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Abstract. This paper presents an approach for the recognition of roles in multiparty record-
ings. The approach includes two major stages: extraction of Social Affiliation Networks (speaker
diarization and representation of people in terms of their social interactions), and role recognition
(application of discrete probability distributions to map people into roles). The experiments are
performed over several corpora, including broadcast data and meeting recordings, for a total of
roughly 90 hours of material. The results are satisfactory for the broadcast data (around 80
percent of the data time correctly labeled in terms of role), while they still must be improved in
the case of the meeting recordings (around 45 percent of the data time correctly labeled). In both
cases, the approach outperforms significantly chance.
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1 Introduction

One of the main tenets of sociology is that people involved in social interactions play roles: ”People

do not interact with one another as anonymous beings. They come together in the context of specific

environments and with specific purposes. Their interactions involve behaviors associated with defined

statuses and particular roles. These statuses and roles help to pattern our social interactions and

provide predictability” [12]. In this work, we address the problem of recognizing automatically the
role of people in radio programs and meetings.

The approach we propose is composed of two main stages (see Figure 1): the first is the extraction
of feature vectors accounting for relationships between people, the second is the mapping of the feature
vectors into categories corresponding to the roles. The feature extraction stage (left dotted box in
Figure 1) starts by splitting the data into single speaker segments. The speaker sequence is then used
to extract a Social Affiliation Network [14] and to model the intervention time distribution associated
to each role. The recognition stage (right dotted box in Figure 1) maps the feature vectors into classes
corresponding to the different roles. This task is performed using either Bernoulli or Multinomial
distributions [5]. Moreover, the fraction of time each role accounts for in a given recording is modeled
with Gaussian distributions.

To the best of our knowledge, only a few works have been dedicated to the automatic recognition
of roles. Some of them recognize functional roles in broadcast data [4][13], i.e. the tasks that different
people perform in television and radio programs (e.g. anchorman or guest), and another recognizes
functional roles in movies [15] (e.g. hero or hero’s friends). The recognition is based on lexical
features like the n-gram distribution in [4], and on Social Network Analysis [14] in [13][15]. Other
works recognize the social roles of meeting participants [17] (e.g. attacker or supporter) using features
like the overall amount of movement and speech energy, or the roles corresponding to specific actions [3]
(e.g. presentation and briefings) using the total speaking time of each person and turn-taking statistics.

We performed experiments over three different corpora (see Section 4.1 for more details): a collec-
tion of radio news bulletins (around 20 hours), a dataset of radio talk-shows (around 25 hours), and
the AMI meeting corpus (around 45 hours) [11]. For the first two datasets, the accuracy, percentage
of time correctly labeled in terms of role, is close to 80%, while it is around 45% for the meeting data.
One probable reason is that the interactions are more constrained in the case of the broadcast data
and this leads to more stable patterns associated to the different roles. However, the performance of
the system is significantly higher than chance for both kinds of data and several roles are recognized
with high accuracy.

Role recognition can be useful in several applications: browsers can be enhanced by enabling users
to select interventions corresponding to a given role, retrieval systems can use the role as a clue
for filtering the results, summarization systems can use the role as a criterion for the selection of
information rich data segments, etc.

The rest of the paper is organized as follows: Section 2 presents the interaction pattern extraction,
Section 3 describes the role assignment technique, Section 4 presents experiments and results, and
Section 5 draws some conclusions.

2 Feature Extraction

This section presents the technique used to extract and represent the interaction pattern of each
person. The technique includes two steps: the first is the segmentation of the recordings into single
speaker segments (speaker diarization), the second is the extraction of an Affiliation Network from
the resulting speaker sequence (see left dotted box in Figure 1).

In our experiments, we considered two kinds of data: broadcast material where there is a single
audio channel and meeting recordings where each participant wears a headset microphone. This
requires the application of different speaker diarization techniques: in the first case (single audio
channel), an unsupervised speaker diarization technique identifies the voices of the different people
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Figure 1: Role recognition approach. The picture show the two main stages of the approach: the
feature extraction and the actual role recognition.

(see Section 2.1). In the second case (headset microphones), the diarization splits the channel of each
microphone into speech and non-speech segments (see Section 2.2). Section 2.3 shows how the output
of the speaker diarization is used to build an Affiliation Network and represent people with vectors
accounting for their social relationships.

2.1 Speaker Diarization for Single Audio Channel Data

A full description of the speaker diarization technique used for the single audio channel data (broad-
cast material) is given in [1][2]. The algorithm is based on a fully connected continuous density Hidden
Markov Model (HMM) where each state corresponds to a cluster of observation vectors and, in prin-
ciple, to a single speaker voice. The emission probability is modeled with a Gaussian Mixture Model
(GMM) [5]. Each observation vector has 12 dimensions corresponding to the Mel Frequency Cepstral

Coefficients (MFCC) extracted every 10 ms from a 30 ms long window [9]. The MFCC are used
because they have been shown to be more effective than other features in speaker recognition tasks,
thus they seem to capture the different voices and their characteristics [1].

The first step of the process is the initialization of the above HMM. The audio data is segmented
into M uniform non-overlapping segments, where M is the initial number of states in the HMM. Since
the number of speakers is not known a-priori, an initial guess must be provided for M . This parameter
is set to a value much higher than the expected number of speakers because the algorithm achieves
good results only when starting from an oversegmentation. The resulting HMM is trained using the
uniform segmentation as groundtruth and the result is a parameter set Θ(0). The resulting HMM can
be aligned with the data using the Viterbi algorithm to find the best sequence of states (i.e. speakers):

q(0) = arg max
q∈Q

p(q |O, Θ(0)) (1)

where q is a sequence of states, Q is the set of all possible sequences of states, and O = {~o1, . . . , ~oK}
is the sequence of the observation vectors. The alignment results into a segmentation different from
the uniform one used for the initialization. The HMM can thus be retrained and a new parameter set
Θ(1) is obtained:

Θ(1) = argmax
Θ

p(q(0) |O, Θ) (2)

where Θ = {θ1, . . . , θM}, i.e. the parameter set of the HMM, can be thought of as a set of GMM
parameters, if the transition probabilities and the intial state probabilities are kept uniform.

Since the number M is higher than the actual number of speakers, the data is oversegmented and
there are clusters that should be merged since they contain data belonging to the same speaker. For
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Step Parameter Setting Step Parameter Setting

Training Training examples > 22M Inference Minimum duration 20 states
Feature sampling rate 100 Hz Insertion penalty -40
Feature dimensionality 54 Silence/speech prior 0.8/0.2
Input layer 810 (54 × 15) units Silence collar 100 ms
Hidden layer 25 arctan units Silence merge 250 ms

Table 1: Summary of parameters in the training and inference steps in the automatic speech segmen-
tation system.

this reason, the two most similar states (in terms of the GMM parameters) are merged when the
following condition is met:

log p(Om+n | θm+n) ≥ log p(Om | θm) + log p(On | θn) (3)

where Om, On and Om+n are the observation vectors attributed to cluster m, n and their union
respectively, θm and θn are the parameters of GMMs in states m and n and θm+n are the parameters
of a GMM trained with Expectation-Maximization on Om+n.

After the merging, the HMM has fewer states and it can be realigned with the data in order to
obtain a new segmentation which can be used to train again the HMM. The new states satisfying the
above condition will be thus merged again and the whole procedure will be iterated. The merging
between states is performed by keeping constant the number of parameters:

|θm+n| = |θm| + |θn|, (4)

the above condition is achieved by setting the number of Gaussians in the state resulting from the
merging to the sum of the numbers of Gaussians in the merged states. In this way, the likelihood
will increase until the states that are merged actually correspond to the same or similar voices and
will decrease when the states that are merged correspond to voices too different. This provides the
stopping criterion for the iteration process. In fact, the alignment and training steps are repeated until
the likelihood reaches its maximum. The segmentation corresponding to the maximum likelihood is
retained as the result of the speaker diarization process.

2.2 Speech/ Non-Speech Segmentation for Headset Microphone Data

The approach for the segmentation of the headset microphone channels employs a Multilayer Percep-

tron (MLP) for estimating the posterior probability of audio frames as speech or non-speech classes [6].
Input to the classifier uses standard speech recognition features combined with features specifically
designed for the detection of cross-talk in headset microphone recordings, as this has been found to
be a major source of segmentation errors in such meeting room data [16]. The input features are
summarised as follows: 13 Mel filterbank perceptual linear predictive coefficients (MF-PLP) including
C0, plus normalised log-energy; Log cross-channel normalised energy which is estimated as the log-
arithm of the energy of the current headset microphone minus the logarithm of the sum of energies
across all headset microphones for the current meeting; Signal kurtosis, which should be large during
single speaker activity (since speech signals tend to be super-Gaussian) and approach zero during
silence; Mean cross-channel correlation and Maximum cross-channel correlation, where, for a given
time frame, we take the maximum cross-correlation values between the current headset microphone
channel and all other headset microphones and obtain the mean measure as the arithmetic mean of
these cross-correlation values and the maximum measure as the maximum cross-correlation value. In
practice, we concatenate the first and second order differences of these features thus giving a feature
dimensionality of 54. Finally, we take several consecutive frames and provide these as input to the
MLP.
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Figure 2: Interaction pattern extraction. The picture shows the Affiliation Network extracted from a
speaker segmentation. The events of the network correspond to the windows wj and the actors are
linked to the events when they talk during the corresponding windows. The actors are represented
using vectors ~yi where the components account for the links between actors and events.

The classifier is trained using meeting room data from several non-AMI meeting room corpora
(specifically, ICSI, NIST, CMU corpora, see [6] for further details). Error back-propagation was
used to train the MLP parameters, with a separate validation data set being used to control over-
fitting of the parameters. A frame error of 3.9% was measured on this validation set. The ground
truth segmentation for training of the classifier was generated using forced alignment of manual
transcriptions of the corpora using acoustic models from our meeting transcription system [8]. We have
previously observed that such semi-automatic ground truth segmentations are more reliable than the
original manual corpus segmentations since manual segmentations have a tendency to have too-coarse
granularity and are inconsistent between different corpora.

The segmentation is carried out using hidden Markov models (HMM) for speech and non-speech
classes with minimum duration and insertion penalty constraints to ensure that the segmentation is
consistent with that observed for the ground truth. Emission likelihoods for the HMM states are
estimated as scaled likelihoods in which MLP posterior probabilities are divided by their respective
prior class probability. A final smoothing step is applied by padding speech segments by an additional
amount and merging resulting speech segments which have a silence gap less than a predefined dura-
tion. The tuning of the various system parameters has been carried out to maximise performance for
meeting room automatic speech recognition performance. Table 1 summarises the main parameters
in the training and inference steps.

The system described above was run on the entire AMI corpus to provide automatic segmentation
of the audio data for subsequent processing for speaker role analysis.

2.3 Affiliation Network Extraction

The result of the speaker diarization process is that each recording is split into a sequence S =
{(si, ∆ti)}, where i = 1, . . . , |S|, si is the label assigned to the speaker voice detected in the ith segment
of audio, and ∆ti is the duration of the ith segment. The label si belongs to the set A = {a1, . . . , aG}
of unique speaker labels, output by the speaker diarization process (see lower part of Figure 2). The
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sequences extracted from the speaker diarization are used to create a Social Network representing the
relationships between the speakers, more specifically an Affiliation Network. An Affiliation Network
is a graph with two kinds of nodes: the actors and the events [14]. Actors can be linked to events, but
no links are allowed between nodes of the same kind (see upper part of Figure 2). In our experiments,
the actors correspond to the speakers in the broadcast news and in the meetings and the events
correspond to uniform non-overlapping windows spanning the whole length of the recordings. The
reason is that this network is expected to capture the relationships between the speakers and one of
the most reliable evidences of interaction is the proximity in time [7]. In fact, two persons talking
during the same window are more likely to interact with each other than two people talking in different
windows.

One of the main advantages of this representation is that each actor ai can be represented with
a vector ~xi where the component j accounts for the participation of ai in the jth event. In our
experiments, we used two kinds of representation: in the first one, the jth component is 1 if the
speaker talks during the jth window and 0 otherwise (the corresponding vectors are shown at the
bottom of Figure 2). In the second the jth component is the number of times that speaker ai talks
during the jth window. In the first case the vectors are binary, in the second case they have integer
components higher or equal to 0. In both cases, people that interact more with each other tend to
talk during the same windows and are represented by similar vectors. The choice of the number of
windows used to segment the recordings as well as the length of the windows used in this work, are
justified in Section 4.

3 Role Recognition

This section describes the statistical foundations of the role assignment process used in our experi-
ments. Section 2 has shown that the relationship pattern of each speaker i can be represented with a
vector ~xi = (xi1, . . . , xiD), where D is the number of windows, that can have either binary or positive
integer components. Furthermore, every speaker i talks during a fraction τi of the total time of a
bulletin. We can thus represent every speaker by a vector ~yi = (τi, ~xi).

Consider the vector ~r = (r1, . . . , rG), where ri is the role of speaker i, and the vector of observation
Y = {~y1, . . . , ~yG}, where ~yi is the vector representing speaker i. The problem of assigning the role
to all speakers can be thought of as the maximization of the a-posteriori probability p(~r |Y ). By
applying the Bayes Theorem and by taking into account that p(Y ) is constant during the recognition

this problem is equivalent to finding ~̂r such that:

~̂r = arg max
~r∈RG

p(Y |~r) p(~r), (5)

where R is the set of the predefined roles. In order to simplify the problem, we make the assumption
that the observations are mutually conditionally independent given the roles. In the case we are
considering, it seems also reasonable to assume that the observation ~yi of speaker i only depends on
its role ri and not on the role of the other speakers. Equation (5) can thus be rewritten as:

~̂r = arg max
~r∈RG

p(~r)
G∏

k=1

p(~yk | rk). (6)

In order to further simplify the problem, we assume that ~xi and τi are statistically independent
given the role, thus:

p(yi | ri) = p(~xi | ri) p(τi | ri). (7)

In this work, we only considered the most simple model for p(~r). This model assumes that the roles
are independent and thus that p(~r) is simply the product of the a-priori probabilities of the roles. In
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this model, Equation (5) boils down to:

~̂r = arg max
~r∈RG

G∏

k=1

p(rk) p(~xk | rk) p(τk | rk) (8)

The main advantage of this approach is that the observations became independent and the maxi-
mization of the product can be achieved by maximizing separately each factor p(~yk | rk) p(rk).

In the next subsections, we will show how we estimate p(~x | r), p(τ | r) and p(r)

3.1 Modeling Binary Interaction Patterns

This subsection shows how we model the interaction patterns extracted from the Affiliation Networks
when the components of the vectors ~xi are binary, i.e. xij = 1 when actor ai talks during window j

and 0 otherwise. Given a labeled training set, there are Nr speakers playing the role r. Each one of
them is represented by a binary vector ~x. The most natural way of modeling binary vectors is to use
Bernoulli discrete distributions:

p(~xi | ~µr) =

D∏

j=1

µ
xij

rj (1 − µrj)
1−xij , (9)

where D is the number of events in the network (see Section 2), and ~µr = (µr1, . . . , µrD) is the
parameter vector of the distribution related to role r. The maximum likelihood estimates of the µri

parameters are as follows [5]:

µri =
1

Nr

Nr∑

n=1

xni, (10)

where Nr is the number of people playing the role r in the training set, and xnj is the jth component of
the vector representing the nth person playing the role r. A different Bernoulli distribution is trained
for each role.

3.2 Modeling Multinomial Interaction Patterns

This subsection details the model we use for the Affiliation Networks when the components xij cor-
respond to the number of times that actor ai talks during window j, i.e. the components are integers
greater or equal to 0. Given a vector ~x = (x1, . . . , xD), where D is the number of windows, each
component xi can be represented with a vector ~zi defined as follows:

~zi = (zi1, . . . , ziT ), (11)

where T is the maximum number of times that an actor can talk during a given window, zij ∈ {0, 1},

and
∑T

j=1 zij = 1. In other words, xi is represented with a T -dimensional vector where all the
components are 0 except one, i.e. the component zin = 1, where n is the number of times that the
actor represented by ~x talks during event i. As a result, ~x is represented with a concatenation of
vectors ~z = (~z1, . . . , ~zD). The vector ~z can thus be modeled with a multinomial distribution:

p(~z | ~µ) =
D∏

i=1

T∏

j=1

µ
zij

ij , (12)

The parameters ~µ can be estimated by maximizing the likelihood over a training set X . This leads to
a closed form expression for the parameters:

µij =
1

Nr

Nr∑

l=1

z
(l)
ij , (13)

where Nr is the number of vectors corresponding to role r.
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3.3 Modeling Durations

This section shows how we estimate the probabilities p(τ | r). Given a labeled training set, there is a
number Nr of speakers playing role r. Each one of them accounts for a fraction τn of the bulletin he or
she is involved in, where n = 1, . . . , Nr. We model p(τ | r) using a Gaussian Distribution N (τ |µr, σr),
where µr and σr are mean and variance respectively. The Maximum Likelihood estimates of the
parameters are the sample mean:

µr =
1

Nr

Nr∑

n=1

τn (14)

and the sample variance:

σr =
1

Nr

Nr∑

n=1

(τn − µr)
2. (15)

A different Gaussian distribution is obtained for each role.

3.4 Estimating Role Probabilities

This section shows how we estimate the probability p(r) of a given role being observed. Given a
labeled training set, the total number of people is denoted by N , and the number of people playing
role r is Nr. Then, we have the following estimation of the a-priori probability:

p(r) =
Nr

N
, (16)

i.e. the fraction of individuals in the training set labeled with the role r.

4 Experiments and Results

This section presents experiments and results obtained in this work. The next three sections describe
data and roles, the performance measures and the role recognition results.

4.1 Data and Roles

The experiments of this work have been performed over three different corpora. The first, referred to
as C1 in the following, contains 96 news bulletins with an average length of 11 minutes and 50 seconds.
The corpus contains all news bulletins broadcasted by Radio Suisse Romande, the French speaking
Swiss National broadcasting service, during February 2005 and can thus be considered a representative
sample of these kinds of programs. The second corpus, referred to as C2 in the following, contains 27
one hour long talk-shows broadcasted by Radio Suisse Romande (see above) during February 2005.
Also in this case, the corpus can be considered a representative sample of this specific kind of program.
The third corpus, referred to as C3 in the following, is the AMI corpus [10], a collection of 138 meeting
recordings for a total of 45 hours and 38 minutes of material. The meetings are simulated and are
based on a scenario where the participants are the members of a team working on the development
of a new remote control.

The set of the predefined roles is the same for C1 and C2: the Anchorman (AM), i.e. the person
managing the program, the Second Anchorman (SA), i.e. the person supporting the AM, the Guest

(GT), i.e. the person invited to report about a single and specific issue, the Interview Participant

(IP), i.e. interviewees and interviewers, the Abstract (AB), i.e. the person reading a short abstract
at the beginning of the program, and the Meteo (MT), i.e. the person reading the weather forecasts.
In C3, the set of the roles is different and contains the Project Manager (PM), the Marketing Expert

(ME), the User Interface Expert (UI), and the Industrial Designer (ID).



IDIAP–RR 08-64 9

Corpus AM SA GT IP AB MT
C1 41.2% 5.5% 34.8% 4.0% 7.1% 6.3%
C2 17.3% 10.3% 64.9% 0.0% 4.0% 1.7%

Table 2: Role distribution. The table reports the percentage of data time each role accounts for in
C1 and C2.

Corpus PM ME UI ID
C3 36.6% 22.1% 19.8% 21.5%

Table 3: Role distribution. The table reports the percentage of data time each role accounts for in
C3.

Table 2 shows the distribution of the data time across the roles in C1 and C2. The fraction of
data time each role accounts for in C3 is reported in Table 3. Roles and distributions are significantly
different in C1, C2 and C3 and this enables us to test the robustness of our approach with respect to
changes in the data.

4.2 Speaker Diarization Results

The relationship patterns used at the role assignment step are extracted from the speaker segmentation
obtained with the diarization process. Errors in the diarization (e.g. people detected as speaking when
they are silent) lead to spurious interactions that can mislead the role assignment process.

The effectiveness of the diarization is measured with the Purity π, a metric showing on one hand to
what extent all feature vectors corresponding to a given speaker are detected as belonging to the same
voice, and on the other hand to what extent all vectors detected as a single voice actually correspond
to a single speaker. The Purity ranges between 0 and 1 (the higher the better) and it is the geometric
mean of two terms: the average cluster purity πc and the average speaker purity πs. The definition of
πc is as follows:

πc =

Nc∑

k=1

Ns∑

l=1

nk

N

n2
lk

n2
k

, (17)

where Ns is the number of speakers, Nc is the number of voices detected in the diarization process,
nlk is the number of vectors belonging to speaker l that have been attributed to voice k, nk is the
number of feature vectors in voice k and N is the total number of feature vectors. The definition of
πs is as follows:

πs =

Ns∑

l=1

Nc∑

k=1

nl

N

n2
lk

n2
l

(18)

(see above for the meaning of the symbols).

The application of the speaker diarization process in the case of radio programs requires the setting
of the initial number of states M in the fully connected Hidden Markov Model (see Section 2). The
value of M must be significantly higher than the number of expected speakers for the diarization
process to work correctly. In our experiments, we set a-priori M = 30 for C1 and M = 90 for C2.
No other values have been tested. The average purity is 0.81 for C1 and 0.79 for C2. The average
purity for C3 is 0.99. The difference in purity is explained by the different methods used to obtain
the speaker segmentation.
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all AM SA GT IP AB MT
B 81.2 97.8 4.0 92.6 6.0 47.8 74.9

M 81.0 97.8 2.7 92.6 2.1 47.8 75.6

Table 4: Role recognition performance for C1. The table reports the role recognition results for the
corpus C1. The results show both the overall accuracy and the accuracy for each role. The ”B” stands
for Bernoulli, and the ”M” stands for Multinomial.

all AM SA GT IP AB MT
B 83.9 75.0 88.3 90.6 0.0 54.5 13.3

M 82.0 62.3 92.3 86.7 0.0 98.4 22.8

Table 5: Role recognition performance for C2. The table reports the role recognition results for the
corpus C2. The results show both the overall accuracy and the accuracy for each role. The ”B” stands
for Bernoulli, and the ”M” stands for Multinomial.

4.3 Role Recognition Results

For our experiment, we used the accuracy α as the performance measure. The accuracy is defined as
the percentage of data time correctly labeled in terms of role. We used a leave-one-out approach [5]
to train our models and select the number D of windows used to split the recordings (see Section 2).
This means that each recording in a corpus is used iteratively as test set, while the others are used as
training set. In this way, the whole corpus can be used as test set while still preserving the rigorous
separation between training and test data necessary to assess realistically the performance of the role
recognition system.

Tables 4, 5 and 6 report the role recognition results for corpora C1, C2 and C3 respectively. The
distribution used to model the interaction patterns is indicated with B (Bernoulli) and M (multino-
mial). The overall α is above 82 percent for both C1 and C2 and this means that the role recognition
approach is robust with respect to changes in the time distribution across the roles. This is important
because the same role is played in different ways depending on the specific program and the approach
seems to be capable of adapting automatically to the different situations.

The 20 percent of mislabeled data time is due to two main sources of error: the first is the delay
of the diarization process in correspondence of speaker changes. On average, the speaker changes
in the output of the diarization process are delayed by around 2 seconds with respect to the actual
speaker changes. The average number of changes in C1 is 30 and this results into roughly 60 seconds
of mislabeling (around 10 percent of the average C1 recording length). Similar figures can be found
for C2 where roughly 10 percent of the time again is mislabeled because of the delays between actual
and detected speaker changes. The performance of the system when using the ground-truth speaker
segmentations rather than the output of the speaker diarization is 95.3 percent for C1 and 96.5 for C2.
This seems to confirm that around 10 percent of the error is actually due to the above phenomenon
(the results have been obtained using a single Bernoulli distribution).

The second major source of error is the classification of IP, MT and AB into GT. Such roles have
similar interaction patterns, but the higher a-priori probability of the GT bias the recognition toward
the latter. Fortunately, the IP, MT and AB do not account for a large fraction of the data time and
the impact on the overall performance is small.

In the C3 corpus, the overall α is around 43 percent. The results show that the role recognition
approach presented in this paper is less effective for a more spontaneous database with small groups
such as the AMI meeting corpus. The relationship features are not stable, and thus the models are
not able to classify correctly the participants into the four different roles. The Project Manager is the
only role that is correctly captured. Its interaction pattern is distinct of the other roles (with a high
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all PM ME UI ID
B 43.6 79.4 19.5 33.0 13.0

M 42.8 76.4 14.4 30.2 22.5

Table 6: Role recognition performance for C3. The table reports the role recognition results for the
corpus C3. The results show both the overall accuracy and the accuracy for each role. The ”B” stands
for Bernoulli, and the ”M” stands for Multinomial.

activity throughout the meeting). This difference is well captured by our approach and the PM is
labeled with an accuracy close to 80%. The three other roles, i.e. ME, UI, ID, have similar interaction
patterns, thus our approach does not achieve a good accuracy. The accuracy over the groundtruth
speaker segmentation is 49.5% (achieved with a Bernoulli distribution). Like in the case of C1 and
C2, the relative loss when passing to the automatic speaker segmentation is around 12%. The main
reason the approach is less effective over C3 is probably that the number of meeting participants is
too small (only 4 per recording) to build meaningful Affilitation Networks [14].

5 Conclusions

In this paper, we have presented an approach for the automatic recognition of people’s roles in mul-
tiparty recordings. The approach is based on Social Network Analysis and it has been applied over
different kinds of data to assess its robustness and its limits. The results show that the approach
is effective for the broadcast data where the interactions between people are sufficiently constrained,
while still requires improvements for the meetings where the interactions are more spontaneous.

The approach uses only the audio channel even if the AMI corpus includes videos captured with
three different cameras and synchronized with the audio. One one hand, this is an advantage because it
allows the application of the approach to data like the radio programs where only the audio is available.
On the other hand, it is a disadvantage because for data where the video is available important
information is probably missed if the visual aspects are not taken into account. For this reason, the
future work will focus on the inclusion of visual features in the meetings data to build a multi-modal
approach (see [11][17] for examples of techniques based on multiple modalities). Moreover, in the
experiments of this work the roles are considered statistically independent, while they are dependent
and they must respect several constraints, e.g. the news bulletins must have only one anchorman.
These constraints can be included in the recognition stage to improve the performance.
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