P (zk | di, vm)

end for

compute the likelihood of the validation data L(Dvalid) from P (v | z) and P (z | d′) from
previous modality

end while
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procedure for a new document (Chapter 2). Given these estimated mixture weights, the conditional
distribution over words given this new image is given by:

P (w | dnew) =
L∑
k

P (w | zk)P (zk | dnew), (5.5)

where the probability table P (w | z) was estimated from the training data.

5.5 Baseline methods

Three baseline models for image annotation are considered for comparison with our models. The
first baseline consists in a visual comparison between the image to annotate and the training images,
propagating their annotations based on this similarity. The two other methods correspond to the
state-of-the-art performance in image annotation when the discrete, quantized Blob representation
b(d) is used [18, 31, 66, 51].

5.5.1 Annotation propagation

Intuitively, training images that are similar to a new image dnew should be taken into account to
generate its annotation. Our simplest baseline therefore consists in computing the similarity between
the image dnew and the training images, sequentially attaching their respective annotation to dnew

based on these similarities. Concretely, we compute the cosine similarity between the image dnew and
the M training images di based on their respective visual representations v(dnew) and v(di):

simcos(v(dnew), v(di)) =

∑Nv

j n(dnew, vj)n(di, vj)√∑Nv

j n(dnew, vj)2
√∑Nv

j n(di, vj)2
(5.6)

The training images are ranked with respect to this similarity measure, and the probability of a
word wi given dnew is estimated by the inverse of the best ranked image according to Equation 5.6
that contains the word wi:

P (wi | dnew) ∝ (rank(dbest))−1, (5.7)

where dbest is the most similar image to dnew in the training set that contains the word wi. and
rank(dbest) is the rank order of this image given dnew. The word probabilities are then normalized so
that

∑
Nw

P (w | dnew) = 1.

5.5.2 Cross-media relevance model

In [31], the annotation of an unseen image dnew is based on the joint probability of all its m constituting
visual elements vl and the word wj . This joint probability is estimated by its expectation over the M
training images,

P (wj , v1, ..., vm) =
M∑
i

P (di)P (wj , v1, ..., vm | di) (5.8)

The visual elements are considered independent given an image di, which gives:

P (wj , v1, ..., vm) =
M∑
i

P (di)P (wj | di)
Nv∏
l

P (vl | di)n(di,vl), (5.9)
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where n(di, vl) is the count of the visual element vl in the image di. The probability of a word w in
a training image di is the likelihood of this word in this image combined with the likelihood of this
word in all the training images. A fusion parameter α controls the importance of the image and the
training set likelihoods:

P (wj | di) = (1− α)
n(di, wj)∑Nv

l n(di, vl) +
∑Nw

j n(di, wj)
+ α

n(wj , d)
M

, (5.10)

where n(di, wj) denotes the count of the word wj in the image di, n(di, vl) is the count of the visual
element vl in the image di, n(wj , d) is the number of images in which the word wj appears, and M
is the number of training images. Similarly, the probability of a visual element given an image di is
estimated by its likelihood in this image smoothed by its likelihood in the training set, controlled by
a parameter β:

P (vl | di) = (1− β)
n(di, vl)∑Nv

l n(di, vl) +
∑Nw

j n(di, wj)
+ β

n(vl, d)
M

, (5.11)

where n(di, vl) denotes the count of the visual element vl in the image di, n(di, wj) denotes the count
of the word wj in the image di, n(vl, d) is the number of images in which the word vl appears, and M
is the number of training images. The hyper-parameters α and β are estimated on a validation set to
optimize the model performance.

5.5.3 Cross-media translation table

In [66], a translation table Tcos between words and quantized visual features is proposed. The word-
by-image matrix is weighted with the tf-idf scheme to obtain the weighted matrix Dw:

Dw = (n(di, wj) ∗ log(
M

n(wj , d)
))M×Nw

, (5.12)

where n(di, wj) is the count of the word wj in the image di, n(wj , d) is the number of documents
the word wj appears in, M is the number of training images, and Nw is the size of the vocabulary.
Similarly, the feature-by-image matrix is weighted with the tf-idf scheme to obtain the weighted
matrix Dv:

Dv = (n(di, vl) ∗ log(
M

n(vl, d)
))M×Nv

, (5.13)

where n(di, vl) is the count of the word vl in the image di, n(vl, d) is the number of documents the
visual element vj appears in, M is the number of training images, and Nv is the size of the visual
feature space. A Singular Value Decomposition (SVD) is applied on the Dw and Dv matrices, keeping
the first r eigenvalues which preserve 90% of the variance to suppress the noise in the data. Let the
j-th column of the matrix Dw be dwj , and the l-th column of the matrix Dv be dvl. The cross-media
translation table T is defined by:

Tcos = (simcos(dwj , dvl))Nw×Nv
, (5.14)

where the cosine similarity function simcos() is defined in Equation 5.6. Normalizing Tcos by column,
the annotation of a new image dnew represented by its histogram v(dnew) is given by:

P (w | dnew) = Tcos × v(dnew). (5.15)
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5.6 Results

5.6.1 Data

As shown in [58] for the case of Query by example (QBE), contradictory rankings can be obtained if
the performance evaluation is conducted on different data subsets, even if these subsets are created
from the same original image collection. To prevent this possible inaccuracy, it is crucial to compare
different systems on identical data, with clearly defined training and testing sets. We conduct our
experiments on an annotated image dataset that was originally used in [5], and consists in ten samples
of roughly 16000 annotated images. Each sample is split into a training and a testing set, with
an average number of 5240 training and 1750 testing images. The average vocabulary size is 161.
The Blob representation, as well as the description of the different samples were downloaded from
http://kobus.ca/research/data/jmlr 2003/.

5.6.2 Mean average precision measure

A number of papers [18, 66, 24, 32, 31] measure the ability of the system to produce a human-like
annotation, selecting a small number of words from the vocabulary. A fixed threshold or a fixed
number of words has to be decided to extract short captions that can be used for image retrieval.
With this, for a given query word, the number of correctly retrieved images divided by the number of
retrieved images is the word precision, and the number of correctly retrieved images divided by the
total number of correct images is the word recall. The average word precision and word recall values
summarize the system performance.

One drawback of creating a human-like annotation is that only a fraction of words from the
vocabulary are eventually predicted for the test images, because uncommon words tend not to be
predicted due to a very low conditional probability. The word precision and recall values have thus to
be presented together with the number of predictable words, as done in [18, 24, 32, 31], which makes
the comparison between models unclear. Is it better for a system to predict only a few words with a
high accuracy, or is a system more efficient if it can predict more words?

However, given that the goal is to index images for image retrieval, there is no need to produce
such short, human-like annotation. The conditional probability distribution P (w | dnew) can be used
to rank the images for all possible queries. Even if the conditional probabilities of a word are low
for the images to rank, the comparison of the relative values allows to rank the image collection for
each word query. To illustrate this, the truncated word distribution inferred on two images using
the PLSA-words model are shown in Figure 5.4. The word flowers is in the top 20 words for both
images, but the probability of the word flowers given the top image is higher than given the bottom
image. This information would be discarded if the model is used to predict a fixed length annotation,
although it can be exploited for image ranking. The distribution over word in Figure 5.4 also shows
how much more probable the word ocean is given the bottom image than given the top-image. This,
again, would not be possible if we were only relying on a five-word annotation.

The performance measure used in this work is mean average precision (mAP). This is a standard
measure for the retrieval of text documents for years, that has also been used by TRECVID to evaluate
the semantic concept video retrieval task for several years (details can be found at http://www-
nlpir.nist.gov/projects/trecvid/). mAP has the ability to summarize the performance in a meaningful
way. To compute it, the average precision (AP) of a query q is first defined as the sum of the precisions
of the correctly retrieved words at rank i, divided by the total number of relevant images rel(q) for
this query:

AP (q) =
∑

i∈relevant precision(i)
rel(q)

. (5.16)

The average precision measure of a query is thus sensitive to the entire ranking of documents. The
mean of the average precision of Mq queries q summarizes the performance of a retrieval system in
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Figure 5.4: The conditional probability distribution P (w | d) inferred on two test images from their
HS+SIFT representation with the PLSA-words approach. The image and the ground truth annotation
are shown on the left column, and the top twenty words and their conditional probability are shown
on the right column.

one mean Average Precision (mAP) value:

mAP =

∑
Mq

AP (q)

Mq
(5.17)

5.6.3 Hyper-parameters and cross-validation

We need to estimate two types of hyper-parameters by cross-validation. The first is the number
of K-means clusters that defines the quantization of the visual features into visterms, the second is
the number of latent aspects for the approaches based on a PLSA model. The number of K-means
clusters is cross-validated for the HS, SIFT and HS+SIFT representations, for 100, 200, 500, and 1000
clusters. The value of Nb = 500 clusters for the Blob representation is kept fixed, as this representation

Blobs HS SIFT
500 100 200 500 1000 100 200 500 1000

propagation 10.2 (0.6) 10.7 (0.7) 10.8 (0.6) 11.7 (0.7) 12.4 (1.0) 10.7 (0.9) 11.4 (0.6) 12.2 (0.8) 13.0 (0.8)
CMRM [31] 12.1 (0.8) 13.4 (1.0) 14.2 (0.9) 14.4 (1.1) 14.5 (1.2) 11.6 (0.9) 12.7 (1.0) 12.3 (1.6) 10.0 (2.0)
SVD-cos [66] 15.6 (0.7) 14.1 (1.0) 15.4 (1.0) 16.4 (1.1) 17.1 (1.1) 10.0 (0.8) 11.6 (0.8) 12.8 (0.9) 14.3 (0.9)

Table 5.1: Average mAP values (%) over 10 cross-validation runs for different quantization of the HS
and the SIFT image representations, for the three baseline methods. The standard deviation is given
in parentheses.
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is provided as is by the authors of [5]. The mAP performance of the Blob representation is given for
comparison. The K-means models are learned on the training images of each sample set. On Table 5.1,
we show the mAP values obtained with the three baseline methods, averaged over ten cross-validation
runs for one sample set. The hyper-parameter values estimated by cross-validation from this sample
set will be used for the remaining 9, as one set is assumed to be representative of the entire set. For the
three baseline methods, the best number of K-means clusters for both HS and SIFT representations is
1000, except for the SIFT representation in the CMRM case, for which 200 clusters corresponds to the
best retrieval performance. We also observe that the HS representation consistently achieves higher
performance than the Blob representation for the same number of clusters. We use these estimated
number of clusters for the remaining experiments.

HS+SIFT
500-500 500-1000 1000-500 1000-1000

propagation 16.0 (1.3) 15.5 (1.4) 16.8 (1.2) 16.4 (1.3)
CMRM [31] 17.6 (0.8) 17.4 (0.8) 6.2 (0.8) 4.8 (0.8)
SVD-cos [66] 19.9 (1.5) 20.9 (1.7) 20.2 (1.7) 21.2 (1.7)

Table 5.2: Average mAP values (%) over 10 cross-validation runs for representations based on the
concatenation of different quantization of the HS and SIFT features, for the three baseline methods.
The standard deviation is given in parentheses.

We also estimated the number of clusters by cross-validation for the HS+SIFT concatenation, as
reported on Table 5.2. We restricted our analysis to the combination of HS and SIFT features for
two reasons. First, as Table 5.1 suggests, the HS representation outperforms the Blob representation.
Second, HS and SIFT features result from the quantization of local color-only and local texture-only
information, respectively, while the Blob representation corresponds to the joint quantization of color,
texture and shape. Analyzing the effect of the combination of separately extracted color-only and
texture-only information seems more intuitive than analyzing the combination of a texture-based
representation with a joint color-texture-shape representation. The values from Table 5.2 show that
the optimal combination for the propagation method is Nh = 1000 HS and Ns = 500 SIFT clusters,
500 HS and SIFT clusters for the CMRM case, and 1000 HS and SIFT clusters for the SVD-cos
case. The results from the CMRM method drop significantly for the (1000, 500) and (1000, 1000)
combination, although we carefully selected the α and β parameters.

As we have mentioned, PLSA-based approaches require the number of latent aspects L to be
estimated, as this hyper-parameter defines the capacity of the model: the number of parameters
P = (M(L− 1)) + (L(N − 1))) ∼ L(M + N) linearly depends on L. The best value for the number of
clusters therefore needs to be jointly estimated with the number of latent aspects for the three PLSA-
based approaches, what is reported on Figure 5.5. The average of the mAP values computed for 10
cross-validation runs are reported on Figure 5.5, where the number of latent aspects is varied between
10 to 250, for the three PLSA-based approaches. The number of K-means clusters for quantizing the
visual features is also varied, and reported as a different line on each plot. The standard deviation
over 10 cross-validation runs is shown with error bars.

The plots on Figure 5.5 allow to decide the number of aspects and the number of clusters given
each PLSA learning methods and each image representation. The maximum number of K-means
clusters seems to be a reasonable choice for the HS, SIFT and HS+SIFT representations. The results
in the following sections are therefore computed with Nh = 1000 and Ns = 1000 clusters for the
quantization of the HS and SIFT representations. Regarding the number of aspects L, the following
values are chosen:

• PLSA-mixed : L = 140 for HS, L = 110 for SIFT, and L = 170 for HS+SIFT,

• PLSA-features: L = 170 for HS, L = 150 for SIFT, and L = 180 for HS+SIFT,

• PLSA-words : L = 120 for HS, L = 110 for SIFT, and L = 120 for HS+SIFT.
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Figure 5.5: Joint cross-validation of the number of aspects and the number of K-means clusters for
the the HS (left column), SIFT (middle column), and HS+SIFT (right column) representations, and
for the three PLSA learning methods. The mAP value obtained for PLSA-mixed (top row), PLSA-
features (middle row), and PLSA-words (bottom row) are given. The error bars show the standard
deviation of the mAP values for ten runs.
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5.6.4 Overall performance

The average of the mAP obtained on the 10 test sets with the hyper-parameters estimated in Sec-
tion 5.6.3 are shown in Table 5.3, where the performance of the Blob, HS, SIFT and HS+SIFT
representations for the six auto-annotation methods presented in Section 5.4 and 5.5 are reported.
The standard deviation of the mAP over the ten test sets is shown in parentheses. Note that the
mAP values in Table 5.3 are consistently lower than the cross-validation values, because the retrieval
tasks on which the mAP are computed is more challenging: an average of 1750 images for test vs. an
average of 520 images for cross-validation are ranked.

Blobs HS SIFT HS+SIFT

propagation 7.8 (0.7) 9.0 (0.2) 9.4 (1.0) 13.1 (0.5)
CMRM [31] 11.5 (1.1) 10.7 (1.1) 7.9 (0.5) 13.4 (1.0)
SVD-cos [66] 12.9 (1.1) 12.9 (0.8) 10.7 (0.7) 16.6 (1.1)
PLSA-mixed 5.8 (0.8) 10.2 (0.8) 7.5 (0.6) 11.9 (1.3)
PLSA-features 8.2 (0.7) 11.2 (1.0) 10.1 (0.8) 14.0 (1.3)
PLSA-words 11.0 (0.9) 13.3 (1.0) 11.8 (1.1) 19.1 (1.2)

Table 5.3: Average mAP values (%) over the 10 test sets, for the six methods when combinations of
HS and SIFT features are used.

We see that the the PLSA-mixed approach particularly fails to produce an efficient probabilistic
indexing of the test images for all the image representations. In particular, its performance is lower
than the simple propagation baseline that relies on a direct image similarity computation. Using a
concatenated representation of words and visual features, PLSA-mixed attempts to simultaneously
model the visual and textual modalities. As we already mentioned, this means that intrinsically,
PLSA-mixed assumes that the two modalities have an equivalent importance in defining the latent
space, which as the results suggest, is not the most accurate assumption.

Except for the PLSA-mixed case and the CMRM method when the SIFT representation is used,
all methods achieve a higher performance than the propagation baseline. This shows that computing
image similarity, although simple and intuitive, can only be considered as a low quality baseline for
image annotation. It is however rather competitive with the CMRM and PLSA-features methods,
in particular for the HS and HS+SIFT image representations.

All methods take advantage of the HS+SIFT combination: the performance of a single feature
type is always lower than their combination, which confirms that HS and SIFT features encode com-
plementary information. It is interesting to notice that the CMRM and SVD-cos methods achieve
the best performance for the Blob representation, which is the representation they were originally
evaluated on [66, 31]. These methods however do not produce the best performance, especially when
compared to the PLSA-words method. Furthermore, when the conditional probability distributions
of the aspects given the training documents di P (z | di) are learned from the visual features with
PLSA-features, the estimation of the conditional distribution over words gives better results than
PLSA-mixed, but also lower mean average precision values than the baseline methods.

Regarding PLSA-words, our method achieves a similar mAP performance than the SVD-cos
method for the Blob representation, but it exploits the HS, SIFT, and the HS+SIFT representations
more efficiently than both the CMRM and the SVD-cos approaches. Furthermore, it consistently
performs better than CMRM. The PLSA-words model achieves the best mAP score overall when the
concatenated SIFT and HS+SIFT representations are used. In the HS+SIFT case, the PLSA-words
improves over the SVD-cos method by 15% (relative improvement). This improvement is significant
according to a paired samples T-test with a p-value of 0.05, showing that the estimation of the aspect
distribution based on the textual modality improves over the linear algebra-based SVD-cos method
and over the method that does not use aspect variables.

In the following two sections, we analyze the performance of PLSA-words, the best-performing
model, in more details.
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Figure 5.6: Histogram of the 153 average precision values for SVD-cos (left) and PLSA-words
(right) methods.

5.6.5 Per-word performance

The histogram of the average precision values obtained with PLSA-words in Figure 5.6 (right) shows
a marked difference in performance for different words: half of the words have an average precision
value higher than 0.14, 65 words have an average precision value below 0.1 and 10 words have an
average precision value above 0.5. A similar trend can be observed with the baseline methods, as
shown for the SVD-cos method on Figure 5.6 (left). This important variation goes unnoticed if only
the mean average precision is reported, as done in part of the existing literature [35, 24].

The combined effect of three factors could explain why the system does not rank images satisfac-
torily for some words while achieving a good performance for others. First, the number of training
images per word ranges significantly in the dataset, from 21 (for bay, candy, formula, ...) to 1124
(water), and obviously the quality of a statistical model depends on the nature and the number of
training examples. Second, all words have to be learned from the same set of visual features, which
can be better suited for some concepts than for others. Third, the co-occurrence in text captions can
have a combined influence with the two previous points; if a given word is correctly learned by the
model because it is well represented by the visual features and has a sufficient number of training
examples, other words that consistently co-occur with it could have a relatively high performance
despite a low number of training examples. We investigate these three factors by analyzing individual
word performance together with basic statistics computed on the training set.

The number of training images and the average precision for the 20 words with the best and the
worst performance with the PLSA-words model are shown in Figure 5.7, which shows that there
is a difference in the average number of examples for the 20 best performing words compared to the
20 worst performing words. The former have 106 training examples on average, while the latter have
an average of 29 examples. This fact suggests that the number of examples does indeed influence the
performance of a word in general, because a low number of examples often does not allow to capture
the statistical variations of a word appearance.

However, we also see in Figure 5.7 that, even though words have a comparable number of training
examples, their respective performance is completely different. The words polar, formula, and black
(Figure 5.7a) have a high average precision value (∼ 0.5), while the words river, woods, and road
(Figure 5.7b) are part of the 20 words with the lowest average precision (∼ 0.015). The performance
of a given word thus not only depends on the number of training examples, but also on the two other
factors mentioned above.

In cases when the images a word is attached to depict consistent visual content that is well
represented by the feature set, the model can learn the representation from little training data. For
instance, images that are annotated with the word formula (see Figure 5.8 left) contain distinctive
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Figure 5.7: Average precision and number of training examples for (a) the twenty best, and (b) the
twenty worst average precision values (ranked in decreasing order in (a), and in increasing order in
(b)) obtained with the PLSA-words annotation.

visual features that can be captured from a relatively small number of examples (21 in the dataset),
while providing an high average precision value of 0.5 for this word. Similarly, the word polar is mainly
attached to winter images (see Figure 5.8 right) which have a very distinctive white aspect, and is
therefore well predicted (average precision of 0.51) despite very few training examples (only 28). On
the contrary, the words reflection and museum for instance are not correctly modeled because the
corresponding image content can not be learned properly from 25 and 42 examples, respectively.

For models such as PLSA-words that learn co-occurrences in image captions, there is a possibility
to improve the prediction of infrequent words from their co-occurring words. We show three examples
of this effect on Figure 5.9, for the words skis, bridge and leaves. For these three words, the four words
that co-occur the most with each of them are reported, as well as different statistics, including the
number of times they co-occur with the word considered (top row), the number of times they appear in
the training set (middle row), and their respective average precision (bottom row. Regarding the first
example, although the word skis is only represented by 63 examples, the fact that it co-occurs quite
often with more frequent words like people (which appears in 853 examples), snow (252 examples),
and mountain (82 examples), allows PLSA-words to predict skis with a high average precision (0.3).
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formula polar

Figure 5.8: Two examples of images annotated with the word formula (left), and two images annotated
with the word polar (right).

The method SVD-cos also takes advantage of this co-occurrence, but predicts the word skis with a
lower average precision (0.24). For the second example, the word bridge only has 93 examples, but is
well predicted by the PLSA-words model, because it co-occurs with words that have more examples
in the training set, like water (which occurs in 1124 examples), sky (949 examples), and stone (258
examples). For the last example, the word leaves is predicted with an average precision of 0.43 by
PLSA-words, although there are only 134 leaves image examples. The fact that the word leaves
co-occurs quite frequently with the words flowers (appearing in 224 examples), or tree (929 examples)
also illustrates why a model that captures co-occurrence information at the caption level performs
better than a model that does not model this information explicitly. In the two last examples, SVD-cos
fails to take advantage of the co-occurrence with more frequent words, as PLSA-words does.

5.6.6 Combination of features

To observe in more detail the benefit of combining HS and SIFT features for PLSA-words, their
individual and combined effects on the average precision of 10 representative words is shown in Fig-
ure 5.10. These 10 words are selected to illustrate different interesting behaviors that are observed
when SIFT (dark green), HS (green) or both (yellow) are used.

As a general trend, we see that words that are rather well defined by color regions have higher
average precision values when the HS representation is used, compared to SIFT visterms. In Fig-
ure 5.10, images annotated with words such as sun, crystal, plane, and night, depict colored regions,
and are therefore well represented by the HS features. As shown in the Figure 5.10, the average
precision of these words for a retrieval system based on the HS representation outperforms the same
system based on the SIFT representation. This is a somewhat expected result. For instance, images
annotated by the word sun present rather non-distinctive image structures, but contain very specific
colors. Similarly, crystal images have a large variety of textures but present very distinctive colors.
The average precision of this word is therefore higher when HS features are used. The word plane
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Figure 5.9: Effect of word co-occurrences in captions for the words (a) skis, (b) bridge, and (c) leaves.
The first row shows the number of times the four most frequently co-occurring words appear in the
same caption as the word considered, the second row shows the total number of times each word
appears in the training set, and the third row shows the average precision of these words for the
PLSA-words (green) and the SVD-cos (yellow) models.

also happens to be better represented by HS features as shown in Figure 5.10, which could be at first
glance counter-intuitive. However, the word plane consistently appears in the context of blue sky,
which are well identified by the HS representation.

On the contrary, if a word corresponds to images that contain specific textures, the SIFT repre-
sentation becomes more informative and results in better image ranking. This can be observed in
Figure 5.10, where the average precision values for the words buildings, clouds, and house, are higher
when the SIFT (instead of the HS) representation is used. All these images contain structures that are
poorly represented by HS elements, which encode color information. Based on local gray-scale edge
directions, the SIFT visterms can efficiently depict parts of these structures, and allow to discriminate
between e.g. white house and a polar bear that would be represented by a similar HS histogram. In
Figure 5.10, we see that the house average precision values are more than two times bigger for the
SIFT representation than for the Blob representation.

As already shown in Table 5.3, the concatenation of the HS and SIFT representations provides the
best ranking performance of the system. More precisely, it improves the average precision of 121 words
compared to the SIFT-only representation, and 121 words compared to the HS-only representation.
This complementarity can be analyzed in more details on the 10 words considered in Figure 5.10.
The concatenation of HS and SIFT features improves the average precision of 9 of the 10 words in
Figure 5.10 on all of them on average, as shown in Table 5.3.

Regarding limitations of the HS+SIFT combination, note that for some words, like house in
Figure 5.10, combining the SIFT and the HS representations actually produces a worse image ranking
than the SIFT-only case. This indicates that some ambiguity is introduced by the HS features in the
related images, making them more similar to other images that are annotated with different words.
Better mechanisms for data fusion could thus potentially improve the system performance, because a
few words are better represented by one of the two feature types than by their simple concatenation.



IDIAP–RR 07-06 91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

br
idg

e

bu
ild

ing
s

clo
ud

s
co

as
t

su
n

cr
ys

ta
l

gr
as

s
pla

ne
nig

ht

ho
us

e

av
er

ag
e 

pr
ec

is
io

n

 

 
SIFT
HS
HS+SIFT

Figure 5.10: Average precision of 10 selected words when SIFT (dark green), HS (green) and HS+SIFT
(yellow) features represent the image. Depending on the word, the average precision values are higher
for one of the two representations, and the combination of both improves in general.

The fact that one model is learned for all the words does not allow a basic word-dependent weighting
of the features, and more elaborate schemes have to be explored in the future.

5.6.7 Ranking examples

The AP measure of a specific query gives a good indication of the system performance, allowing the
comparison of different annotation strategies or different feature combinations, as we have done in
the previous sections. Here, we illustrate the retrieval performance of five queries, showing the 48
top-ranked images given the P (w | d) estimated with the PLSA-words method, using the HS+SIFT
feature combination. From a total of 1783 ranked images, these top-ranked images correspond to
what could be displayed on a web browser window, what corresponds to an online retrieval scenario.
We have chosen five queries, with AP values ranging between 28% and 1.2%, that are representative
of the variation in performance observed in our dataset. In each figure, the images that are actually
annotated with the query word according to the ground-truth are shown within a green box. Images
are ranked as a left-right, top-down sequence.

The first retrieval result, shown on Figure 5.11, corresponds to the query street. In this example,
our proposed PLSA-words learning procedure allowed to retrieve 16 images out of 64 that are
annotated with the word street in the ground-truth. The other top-ranked images show what type of
visual information is linked with the word street by the PLSA-words model. A majority of images
contain a building or a boat, corresponding to similar color distributions and textures. For a number
of images that contain a building structure, the word street could actually be a valid annotation. The
same observation can be made from Figure 5.12, that illustrates the retrieval of the query valley. If only
9 images from the 48 top-ranked images are actually annotated with the word valley in the ground-
truth, other images could be considered as correctly representing the concept valley. This indicates
how the performance evaluation can be penalized by the non-exhaustive ground-truth annotation:
although some retrieved images objectively relate to the query, they are not considered as correct
according to the ground-truth annotation.

Figure 5.13 shows the top-ranked images for the query eagle, where 9 out of 21 eagle images are
correctly retrieved. Some of the top-ranked images, related to planes, are interestingly similar to a
flying eagle example. The blue sky context in images is obviously taken into account in priority, what
explains the confusion with planes and other images containing sky. On Figure 5.14, we show the
ranking obtained for the query grapes. This word corresponds to a very specific visual representation,
that apparently fails to be accurately captured by our image representation. Only one image out of 7
is correctly retrieved in that case, while other retrieved images relate to vegetation in general. In that
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sense, the model implicitly linked the grapes training examples with images containing vegetation,
without discriminating grapes from tree images for instance. Figure 5.15 shows the retrieval obtained
for the lynx query. While a majority of top-ranked images contains an animal in various environments,
none of them actually contains a lynx. The type of retrieved images however indicates that the model
learned a correspondence between the lynx image examples from the training set and the concept of
animal in the data.
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Figure 5.11: 48 top-ranked images from 1783 test images given the query street, for P (w | d) estimated
by PLSA-words, using the HS+SIFT image representation. Images are ranked as a left-right, top-
down sequence, and images annotated with the query word in the ground-truth are displayed in a
box. 16 street images, out of 64, are correctly retrieved in the 48 top-ranked images. The full ranking
corresponds to an AP of 28%.
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Figure 5.12: 48 top-ranked images from 1783 test images given the query valley, for P (w | d) estimated
by PLSA-words, using the HS+SIFT image representation. Images are ranked as a left-right, top-
down sequence, and images annotated with the query word in the ground-truth are displayed in a
box. 9 valley images, out of 23, are correctly retrieved in the 48 top-ranked images. The full ranking
corresponds to an AP of 18.3%.
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Figure 5.13: 48 top-ranked images from 1783 test images given the query eagle, for P (w | d) estimated
by PLSA-words, using the HS+SIFT image representation. Images are ranked as a left-right, top-
down sequence, and images annotated with the query word in the ground-truth are displayed in a
box. 9 eagle images, out of 21, are correctly retrieved in the 48 top-ranked images. The full ranking
corresponds to an AP of 20.5%.



96 IDIAP–RR 07-06

Figure 5.14: 48 top-ranked images from 1783 test images given the query grapes, for P (w | d) estimated
by PLSA-words, using the HS+SIFT image representation. Images are ranked as a left-right, top-
down sequence, and images annotated with the query word in the ground-truth are displayed in a box.
Only 1 grapes image, out of 7, is correctly retrieved in the 48 top-ranked images. The full ranking
corresponds to an AP of 2.5%.
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Figure 5.15: 48 top-ranked images from 1783 test images given the query lynx, for P (w | d) estimated
by PLSA-words, using the HS+SIFT image representation. Images are ranked as a left-right, top-
down sequence, and images annotated with the query word in the ground-truth are displayed in a
box. Out of 13 lynx images, none is correctly retrieved in the 48 top-ranked images. The full ranking
corresponds to an AP of 1.2%.
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5.7 Conclusion

In this chapter, we presented three alternative algorithms to learn a PLSA model for annotated
images, and evaluated their ability for cross-media image indexing. The learning methods differ in
which of the textual or the visual modality is dominant to learn the mixture of aspects for an image
and its text caption, and these differences influence the accuracy of the inferred semantic indices. The
best retrieval performance is achieved when the mixture of latent aspects is learned from the text
captions (our PLSA-words model), creating semantically meaningful aspects. Combining quantized
local color information with quantized local image descriptors appeared to be as successful strategy.
We have demonstrated their complementarity and their improved performance when compared to the
standard Blob representation. The performance of all the models was improved by the use of this
combined image representation, that depicts an image as a set of local color-based regions and local
texture-based regions. In particular, the PLSA-words model achieved the best performance with
respect to recent methods.

The quality of the image ranking greatly varies depending on the query, and we analyzed the
possible factors in the case of the PLSA-words model. Besides the difference in the number of
training examples or the suitability of the visual features to represent a given concept, we have shown
strong indications that PLSA-words can take advantage of the co-occurrence of words in the text
captions of the training images.



Chapter 6

Conclusions and future directions

This chapter summarizes the contributions of our work presented in this dissertation. We also point
out potential research directions that we either partially addressed in the different chapters, or that
were suggested by our investigations.

6.1 Summary and contributions

The central theme of this dissertation was to model images as mixtures of latent aspects, where aspects
are defined by multinomial distributions over quantized local patches. Aspect-based image models
represent a novel way of processing visual information, capturing patch co-occurrence patterns in an
image collection without modeling any spatial relationship between them. In the preceding chapters,
we have investigated different implications of this family of image models, opening new perspectives
for various computer vision and image retrieval tasks. So far, this idea had been addressed by (for the
most part) isolated works that only considered a particular application of the concept. We investigated
essential implications of the aspect-based image modeling approach, proposing an in-depth, unifying
view of the problem. Several contributions have resulted from these investigations:

• An aspect-mixture image representation can be estimated from the bag-of-patches representation
of an image given a model learned on unlabeled data. This allows to take advantage of unlabeled
data, a situation increasingly common with the ubiquitous availability of digital cameras, to
improve the classification of images depicting scenes or containing objects.

• Aspects, although obtained by unsupervised learning, allow for an interesting, visually-consistent
soft-clustering of image collections, which is suitable for the visualization and browsing of unor-
ganized image collections.

• The classification of the quantized image patches, when the co-occurrence context captured by
the aspects is taken into account, produces an interesting form of image segmentation.

• The visual and the textual modalities of an annotated image can be linked through a com-
mon aspect decomposition given this image. This joint textual and visual modeling allows to
automatically annotate a new image.

The evaluation of the aspect-based image representation for classification was conducted in Chap-
ter 3, in which we considered different scene and object classification tasks. Relying on various image
representations based on the combination of recent point detectors and local descriptors, we showed
the benefit of the unsupervised learning of patch co-occurrence. For the same amount of training data
to learn an SVM classifier, an aspect model can take advantage of unlabeled data to derive a new
representation from the bag-of-patches that achieves higher classification performance. The mixture
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of aspects inferred for a new image incorporates the co-occurrence information learned from the unla-
beled data, and this additional information helps the classification process when only a small number
of labeled examples is available.

In Chapter 4, the patch co-occurrence context identified by the aspect model was exploited to
classify image regions into classes. This was suggested by our previous investigations: decomposing
an image into a mixture of latent aspects, defined by a distribution over quantized regions, can actually
be interpreted as a basic form of image segmentation. We therefore derived two algorithms to estimate
the class conditional probability of a given quantized patch. The first is independent of the image
that is considered, the second takes into account the aspect mixture weights of the image from which
the region was extracted. We showed that the second option, i.e. making the classification of image
regions dependent on the image context, improves the region classification performance. We also
showed that this co-occurrence context can be successfully combined with the spatial context modeled
by a traditional MRF.

The visual aspects are obtained by unsupervised learning, and there is a priori no reason for an
aspect to relate to a particular visual concept. Similarly to what was shown in the text case [7, 29, 10]
- where aspects are illustrated by their most probable words - we proposed to visualize aspects from
their most representative training images. We showed that aspects can correspond to specific types
of image content, defined by a specific pattern of patch co-occurrence.

Different ways to learn an aspect decomposition from the textual and the visual modalities of
an annotated image collection were investigated in Chapter 5. The two modalities jointly define a
document, and we link them by assuming a common aspect decomposition for the textual and visual
modalities of a given image. We proposed three algorithms to learn the aspect distributions and
the aspect mixture weights from the two modalities, differing in which modality is used to estimate
the aspect mixture weights for training documents. Given a model learned on a set of annotated
images, a word distribution can be inferred for any new image, and this word distribution can serve
as an index for a keyword-based image retrieval task. We showed that learning the aspect mixture
weights of training documents from the textual modality allows to infer the most efficient word index-
ing, corresponding to the best retrieval performance. Moreover, this aspect-based image annotation
outperforms recent image-annotation methods when a representation based on the concatenation of
quantized color and texture descriptors, that we proposed, is used.

6.2 Future research directions

We have explored the concept of mixture of aspects for images in detail, showing the possible impli-
cations of the approach for various tasks. More investigation, however, could be conducted along the
same line, and potential research directions are mentioned in the following two sections.

6.2.1 Integration of spatial information

The bag-of-patches representation was chosen for its simplicity. A histogram of quantized image
regions does not contain any information about the spatial relationships between regions, although
the relative position of patches is a valid information for its interpretation. In our work, we only
considered this information in Chapter 4 to smooth the classification of regions based on the co-
occurrence context. A formulation that would jointly model the co-occurrence and the spatial context
could be a better alternative.

Absolute or relative region location can be considered, however the best strategy to incorporate
spatial information is not obvious. The absolute region location within the image, quantized based
on a fixed grid for instance, is a first possibility. In that case, the spatial relationship between image
regions is however only modeled implicitly, as resulting from their respective positions. On the other
hand, relative position information could be directly built in the same model by reconsidering the
observations. Instead of isolated quantized patches, sets of neighboring quantized patches can be
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considered as the observation. This directly incorporates the desired information, but leaves several
open issues, i.e. for deciding on the size of the neighborhood, or weighting the importance of neighbors
based on their respective distance. This idea is mentioned in [75], with a short discussion about the
advantage of a vocabulary constructed from two juxtaposed regions for image segmentation.

Spatial information, in the form of absolute or relative positioning, is however not guaranteed to
improve the performance on subsequent tasks. Learning the spatial layout of patches in a scene in
addition to their co-occurrence certainly adds complexity to the model, but will not necessarily help
the classification of scenes in different classes for instance. All these issues should be investigated in
details.

6.2.2 Filling incomplete image annotations

In Chapter 5, we presented three models for annotated images and evaluated their performance in
the context of image annotation. Instead of predicting an annotation when no word exists, the same
models could be used to infer new words given an image with an incomplete annotation. Image
annotations are indeed generally incomplete, as the choice of words entirely depends on the image
interpretation: two persons are likely to interpret the same image differently, thus attaching different
words to it. A more exhaustive annotation would be obtained by guessing the missing words based
on both the image content and the current, incomplete annotation. The aspect-based models for
annotated images proposed in Chapter 5 are potential candidates for this task. The inference of
the aspect mixture weights for a test image should be modified to take the textual and the visual
modalities into account, given that the current annotation inference algorithm assumes that only the
visual modality is available. The introduction of a textual modality for unseen documents should be
investigated, as several strategies are conceivable.

A tool based on such a model, able to re-estimate the word distribution given an image when a new
word is selected, would be interesting to support the annotation process. A possible scenario would
involve the following steps: (i) a list of words is displayed, ranked according to the word probability
estimated from the visual image representation; (ii) the person who annotates selects a correct word
from the list; (iii) the word distribution is re-estimated based on this new textual observation. If
the re-estimated word distribution is more accurate than the previous one, then iterating between
the steps (ii) and (iii) would make the human annotation converge to an exhaustive result faster.
Collaborative annotation, which is the current trend to index online image collections, could benefit
from this help.
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