
Real-Time ASR from Meetings

Philip N. Garner1, John Dines1, Thomas Hain2, Asmaa El Hannani2,
Martin Karafiát3, Danil Korchagin1, Mike Lincoln4, Vincent Wan2, Le Zhang4

1Idiap Research Institute, Martigny, Switzerland
2Speech and Hearing Research Group, The University of Sheffield, UK

3Speech Processing Group, Brno University of Technology, Czech Republic
4Centre for Speech Technology Research, The University of Edinburgh, UK

Phil.Garner@idiap.ch

Abstract

The AMI(DA) system is a meeting room speech recognition
system that has been developed and evaluated in the context
of the NIST Rich Text (RT) evaluations. Recently, the “Distant
Access” requirements of the AMIDA project have necessitated
that the system operate in real-time. Another more difficult re-
quirement is that the system fit into a live meeting transcription
scenario. We describe an infrastructure that has allowed the
AMI(DA) system to evolve into one that fulfils these extra re-
quirements. We emphasise the components that address the live
and real-time aspects.

Index Terms: real-time speech recognition, meeting ASR,
beam-forming, speech meta-data.

1. Introduction
AMI (Augmented Multi-party Interaction) was a European
Union funded project aimed at analysing and aiding human-
human interaction, specifically in the context of meetings.
AMIDA (AMI with Distant Access) is the successor project.
Whereas AMI focussed mainly on the concept of off-line meet-
ing browsing, one of the main goals of AMIDA is to bring into
AMI the concept of remote participants; that is, people not nec-
essarily present in the same room where a meeting is taking
place, but wishing to take part. The remote partipant could be
present in a remote meeting room over a video conferencing
link for the whole meeting, or could be present for some por-
tion of the time, or via a device with limited capabilities. The
remote participant concept brings with it the idea of on-line ac-
cess, and hence real-time processing.

As well as remote participants, real-time meeting ASR (Au-
tomatic Speech Recognition) enables real-time augmentation.
Although the accuracy of far-field ASR is not yet good enough
for accurate real-time transcription, one persuasive application
for which it is suitable is automatic content linking [1]. Words
in the transcript are used to search for content relevant to the
meeting, which is presented to the participants wherever their
location.

In the context of ASR, AMIDA presents several challenges.
Not least of these is the fact that the AMI system is multi-pass
and off-line, operating in several times real-time. By contrast,
the AMIDA requirement is for on-line and real-time or faster.
Further, it involves sub-systems written in different (program-
ming) languages by different people at different institutions.

2. The AMI system
The AMI system for meeting room recognition is a combination
of beam-forming, diarisation and ASR. It has been the basis of
several entries to the NIST RT evaluations [2]. In keeping with
the RT evaluations, and the way data is collected in meeting
rooms, the AMI system is actually two systems:

1. IHM (Individual Headset Microphone) is designed for
close-talking microphones, one per participant. Whilst
in practice there is crosstalk between the microphones,
the basic assumption is that each channel carries the
speech of just one speaker.

2. MDM (Multiple Distant Microphone) refers to a micro-
phone array. ASR is done on the result of beam-forming,
but without specifying the beam-forming algorithm.

The main practical difference between the two systems is that
they use distinct acoustic models reflecting the distinct training
data available for the two scenarios.

In addition to ASR, diarisation (who spoke when) is also
included. This information is used to mark up the ASR output
assigning utterances to speakers.

3. A Real-Time Architecture
3.1. Overview

Real-time ASR is by no means a new concept. It has been in use
in commercial products for many years. The novelty here comes
from the the fact that the system is distributed over computers
and organisations and uses components from many vendors and
authors.

The system architecture is built around a large vocabulary
ASR decoder known as “juicer” [3]. However, both input and
output are non-trivial. Input is obtained via a microphone ar-
ray and beam-former over a TCP socket. Output is to a real-
time database known as the “hub”. Quite heavy use is made of
(TCP) sockets, rather than more traditional file and screen in-
put/output. The system is illustrated in figure 1 and described at
some length in the remainder of this section.

3.2. Audio capture

The core audio device for the MDM system is a circular array
with eight microphones. Coupled with the (typically four) IHM
inputs, this presents a non-trivial audio acquisition task. We
found that a convenient way to handle this is with a VST host1

1Plogue Bidule

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VST Host

Microphone
array

Beamformer
Feature

extraction

Diarisation
server

Juicer
decoder

Hub
Database

TCP Server

Speaker ID
interface

Projuicer
interface

Diarisation Host ASR Host
Tracter

Hub Host

Hub server

Figure 1: Block diagram of a typical meeting room real-time system distributed over four host machines: VST, diarisation, ASR and
database. Hub consumers typically connect from other machines.

running on a Windows based PC. To this end, we wrapped the
beam-former into a VST plugin. Further plugins act as servers,
allowing processing modules requiring audio to connect over
TCP and be supplied with audio at 48kHz.

The microphone array, described more fully in [4], has eight
microphones in a circular arrangement of 20cm diameter. Ini-
tially, noise reduction is performed on each of the eight chan-
nels using a Wiener filter, with filter estimates generated from a
prior recording from the room. A frequency domain delay-sum
beam-former with post-filter, implemented as a VST plugin, is
then directed at each of four locations known in advance to be
those of the seated speakers. The signal corresponding to the di-
rection with the highest energy is then forwarded to the socket
connection.

The TCP solution also allows a very natural organisational
interface. In this case, the audio acquisition was developed
on Windows based PCs at one organisation, whereas the later
stages were GNU/Linux based at other organisations.

3.3. Feature acquisition

The off-line AMI system comprised several passes, each us-
ing increasingly advanced features. These ranged from what
might be called standard PLP (Perceptual Linear Prediction)
features in the first pass, to tandem features with bottleneck
MLPs (Multi-Layer Perceptrons) in later passes. Aside from the
speech technology difficultly in reducing the number of passes,
this also presented an engineering difficulty in combining the
different feature extraction techniques.

The solution was a data-flow architecture known as
“tracter”. Data-flow is a well established signal processing tech-
nique that represents individual processing elements as vertices
in a directed graph. The individual processing elements of-
ten run as separate processes or threads. Tracter is not (yet)
a threaded system; data is propagated through the graph using a
“pull” mechanism, instigated by the sink. The request from the
sink is propagated back though the network, with each element
in turn requesting enough data from its inputs to perform the
operation. Pull mechanisms lend themselves to systems that do
not necessarily run in real-time. In this case, it allows the data-
flow to be driven by the recogniser, which in turn is the most
CPU-intensive task. Whilst it runs overall in real-time, it is not
mandated to do so, as it would be by a push mechanism. Tracter
is hence also suitable for off-line use.

Tracter modules have been created to do audio acquisition
from sockets, files and audio APIs, and to do basic feature ex-

traction. In the context of the AMIDA system, tracter also con-
tains components wrapping the following technologies:

• HTK, the HMM Toolkit, and in particular the HParm in-
terface, enables standard features such as PLPs.

• BSAPI, the Brno Speech API, contains implementations
of the tandem and fast VTLN techniques developed at
BUT.

• Torch3, a machine learning library developed at Idiap2.

3.4. Voice activity detection

VAD is implemented in tracter as a gate. Downstream from
the gate, the decoder is unaware that VAD is happening; it just
receives segmented data as if it were reading from a sequence
of pre-segmented utterances (files). Upstream from the gate,
however, the data is actually one continuous stream.

The gate segments the input stream based upon boolean
speech / non-speech information from a VAD algorithm. The
favoured algorithm is an MLP trained such that typical ASR
features on the input layer appear as speech and silence outputs
at the output layer. The VAD MLP is implemented using the
Torch3 machine learning library. It is distinct from the MLP in
the tandem features, which is implemented in BSAPI.

3.5. Diarisation

The system currently uses a Gaussian mixture based diarisation
module from ICSI [5]. The module runs as a distinct process
reading audio from the VST server and performing frame-level
speaker identification. A tracter “SpeakerID” source converts
time-stamped speaker ID requests from juicer into TCP requests
to the diarisation module. The module responds immediately
with a speaker ID. So, although the diarisation module runs as
a separate module rather than a tracter component, it fits well
into the pull-driven mechanism.

3.6. ASR decoder - Juicer

Juicer3, is the core of the AMIDA ASR system. It is an HTK
compatible Weighted Finite State Transducer (WFST) based to-
ken passing decoder. Juicer was originally used in the first
passes of the AMI system as an off-line decoder, but was not
essential as other tools existed to do a similar job. In particu-
lar, the early passes did not use large language models as these

2http://www.torch.ch
3Trans-juicer

could be used later in lattice rescoring. In the AMIDA system,
however, a development push across three participating institu-
tions has focussed on four areas:

1. Juicer is now architecturally a tracter sink. This means
that any tracter graph can be used seamlessly for feature
acquisition.

2. A new core decoder represents a speed up approaching
an order of magnitude (depending upon the task). It is
also capable of continuous decoding.

3. The WFST composition process has been overhauled to
allow composition of very large transducers (see section
4).

4. A JNI (Java Native Interface) layer has been written to
allow embedding in a Java process (see section 3.7).

The result is a faster and more capable decoder that can operate
directly on high order language models in real-time. We use
4-gram, although higher order is possible. These capabilities
mean juicer has become an essential part of the AMIDA system.

3.7. Output

The core of the AMIDA system, encompassing much more than
just ASR, is a database known as the hub. The hub records XML
encoded triples representing time-stamped events, and serves
the information in real-time to applications. Processes supply-
ing data to the hub are known as producers, and processes using
information from the hub are consumers.

A simple example scenario might involve a face-
recognition module producing meta-data associated with a face
in an image (a name, say), and a browser consuming this infor-
mation in order to annotate the image (with the name). In the
context of the hub, ASR is a producer; it produces time-stamped
words with speaker information.

The interface between ASR and the hub is also another or-
ganisational interface. In particular, a middleware suite allow-
ing producers to send triples was written by the hub maintainers
in java. Juicer is written in C++. To enable juicer to send hub
triples and act as a producer, a JNI layer known as Projuicer
has been written. Projuicer is able to collate ASR information
along with other speech-related meeting metadata such as time-
stamps, meeting ID and participant ID.

The system is designed to take time from a single source,
in this case the VST host. Time stamps are propagated though
the whole processing chain, enabling projuicer to time label all
words. In practice, the utterance start and end times are reliable
as they come from the VAD, but the word times are not reliable
as they are subject to label pushing in the WFST.

4. Quantitative illustration
The real-time system uses the language models developed for
the NIST RT evaluations [2]. These are typically 50,000 word
N-gram models. Generally speaking, although the final recog-
niser will run on a 32 bit system, i.e., in under 4GB of memory,
the WFSTs must be composed on a 64-bit system. The largest
such system available to us at the time of writing has 32GB of
core memory, allowing WFSTs up to around 30 million arcs.
We use the FSM toolkit available from AT&T [6].

One of the most significant bottlenecks in the language
model composition was associated with silence models [7]. In
practice, we find that a good performance / size trade-off can be
achieved by omitting the context free short pause models that

can be freely inserted between triphones, but retaining context
independent (monophone) silence models.

One of the main differences between the AMI and real-time
systems is the language modelling. The AMI system used a two
pass approach consisting of recognition with a 2-gram model
followed by lattice rescoring with a 4-gram model. In AMIDA,
juicer enables us to replace the two passes with a single pass
using a single (slightly smaller) 4-gram model.

Figure 2 shows a comparison in terms of speed and error
rate. The curves shown in the figure refer to a single pass juicer

 36

 38

 40

 42

 44

 46

 0.1 1 10

W
or

d
E

rr
or

 R
at

e
(%

)

Real Time (RT) factor

Juicer MDM. match factor 12, ins. penalty 0
Two pass MDM.

Juicer IHM. match factor 14, ins. penalty -5
Juicer IHM. match factor 12, ins. penalty -10

Two pass IHM.

Figure 2: Speed vs. error rate for example IHM and MDM sys-
tems.

system evaluated on RT07 evaluation data. They are based on
automatic joint optimisation of decoder parameters by simulta-
neous change of pruning parameters. For IHM, the two curves
represent different combinations of insertion penalty and match
factor. The horizontal lines represent the best (baseline) error
rate obtained using the two-pass system based on the HTK de-
coder HDecode. This latter system runs in many times real-
time. The plot shows that we can obtain close to asymptotic
performance in real-time.

5. More advanced feature extraction and
normalisation

During development, we have used an IHM acoustic model with
a simple energy based VAD. The original model was a typical
13 dimensional PLP with energy and two orders of dynamic
features to give 39 dimensions, trained on a corpus of meetings.
This model was re-trained using a single-pass re-estimation on
a front-end written using native tracter modules.

For the MDM system, however, we will use bottleneck tan-
dem features [8] and an MLP based VAD. Such a system re-
quires a significantly more involved feature extraction graph.
This is illustrated in figure 3. The MLP VAD is implemented
using Torch3, and the PLP and transforms are implemented us-
ing BSAPI.

The fast VTLN is an implementation of the technique de-
scribed by Welling et al. [9]. MAP adaptation is used to create a
Gaussian mixture for each warping factor, and the warping fac-
tor is smoothed by a single pole (forgetting factor) filter. Archi-
tecturally, the fast-VTLN module (and, to an extent, the filter-
bank module) incorporates a complete PLP extraction stage.

This illustrates a choice of granularity that exists when
wrapping BSAPI, which itself deals with feature extraction

Frame

PLP

CMVN

VAD Gate Fast VTLN

Filter-bank

Bottleneck
MLP

CMVN

PLP CMVN HLDA

MLP VAD Concat.
To
decoder

From
socket

Figure 3: Simplified tracter graph of the MDM feature extraction incorporating BSAPI and Torch3 wrappers and native tracter compo-
nents.

chains, and other libraries. When a function exists in a li-
brary, it is generally better to use it. For the more experimen-
tal modules, however, tracter allows components to be plugged
and un-plugged easily. One such experimental component is
the Cepstral Mean Variance Normalisation (CMVN). CMVN
is normally implemented by using statistics accumulated over
a known speaker. In a real-time system, however, this can be
improved upon by accumulating in a recursive averaging man-
ner. This on-line CMVN is implemented natively in tracter as a
recursive form of that described in [10].

6. Conclusions
We have progressed the (off-line) AMI system towards an on-
line system suitable for the real-time and distant access require-
ments of AMIDA. In doing so we have created a faster, more
capable and demonstrable ASR system that is useful for down-
stream applications.

AMIDA is due to end in late 2009, by which time we
will have a fully operational MDM system including down-
stream applications such as content linking and user engage-
ment. AMIDA is, in principle, pursuing an open-source policy.
At the time of writing, juicer and tracter are open-source and
are freely available for download45. They are released under a
BSD style licence.

7. Acknowledgements
Numerous people have contributed, with and without their
knowledge, to the system described above. Juicer and its as-
sociated tools were originally written by Darren Moore and the
beam-former by Iain McCowan. We are grateful to Pavel Mate-
jka for the description of fast VTLN, to Petr Schwarz for BSAPI
and to ICSI for the diarisation software.

This work was supported by the European Union 6th

Framework Programme IST Integrated Project “Augmented
Multi-party Interaction with Distance Access” (AMIDA, FP6-
033812) and the Swiss National Center of Competence in Re-
search (NCCR) on “Interactive Multi-modal Information Man-
agement” (IM2).

8. References
[1] A. Popescu-Belis, E. Boertjes, J. Kilgour, P. Poller, S. Castronovo,

T. Wilson, A. Jaimes, and J. Carletta, “The AMIDA automatic
content linking device: Just-in-time document retrieval in meet-
ings,” in Machine Learning for Multimodal Interaction, ser. Lec-
ture Notes in Computer Science, A. Popescu-Belis and R. Stiefel-

4http://juicer.amiproject.org/juicer
5http://juicer.amiproject.org/tracter

hagen, Eds. Springer-Verlag, 2008, vol. 5237, pp. 272–283, 5th
International Workshop, MLMI 2008.

[2] T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat, D. van
Leeuwen, M. Lincoln, and V. Wan, “The 2007 AMI(DA) sys-
tem for meeting transcription,” in Multimodal Technologies for
Perception of Humans, ser. Lecture Notes in Computer Science.
Springer-Verlag, 2008, vol. 4625, pp. 414–428, International
Evaluation Workshops CLEAR 2007 and RT 2007, Baltimore,
MD, USA, May 8-11, 2007, Revised Selected Papers.

[3] D. Moore, J. Dines, M. Magimai Doss, J. Vepa, O. Cheng, and
T. Hain, “Juicer: A weighted finite-state transducer speech de-
coder,” in Proceedings of the 3rd Joint Workshop on Multimodal
Interaction and Related Machine Learning Algorithms, 2006.

[4] M. Lincoln, I. McCowan, J. Vepa, and H. K. Maganti, “The multi-
channel wall street journal audio visual corpus (MC-WSJ-AV):
Specification and initial experiments,” in Proceedings of the IEEE
Workshop on Automatic Speech Recognition and Understanding,
November 2005, pp. 357–362, San Juan, US.

[5] C. Wooters and M. Huijbregts, “The ICSI RT07s speaker diariza-
tion system,” in Multimodal Technologies for Perception of Hu-
mans, ser. Lecture Notes in Computer Science. Springer-Verlag,
2008, vol. 4625, pp. 509–519, International Evaluation Work-
shops CLEAR 2007 and RT 2007, Baltimore, MD, USA, May
8-11, 2007, Revised Selected Papers.

[6] M. Mohri, F. C. N. Pereira, and M. Riley, “The design principles
of a weighted finite-state transducer library,” Theoretical Com-
puter Science, no. 231, pp. 17–32, January 2000.

[7] P. N. Garner, “Silence models in weighted finite-state transduc-
ers,” in Proceedings of Interspeech, September 2008, Brisbane,
Australia.

[8] F. Grézl, M. Karafiát, K. Stanislav, and J. Černocký, “Probabilistic
and bottle-neck features for LVCSR of meetings,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2007, pp. 757–760, Hononulu, US.

[9] L. Welling, S. Kanthak, and H. Ney, “Improved methods for vo-
cal tract normalization,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 2,
March 1999, pp. 764–764, Phoenix, US.

[10] O. Viikki and K. Laurila, “Noise robust HMM-based speech
recognition using segmental cepstral feature vector normaliza-
tion,” in Robust Speech Recognition for Unknown Communication
Channels. ISCA, April 1997, pp. 107–110, Pont-à-Mousson,
France.

