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Abstract. The scores returned by support vector machines are often used as a confidence mea-
sures in the classification of new examples. However, there is no theoretical argument sustaining
this practice. Thus, when classification uncertainty has to be assessed, it is safer to resort to
classifiers estimating conditional probabilities of class labels. Here, we focus on the ambiguity in
the vicinity of the boundary decision. We propose an adaptation of maximum likelihood estima-
tion, instantiated on logistic regression. The model outputs proper conditional probabilities into
a user-defined interval and is less precise elsewhere. The model is also sparse, in the sense that
few examples contribute to the solution. The computational efficiency is thus improved compared
to logistic regression. Furthermore, preliminary experiments show improvements over standard
logistic regression and performances similar to support vector machines.
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1 Motivation

There have been several attempts to turn the scores returned by support vector machines (SVMs) into
probabilistic assignments (Platt, 2000; Grandvalet et al., 2006). However, there is no guaranty that
these scores reflect a classification confidence; we even know that the conditional probabilities of class
labels cannot be recovered unambiguously except at the decision boundary (Bartlett & Tewari, 2004).
Thus, when the classification uncertainty has to be assessed, estimating conditional probabilities is
better motivated.

We propose to build probabilistic classifiers that are accurate on the “gray zone”, where class
labels switch. Well-calibrated probabilities in this area allow to assess classification uncertainty. The
classifier also provides relevant decision rules for the set of corresponding asymmetric misclassification
losses, or equivalently, for the corresponding cone of the ROC curve. Focusing on a small range of
conditional probabilities instead of estimating them on their full span has two advantages. First, the
training objective is closer to the ultimate goal of minimizing the misclassification risk, and second,
inaccuracy outside of the focus range is a key element for kernelized models, since Bartlett and Tewari
(2004) proved that sparsity does not occur when the conditional probabilities can be unambiguously
estimated everywhere. Sparsity refers here to the limited number of non-zero elements in a kernel
expansion. It implies that many training examples have no influence in the training process, thus
improving its computational efficiency.

The assessment of classification uncertainty and the sparsity of the model are important issues for
the class imbalance problem, which is our original motivation for this work. When a vast majority
of examples belong to the negative “uninteresting” class, and only a few interesting examples are
available, learning tends to be biased towards the recognition of the majority class. This problem can
be addressed by rebalancing the training distribution, either by over-sampling the minority class, or
generating artificial examples of the minority class (Chawla et al., 2002), or by down-sampling the
majority class. However, undersampling may discard relevant pieces of information and oversampling
is not computationally efficient. Another tactic consists in post-processing standard classification
techniques, such as tuning a bias term after learning to correct for the original decision bias, but this
scheme fails to discover the changes in the shape or orientation of the decision boundary that may be
required to isolate the minority class. Our approach is more closely related to the methods adjusting
the training objective by using different losses for positive and negative examples (Osuna et al., 1997;
Ting, 2000). It however differs from the latter which essentially consist in applying different weights
to the different categories.

2 Learning criterion

In this paper, we chose to consider only binary classification problems to keep exposition simple,
especially regarding the description of optimization algorithms. However, the discussed criteria and
models are inherently multi-class.

2.1 Bayes decision rule

Bayes’ decision theory is the paramount framework in statistical decision theory. The Bayes decision
rule is defined by the true conditional probabilities p(y|x) of class labels y, knowing features x, and
by misclassification losses. In binary problems, where the class is tagged +1 or −1, the two types of
errors are: false positive, where examples labelled −1 are categorized in the positive class, incurring
a loss C−; false negative, where examples labelled +1 are categorized in the negative class, incurring
a loss C+.

Pattern x is then affected to the positive class provided that the expected loss incurred by this
decision is smaller than the opposite choice C−p(y = −1|x) ≤ C+p(y = +1|x). The rule is then

Classify x as +1 iff p(y = 1|x) ≥ C−

C+ + C−
. (1)
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Many classifiers first estimate conditional probabilities, and then plug this estimate in (1) to build
the decision rule. These classification methods then differ by the functional space used to model
conditional probabilities, and by the estimation method, the two mainstream ones being the meth-
ods of moments (leading to the minimization of mean squared error in classification) and maximum
likelihood.

2.2 Maximum likelihood

We have a learning set L = {xi, yi}n
i=1, where each example is described by features xi and the asso-

ciated class label yi ∈ {−1, 1}. Assuming independent examples, estimating p(y|x) can be performed
by maximizing the conditional log-likelihood

∑

i:yi=1

log(p̂(y = 1|xi)) +
∑

i:yi=−1

log(1 − p̂(y = 1|xi)) , (2)

where p̂(y|x) denotes the estimate of p(y|x).

2.3 Lazy maximum likelihood

Although Bayes’ decision rule is defined in terms of p(y|x), it does not require a precise estimate

everywhere. It is sufficient to estimate precisely the conditional probabilities at C−

C++C−
, which defines

the decision boundary (1). This is precisely what SVMs achieve asymptotically (Bartlett & Tewari,
2004) for p(y|x) = 0.5.

Maximizing the log-likelihood (2) amounts to estimate the conditional probabilities on the full
range [0, 1]. We consider here a weaker estimation problem, where we focus on a small range
[pmin, pmax]. Outside of this range, we only want to know whether p(y|x) is smaller than pmin or
greater than pmax. This optimization problem can be formalized as maximizing

∑

i:yi=1

log (min (p̂(y = 1|xi), pmax))

+
∑

i:yi=−1

log (min (1 − p̂(y = 1|xi), 1 − pmin)) , (3)

which is a concave criterion in p̂(y = 1|xi). Note that pmin and pmax are tuning parameters of the
fitting criterion; they do not enter in the definition of conditional probabilities p̂(y = ±1|xi).

This criterion is classification-calibrated provided C−

C++C−
∈ [pmin, pmax]. Hence, provided the

model p̂(y = 1|·) is rich enough, minimizing (3) will asymptotically provide a classifier with risk close
to the Bayes’ risk (see Bartlett and Tewari (2004) for definitions and more formal statements).

3 Conditional probability model

We now consider here one of the simplest model of conditional probabilities. We show how its prop-
erties are modified by lazy maximum likelihood estimation.

3.1 Logistic regression

Logistic regression is a standard probabilistic model which considers that the log-ratio of conditional
probabilities is linear

log
p̂(y = 1|x)

1 − p̂(y = 1|x)
= wT x + b , (4)

and where the coefficients (w, b) are estimated by maximizing the likelihood (2) or the penalized
likelihood.
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Logistic regression is similar to linear discriminant analysis (LDA) in that both models provide
linear log-odds (4). They differ however with respect to the estimation process and therefore in
computational aspects. From a statistical point of view, logistic regression makes less assumptions
and is thus more general: the density p(X) is arbitrary while it is assumed to be a Gaussian mixture
in LDA.

3.2 Kernel logistic regression

Logistic regression can be kernelized, by letting the log-ratio of conditional probabilities to be non-
linear

log
p̂(y = 1|x)

1 − p̂(y = 1|x)
= f(x) + b , (5)

where f is a function belonging to a given reproducing kernel Hilbert space H.
In this setting, the training criterion should incorporate a regularization term to prevent overfitting

(Roth, 2001; Zhu & Hastie, 2001). Maximizing the likelihood (2) penalized by the norm of f results
in minimizing

n∑

i=1

log
(
1 + e−yi(f(xi)+b)

)
+

λ

2
||f ||2H , (6)

where λ is a hyper-parameter that may be tuned by cross-validation.
Unlike SVMs, logistic regression does not yield sparse solutions, in the sense that all examples

influence the solution. Indeed, for the penalized likelihood (6), the first order optimality conditions
for f imply

f(x) =

n∑

i=1

αiK(x,xi) , (7)

with αi = 1
λ

(
yi+1

2 − p̂(y = 1|xi)
)

.
By definition (5), 0 < p̂(y = 1|x) < 1, hence for all examples, αi 6= 0: the exact expansion requires

n coefficients.

3.3 Sparse logistic regression

Kernel logistic regression is hardly applicable to large data sets due to the number of non-zero param-
eters. Zhu and Hastie (2001) propose to alleviate this problem by using a greedy forward selection
algorithm looking for an approximation of the full expansion (7) involving a fixed number of non-zero
αi. This approach can be interpreted as the adding to the criterion (6) an extra term penalizing the
number of non-zero coefficients. Roth (2004) takes another line of attack by replacing the penalization
term in (6) by the ℓ1 norm of coefficients α. Our approach, which could be combined with any of these
two, consists in replacing the log-likelihood term by criterion (3). Sparse kernelized logistic regression
minimizes

n∑

i=1

log
(
1 + emax(−yi(f(xi)+b),Fi)

)
+

λ

2
||f ||2H , (8)

where Fi = − log pmax

1−pmax
if yi = 1 and Fi = log pmin

1−pmin
if yi = −1 .

Sparsity follows from the truncation of the loss. Training examples with large values of yif(xi)
will not contribute to the final classifier. In this training criterion, it is the fitting term, instead of
the penalization term, which causes sparsity. Note that compared to these previous approaches, the
optimization problem can be stated without referring to the expansion (7), which will only arise at a
later stage, as a consequence of the optimality conditions.

Sparsity could also be improved by using the generaic methods developed for kernel machines (Wu
et al., 2006). In particular, the ramp loss (Collobert et al., 2006) could be adapted to our framework
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by always saturating the loss outside of the [pmin, pmax] interval, that is, by letting positive examples
with p(y|x) smaller than pmin having a loss of− log(pmin) and negative examples with p(y|x) greater
than pmax having a loss of − log(1 − pmax).

3.4 Relation to other methods

The robust logistic model of Cox and Pearce (1997) estimates the range of log-likelihood ratio such
that the logistic function fits conditional probabilities. Compared to our approach, this scheme differs
by assuming a roughly constant likelihood ratio outside of the estimated range, while we only assume
that p(y|x) is smaller than pmin or greater than pmax.

Chakrabartty and Cauwenberghs (to appear) proposed a sparse probabilistic classifier based to
a quadratic approximation of maximum entropy discrimination. The mechanism driving sparsity is
however quite different, since it relies on saturating conditional probabilities. Hence, the maximum
sparsity is obtained when the conditional probabilities are approximated by hard assignments, whereas
in our scheme, the maximum sparsity is obtained when the [pmin, pmax] interval of precise conditional
probabilities collapses to the single value defining the decision boundary.

4 Training

Kernel logistic regression can be learned in the primal using Newton’s method (Roth, 2001), or in
the dual (Keerthi et al., 2005). Newton’s method is simpler to derive, but even with the standard
likelihood, which does not provide sparse solution, Keerthi et al. (2005) report impressive reduction
in computational time.

4.1 Sparse logistic regression in the primal

For simplicity sake, we consider here the linear logistic regression model, without regularization, where
the bias term (or intercept) b is included here in w, assuming that x includes a constant term feature.

We first recall the Newton-Raphson update for the standard logistic regression maximizing likeli-
hood

w(k+1) = w(k) + (XT D(w(k))X)−1XT (t − p̂(w(k))) ,

where w(k) is the vector of parameters at step k, X = [x1 . . .xn]T is the n × d matrix of stacked
patterns, D(w) is a n×n diagonal matrix with i-th element equal to p̂(yi = 1|xi;w)(1−p̂(yi = 1|xi;w),
t = [t1 . . . tn]T is the vector of stacked binary targets ti = yi+1

2 and p̂(w) = [p̂(y1 = 1|xi;w) . . . p̂(yn =
1|xi;w)]T .

For the truncated likelihood (3), the criterion is not differentiable for all w, for which there
exists an example i, such as p̂(yi = 1|xi;w) equals pmin or pmax. This problem can be remedied by
approximating these discontinuities by a polynomial as in (Chapelle, 2007).

4.2 Sparse logistic regression in the dual

Chapelle (2007) argues about the prevalence of dual algorithms for optimizing kernel machines. How-
ever, dual optimization takes great advantage of the sparsity arising from the flat part of the loss,
while they cause difficulties with second order methods in the primal formulation. For the kind of
application we have in mind, with a high imbalance between classes, most examples from the majority
class are expected to be discarded from the expansion (7), hence optimization in the dual is expected
to be computationally efficient.

4.2.1 Principle

We propose an active set algorithm, following a strategy that proved to be efficient for SVMs. The
SimpleSVM algorithm (Vishwanathan et al., 2003; Loosli & Canu, to appear) solves the SVM training
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problem by a greedy approach, in which one solves a series of small problems. First, the training
examples are assumed to be either support vectors or not, and the training criterion is optimized
considering that the partition of examples is fixed. This optimization results in a new partition of
examples in support and non-support vectors. These two steps are iterated until some level of accuracy
is reached (Loosli & Canu, to appear).

We will follow the same strategy. We first present the dual formulation of sparse logistic regression.
Next, assuming that the current membership of the example in the active set are correct, we derive the
optimal update of parameters. Then, we show how to update the active set based on the parameters
update, and sum up the algorithm.

4.2.2 Dual formulation

As in the SVM dual formulation, we handle the discontinuity introduced by the max function in (8)
by introducing slack variables ξ

min
f,ξ,b

λ

2
||f ||2H +

n∑

i=1

log(1 + eξi)

s. t. ξi ≥ −yi(f(xi) + b) i = 1, . . . , n
ξi ≥ Fi i = 1, . . . , n .

(9)

with Fi = −fmax = − log
(

pmax

1−pmax

)
if yi = 1 and Fi = fmin = log

(
pmin

1−pmin

)
if yi = −1.

The Lagrangian of this convex problem is

L =
λ

2
||f ||2H +

n∑

i=1

log(1 + eξi) +
n∑

i=1

βi(Fi − ξi)

−
n∑

i=1

αi[yi(f(xi) + b) + ξi] .

(10)

The solution of (9) is reached at the saddle point of the Lagrangian (10). The Kuhn-Tucker
conditions imply

∇fL = λf(x) −
n∑

i=1

αiyiK(x,xi) = 0

∂L

∂b
= −

n∑

i=1

αiyi = 0

∂L

∂ξi

=
1

1 + e−ξi
− (αi + βi) = 0 ,

where K(·, ·) is the reproducing kernel of the Hilbert space H.
Thanks to these conditions, we can eliminate f and ξ from the Lagrangian

L =− 1

2λ

∑

i,j

αiαjyiyjK(xj ,xi) +

n∑

i=1

βiFi

−
n∑

i=1

(αi + βi) log(αi + βi)

+(1 − αi − βi) log(1 − αi − βi) .

(11)

This expression involves 2n variables, but it can be simplified thanks to the partitioning of training
examples.
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Table 1: ξi, αi and βi for the three sets of examples

Set ξi αi βi

I0 Fi 0 1
1+e−Fi

Ih Fi
1

1+e−Fi
− βi

1
1+e−Fi

− αi

Iℓ −yi(f(xi) + b) 1
1+eyi(f(xi)+b) 0

4.2.3 Partition of the training set

We partition the training set into three sets according to the constraints in (9). The examples indexed
by

I0 are in the saturated part of the loss where −yi(f(xi) + b) < Fi;

Ih are at the hinge of the loss, where the two constraints may be active since −yi(f(xi) + b) = Fi;

Iℓ are in the logarithmic part of the loss where −yi(f(xi) + b) > Fi.

Table 1 describes the properties of each set, regarding the original variables ξi and the Lagrange
multipliers αi and βi.

For the time being, we assume the repartition in each set to be known. The non-quadratic part of
the Lagrangian is decomposed into three components

L = − 1

2λ

∑

i,j

αiαjyiyjK(xj ,xi) + L0 + Lh + Lℓ .

For each set, the expressions of αi and βi (extracted from Table 1) are plugged in eq. (11), so that
we get

L0 =
∑

i∈I0

log(1 + eFi)

Lh =
∑

i∈Ih

log(1 + eFi) −
∑

i∈Ih

αiFi

Lℓ = −
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi) .

We note that L0 and the first term of Lh are constants, independent of α or β. Furthermore, as
αi = 0 for i ∈ I0, the quadratic term can be restricted to the examples in the active set I0̄ = Ih ∪ Iℓ.
Discarding the constant terms provides

L = − 1

2λ

∑

(i,j)∈I0̄
2

αiαjyiyjK(xj ,xi) −
∑

i∈Ih

αiFi

−
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi) ,

which only involves |I0̄| < n active variables.
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4.2.4 Optimizing the Lagrange multipliers

The optimization problem is now reformulated as

min
α

1

2λ

∑

(i,j)∈I0̄
2

αiαjyiyjK(xj ,xi) +
∑

i∈Ih

αiFi

+
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi)

s. t.
∑

i∈I0̄

αiyi = 0 i ∈ I0̄ .

(12)

For all i ∈ Iℓ, αi is restricted to the domain of L, i.e. 0 < αi < 1. Furthermore, since the allocation
of every example to I0, Ih and Iℓ is assumed to be known, the following box constraints on αi hold
implicitly:

∀i ∈ I0 αi = 0
∀i ∈ Ih 0 ≤ αi ≤ 1

1+e−Fi

∀i ∈ Iℓ αi ≥ 1
1+e−Fi

.
(13)

Problem (12) being convex, with linear constraints, it can be efficiently solved by Newton’s method
(Boyd & Vandenberghe, 2004). We first write the Lagrangian:

L̄ =
1

2λ

∑

(i,j)∈I0̄
2

αiαjyiyjK(xj ,xi) +
∑

i∈Ih

αiFi

+
∑

i∈Iℓ

αi log(αi) + (1 − αi) log(1 − αi)

+γ
∑

i∈I0̄

αiyi .

Let G be a (|I0̄| × |I0̄|) matrix with general term Gij = 1
λ
yiyjK(xj ,xi), the Kuhn-Tucker condi-

tions ∂L̄
∂αi

= 0 and ∂L̄
∂γ

= 0 read

∀i ∈ Ih,
∑

j∈I0̄

αjGij + Fi + γyi = 0

∀i ∈ Iℓ,
∑

j∈I0̄

αjGij + log

(
αi

1 − αi

)
+ γyi = 0

∑

i∈I0̄

αiyi = 0

(14)

These conditions form a non-linear system that can be solved iteratively by Newton’s method.
We first write the gradient in vectorial form, where, slightly abusing notations, we partition α =
[
αT

h αT
ℓ

]T
, y =

[
yT

h yT
ℓ

]T
, F =

[
FT

h FT
ℓ

]T
and G =

[
Gh,h Gℓ,h

GT
ℓ,h Gℓ,ℓ

]
:

∇L̄(α, γ)=




Gh,h Gℓ,h yh

GT
ℓ,h Gℓ,ℓ + D(αℓ) yℓ

yT
h yT

ℓ 0








αh

αℓ

γ



+




Fh

0
0





where D(αℓ) is a (|Iℓ| × |Iℓ|) diagonal matrix with diagonal elements log
(

αℓ

1−αℓ

)
. We then get the

Hessian of L̄ with respect to
[
αT γ

]T
,

∇2L̄(α, γ) =




Gh,h Gℓ,h yh

GT
ℓ,h Gℓ,ℓ + D′(αℓ) yℓ

yT
h yT

ℓ 0



 , (15)
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where D′(αℓ) is a (|Iℓ| × |Iℓ|) diagonal matrix with diagonal elements 1
αℓ(1−αℓ)

. Note that, since

0 < αi < 1 for i ∈ Iℓ, the Hessian is ensured to be positive definite provided the kernel K is positive
definite. A Newton step then consists in solving :

∇2L̄(α(k), γ(k))[(α(k+1) − α(k))T (γ(k+1) − γ(k))]T

= −∇L̄(α(k), γ(k))

that is: 


α

(k+1)
h

α
(k+1)
ℓ

γ(k+1)



 =
[
∇2L̄(α(k), γ(k))

]−1




−Fh

δ
(k)
ℓ

0



 , (16)

with δ
(k)
ℓ =

(
D′(α

(k)
ℓ ) − D(α

(k)
ℓ )

)
α

(k)
ℓ . The Newton steps are iterated until convergence or until the

partition of variables in I0, Ih and Iℓ has to be modified.

4.2.5 Updating the partition

Given an assumed partition, each Newton step returns an improved solution. The latter should obey
the box constraints (13) to ensure consistency with the initial conjecture. If it is not the case, the
solution has to be amended. This is done by backtracking on the line search, until all box constraints
are satisfied. That is, one computes the largest step size ρ such that α = α(k) + ρ(α(k+1) − α(k))
fulfills (13). Once this is done, noting i the “faulty” component(s) of α, the partition is modified as
follows:

• if i ∈ Ih and αi = 0, i is moved to I0;

• if i ∈ Ih and αi = 1
1+e−Fi

, i is moved to Iℓ;

• if i ∈ Iℓ and αi = 1
1+e−Fi

, i is moved to Ih.

Starting from α, a Newton update is then performed with the new partition, and the process is
iterated until all box constraints are satisfied.

When the fixed point of (16) is reached, and no box constraint in the active set is violated,
we may then proceed to the next candidate variable in the inactive set I0. All i ∈ I0 such that
−yi(f(xi) + b) > Fi are candidate. We simply pick the one which maximizes −yi(f(xi) + b) − Fi.
Incorporating one variable at a time allows to perform efficient rank-one updates of the Cholesky
decomposition of the Hessian matrix (15). Once there is no more candidate variable in I0, the
algorithm terminated at the optimal solution.

Testing for new active variables requires to know b, which may be computed from the examples
in the set Ih, for which −yi(f(xi) + b) = Fi. Also, as f(xi) =

∑
j∈I0̄

αjGij , by identification with eq.

(14), we see that b = γ.

5 Experiments

For experimenting with unbalanced two-class problems, we used the Forest database, the largest
available UCI dataset. 1 There are 54 features, 10 of which are quantitative and the remaining 44 are
binary. Originally, there are 7 classes, but we consider the subproblem of discriminating the positive
class Krummholz (20 510 examples) against the negative class Spruce/Fir (211 840 examples). The
ratio of positive to negative examples is 8.8%, and the classes are relatively well separated. As no cost
matrix is provided with the data set, we arbitrarily chose the costs for false negative and false positive,

C+ and C−, in order to encourage equal error rates in the two categories, that is C−

C++C−
= π+, where

π+ = .088 is the proportion of positive examples. The losses are then defined up to an irrelevant
factor, and we picked C− = π+ and C+ = 1 − π+ .

1Available at kdd.ics.uci.edu/databases/covertype.
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Table 2: Mean test loss for sparse logistic regression and logistic regression (pmax − pmin = 100%)

pmin (%) 0 0.4 1.0 2.9 4.8 7.8
pmax (%) 100 72.0 47.5 24.1 15.8 10.0
pmax − pmin (%) 100 71.6 46.4 21.2 11.0 2.2

Mean test loss (×10−2) 1.86 ± 0.01 1.86 ± 0.01 1.85 ± 0.01 1.85 ± 0.01 1.83 ± 0.02 1.78 ± 0.02

Mean decision threshold (%) 9.5 ± 1.3 9.0 ± 1.1 9.0 ± 0.9 9.0 ± 0.6 8.8 ± 0.2 8.8 ± 0.0

Mean prop. of SVs (%) 100 65.5 53.5 40.5 34.0 27.9

5.1 Experimental setup

To ensure the representativity of results, the data is partitioned in 10 subsets. Each subset is iteratively
used as a training set while the remaining ones are used as test sets. The training sets comprise thus
23 235 examples. The proportion of examples in the positive (minority) class is identical in all subsets.
The features are normalized (centered and standardized) before each training session.

The experiments reported here were performed with linear classifiers. We optimized the penaliza-
tion parameter λ for logistic regression (6) and sparse logistic regression (8) by 5-fold cross-validation.
We jointly optimized the decision threshold, a procedure that is often applied to classifiers in order
to correct for the bias in estimated probabilities. This bias correction was expected to favor logistic
regression.

The range of conditional probabilities [pmin, pmax], which is supposed to be user-defined, is not
optimized. Better classification results are expected for the smallest intervals, but the range of faithful
conditional probabilities then becomes tiny. We report results for various lengths of the interval
centered on π+ on a log scale, that is with

√
pminpmax = π+.

5.2 Results

We report the mean results (with standard deviations) of sparse logistic regression in table 2. As
expected, the mean test loss (that is, the average test errors weighted by C+ and C−), and the
number of examples in the working set (denoted SVs for support vectors), decrease smoothly as the
[pmin, pmax] interval decreases (pmax − pmin = 1 is the standard logistic regression). We also display
the average decision threshold estimated by cross-validation. It is slightly above π+ = 8.8% for the
standard logistic regression, but the difference may not be significant (usual hypothesis tests can not
be applied since the experiments are dependent). The correct decision threshold is always chosen
for sparse logistic regression with small [pmin, pmax] intervals. The classifiers are thus well calibrated
regarding decision.

Figure 1 compares, for one trial, the sensitivity of the mean test loss of logistic regression and sparse
logistic regression (with pmax−pmin = 2.2%) according to the decision threshold. The figures obtained
for the other trials are similar; namely, logistic regression has a wide flat minimum, reflecting that
the ratio of correct classification does not change much in the neighborhood of the decision boundary.
This reveals that the true conditional probabilities fluctuate non-monotonically in this region. Sparse
logistic regression behaves much better, with a lower, narrower minimum centered at π+, reflecting
well-calibrated conditional probabilities in the targeted region.

Table 3 summarizes the results obtained with SVMs. Standard SVMs perform very badly because
they are optimized with equal costs C+ and C− for false positive and false negative. This can be
arranged by shifting the decision boundary. The corresponding performance is shown under the
column “with bias correction”. However, a best choice is to modify the hinge loss to accommodate
for C+ 6= C− (Osuna et al., 1997). The corresponding result, displayed under the column C+/C−,
reaches performances and percentage of SVs similar to the one of sparse logistic regression with small
[pmin, pmax] intervals.
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Figure 1: Mean test loss versus decision threshold.

Table 3: Mean test loss obtained for SVMs

SVM Standard With bias correction C+/C−

Mean Test Loss (×10−2) 3.75 ± 0.23 2.31 ± 0.12 1.79 ± 0.02

Mean prop. of SVs (%) 12.84 ± 0.79 13.16 ± 1.13 26.19 ± 0.60

6 Discussion

We proposed a new fitting criterion, which consists in truncating the binomial log-likelihood. This
criterion produces sparse probabilistic classifiers, which output faithful conditional probabilities in
the vicinity of the decision boundary. We detailed how logistic regression is modified by this “lazy
likelihood estimation”, but the principle can be applied to any model of conditional probabilities, such
as feedforward neural networks. Also, though we only discussed binary classification problems, the
principle is in essence multi-class and can be applied to the multinomial log-likelihood. The resulting
optimization problem remains convex provided that the specified range of “interesting” conditional
probabilities defines a convex set.

Further experiments are in progress to evaluate the practical interest of sparse probabilistic clas-
sifiers, but they are a promising way to address the class imbalance problem. Instead of applying
different weights to the different categories, like SVMs trained with asymmetrical costs C+/C− do,
the training criterion tends to select less active examples in the majority class, and only the ambigu-
ous ones. It thus performs a virtual targeted undersampling of the majority class. To our knowledge,
there is no other algorithm implementing this principle.

Our preliminary experiments with linear classifiers show that probabilistic classifiers benefit from
the focus on the “gray zone” close to the boundary decision. Sparse logistic regression provided better
decision rules than logistic regression. Not only it gains in test error rates but it is also much faster to
train, thanks to its ability to ignore uninformative data. The performance and training time match
SVMs trained with asymmetrical costs C+/C−, and we furthermore enjoy well-calibrated probabilities
in the vicinity of the boundary decision.
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