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ABSTRACT

In this work we present and evaluate a novel 3D approach to track
single people in surveillance scenarios, using multiple cameras.
The problem is formulated in a Bayesian filtering framework, and
solved through sampling approximations (i.e. using a particle fil-
ter). Rather than relying on a 2D state to represent people, as is
most commonly done, we directly exploit 3D knowledge by track-
ing people in the 3D world. A novel dynamical model is presented
that accurately models the coupling between people orientation and
motion direction. In addition, people are represented by three 3D
elliptic cylinders which allow to introduce a spatial color layout
useful to discriminate the tracked person from potential distractors.
Thanks to the particle filter approach, integrating background sub-
traction and color observations from multiple cameras is straight-
forward. Alltogether, the approach is quite robust to occlusion and
large variations in people appearence, even when using a single
camera, as demonstrated by numerical performance evaluation on
real and challenging data from an underground station.

1. INTRODUCTION

Person and object tracking is one of the most important tasks in
a surveillance system. It allows to extract and link the semantic
content of streams of video data, and is at the basis of the majority
of higher level analysis algorithms. Despite tracking being one of
the most studied topics in dynamic scene analysis, achieving good
tracking performance in adverse conditions, as is often the case with
indoor/metro surveillance settings, remains an important challenge.

In this paper we address the specific problem of single object
tracking over a network of cameras with partial overlap. While mul-
tiple object tracking (MOT) is often desirable for automatic event
analysis, tracking single person is also a task that is requested by
end-users. More specifically, surveillance operators would like to
be able to point at and ’tag’ some particular person (or group of
people) and track them through the metro station, so that there is
always a monitor that displays a view of this person. This type of
camera selection mechanism is very important for control rooms
where the number of monitors is much less than the actual number
of cameras in the network (e.g. 24 video monitors for more than
500 cameras in the Torino metro). This task has been coined the
’tag and track’ task.

Several approaches have been proposed in the past for tracking
people [1, 2, 3, 4, 5, 6]. Compared to 2D approaches [1, 2], meth-
ods relying on 3D state-spaces [3, 4, 5, 6] have been found to be
more effective at modeling occlusion in the MOT case [3, 4, 6], and
more robust in general, as they better constrain the solution space by
allowing the introduction of more accurate priors (for instance, be-
tween the image position of the object and its size). However, until
now, a large majority of research relying on 3D state-space (and 3D
body representation) have been considered in closed indoor spaces
(e.g. a lab room) [3, 4, 5], which do not present the same diffi-
culties than surveillance videos (viewing angle is usually smaller,
more overlap between cameras, etc). For instance, our attempt to
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apply [3] on our data failed mainly because obtaining good enough
background subtraction was more challenging.

In [3, 7], 3D positions of humans are infered from multiple
cameras. However, experiments are restrained to small spaces, as
these methods rely more or less on volume intersection. In addition,
many such approach have problems because they attempt at solving
an inverse problem (reconstructing 3D from 2D images), and they
can hardly be applied when using only two or even a single cam-
era. In our case, thanks to the use of a particle filtering framework,
the inverse problem is avoided, and the fusion of several cameras
information is straightforward.

In this paper, we propose and evaluate a new method to address
the ’tag & track’ user scenario. The method relies on a particle fil-
ter approach with a 3D state representation. People are represented
using 3 elliptic cylinders, allowing to introduce spatial layout infor-
mation with respect to both background and more importantly color
measurements, and which proved to be useful for distinguishing the
tracked person from distracting people, for instance before and af-
ter occlusion. Through thorough numerical experiments on real and
challenging data, we show that the approach is fairly robust, even
when using a single camera.

The reminder of this article is organized as follows. We de-
scribe our method in Section 2. Section 3 presents our evaluation
framework and numerical results. Section 4 concludes the paper.

2. 3D BODY MULTI-CAMER TRACKING WITH
PARTICLE FILTER

In this Section, we introduce the single person 3D tracking algo-
rithm based on a particle filter formulation. We will start by a quick
presentation of the Bayesian filtering framework and its particle fil-
ter (PF) implementation, and then describe in more details the spe-
cific components that are involved in our implementation.

2.1 Bayesian tracking framework

The Bayesian formulation of the tracking problem is well known
[8]. Denoting the hidden state representing the object configuration
at timet by Yt and the observation extracted from the image byZt ,
the objective is to estimate the filtering distributionp(Yt |Z1:t) of the
stateYt given the sequence of all the observationsZ1:t = (Z1, . . . ,Zt)
up to the current time. Given standard assumptions, Bayesian track-
ing effectively solves the following recursive equation:

p(Yt |Z1:t) ∝ p(Zt |Yt)
∫

Yt−1

p(Yt |Yt−1)p(Yt−1|Z1:t−1)dYt−1 (1)

In non-Gaussian and non linear cases, this can be done recursively
using sampling approaches, also known as particle filters (PF). The
idea behind PF consists of representing the filtering distribution us-
ing a set ofNs weighted samples (particles){Y n

t ,wn
t ,n = 1, ...,Ns}

and updating this representation when new data arrives. Given
the particle set of the previous time step,{Y n

t−1,w
n
t−1 = 1

Ns
,n =

1, ...,Ns}, configurations of the current step are drawn from a pro-
posal distributionYt ∼ q(Y |Y n

t−1,Zt). The weights are then com-

puted aswt ∝ wn
t−1

p(Zt |Yt )p(Yt |Y n
t−1)

q(Yt |Y n
t−1,Zt )

. Finally, to avoid sampling im-
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poverishment, it is necessary to apply an additional resampling step
[8] whose effect is to eliminate the particles with low importance
weights and to multiply particles having high weights.
Four elements are important in defining a PF:
• a state model which is an abstract representation of the object

we are interested in;
• a dynamical modelp(Yt |Yt−1) governing the temporal evolution

of the state;
• a likelihood modelp(Zt |Yt) measuring the adequacy of the data

given the proposed configuration of the tracked object;
• a proposal distributionq(Y |Y n

t−1,Zt) the role of which is to pro-
pose new configurations in high likelihood regions of the state
space. In our current case, we used a standard approach, us-
ing the dynamics as importance function, so that the the weight
computation reduces towt ∝ wn

t−1p(Zt |Yt).
These elements, along with our model will be described in the fol-
lowing Subsections.

2.2 3D State Space and body model:

The selection of an adequate state space is a compromise between
two goals: on one hand, the state space should be precise enough
so as to model as well as possible the information in the image and
provide the richest information to further higher level analysis mod-
ules. On the other hand, it has to remain simple enough and in ade-
quation to the quality level of the data (in our case, low to mid-level
resolution) in order to obtain reliable estimates and keep the com-
putation time low.
In the current situation, we decided to use a state space defined in
the 3D space. This presents several advantages over a 2D approach.
First, parameter setting, in most cases, will have a physical mean-
ing. For instance, we can define a default height, the speed of an
average walking person, etc. Besides, all prior information will au-
tomatically be ’built-in’: for instance, according to the 3D position,
we automatically know what should be the image size of the person
image projection. Finally, occlusion reasoning -when tracking mul-
tiple people- would be simplified when using the 3D position.
In practice we modeled people using general cylinders, as illustrated
in Fig. 1. Given the resolution of the images, we decided to use one
cylinder for the head, one for the torso, and one for the legs. To
account for the ’flatness’of people (or in other words, the width of
people is usually larger than their thickness), we decided to use el-
liptic cylinders (i.e. the section of the cylinder is an ellipse). Utiliz-
ing this 3D human body model, one person standing on the ground
plane with different orientation should produce different projected
models in which the main difference is the width of the projected
human bodies. Thus, in summary, the state space is represented by
a 6-dimensional column vector:

X = [x, ẋ,y, ẏ,H,α ] with (2)

• (x,y) denote the ground plane position of the object in the 3D
physical space.

• V = [ẋ, ẏ]t denotes the speed of the object. The speed is charac-
terized by its magnitudev expressed in cm.s−1, and its direction
γV (angle with respect to the X coordinate axis);

• H denotes the height of the object (in cm), and
• α denotes the orientation of the human body.

Figure 1 shows the body model along with the projection of the
body model, for different state values, on one image.

2.3 The Dynamical Model

The dynamical model governs the temporal evolution of the state,
and is defined as

p(Xk|Xk−1) = p(xk, ẋk|xk−1, ẋk−1)p(yk, ẏk|yk−1, ẏk−1) (3)

×p(Hk|Hk−1)p(αk|αk−1,Vk−1) (4)

where we have assumed that the evolution of state parameters are
independent given the previous state value. While this is reasonable
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Figure 1: a) 3D body model consisting of three elliptic cylinders
representing head, torso and legs. b) projection of the body model
in the image (after distorsion removal) for different state values.
Notice the change of width due to variation of the body orientation.

for height and orientation, the independence of thex andy variables
is more questionable. In the future, we will investigate a coupling
between these two variables. The specific models are the following.
The position (and speed) along the x and y axis has been modeled as
a Langevin motion, which corresponds to the motion of a free parti-
cle in a liquid with thermal excitation. The parameters of this model
are most naturally specified in terms of continuous time parameters
which have clear physical interpretation: the rate constantβ , in s−1,
indicating the degree of friction in the liquid, and the stead-state
root-mean square velocity ¯v parameter, expressed in cm.s−1. This
model corresponds to the discrete dynamical model defined by

ẋk = axẋk−1 +bxwx
k, xk = xk−1 + τ ẋk (5)

in which wx
k areN (0,1) random variables,τ is the time step be-

tween two frames, and

ax = exp(−β xτ) andbx = v̄x
√

1− (ax)2 (6)

By setting appropriate values forβ and v̄, using the above for-
mula, parameter setting becomes independent of the actual frame
rate (taken into account withτ).
The height model assumes that the height remains constant over
time. In addition, it is constrained by a prior, to avoid large devia-
tions towards too high or small values. The expression is:

p(Hk|Hk−1) ∝ ptemp(Hk|Hk−1)pprior(Hk) (7)

where the first term imposes some temporal continuity to the es-
timated height, and is simply modeled as constant model (i.e.
ptemp(Hk|Hk−1) = N (Hk;Hk−1,σ2

Htemp
), where N (x;m,σ2) de-

notes the value atx of a gaussian with meanm and varianceσ2,
andσ2

Htemp
denotes the noise variance of the temporal term) and the

second term defines a prior over the height values, and is defined as
pprior(Hk) = N (Hk;H0,σ2

H0
), whereH0 denotes an average refer-

ence height.
Finally, the body orientation dynamics is decomposed as:

p(αk|αk−1,Vk−1) ∝ ptemp(αk|αk−1)pmotion(αk|Vk−1) (8)

ptemp(αk|αk−1) = N (αk;αk−1,σ2
αtemp

) (9)

pmotion(αk|Vk−1) = N (αk;γV
k−1,σ

2
αmot

(vk−1)) (10)

Thus, on the one hand, the new orientation must account for the pre-
vious orientation valueαk−1, with a variance ofσ2

αtemp
. On the other

hand, the second term pmotion constrains the orientation to align has
much as possible with the direction of motionγV

k−1, and this con-
straint is controlled by the velocityvk−1. Intuitively, when the per-
son is moving with a high enough velocity, one would like the body
orientation to be fully aligned with the direction of motion. At the
other end, when a person is not moving, the direction of motion



Figure 2: The 3 bounding boxes associated with a projection of a
body model. Left: displayed on the original image (after distorsion
removal). Right: displayed on the foreground image. To build the
color histogram observations, only the visible foreground pixels are
taken into account.

should play (almost) no role. This behaviour is achieved by select-
ing the varianceσ2

αmot
(vk−1) according to:

1

σ2
αmot

(vk−1)
=

1

σ2
αmot

(

1+
vk−1

vlow

)

(11)

where vlow denotes a small motion magnitude above which one
wants to seriously align the body orientation with the direction of
motion, andσ2

αmot
is the default variance in absence of motion.

2.4 Observation Model

The observation model p(Z|X) measures the likelihood of the ob-
servation for a given state value, and is the main component of the
tracker. In the following, we present its implementation in the single
camera tracking case as well as its extension to multiple cameras.

Single camera case: The observationsZ = (Z f ,Zcol) are composed
of two parts: a foreground binary mapZ f obtained from back-
ground subtraction and color observationsZcol gathered in the form
of multidimensional histograms. We have modeled the likelihood
as the product of two terms:

p(Z|X) = pcol(Z
col |Z f ,X)pf (Z

f |X) (12)

which we now describe. In both cases, the measurements rely on
the bounding boxRi, i = 1,2,3 corresponding to each body part, as
illustrated in Fig. 2.
Background component:
The foreground likelihood is modeled as:

pf (Z
f |X) = pf (π|X) =

3

∏
b=1

p(πb) (13)

whereπ = [π1,π2,π3]
t , πi denotes the percentage of pixels inRi that

belong to the foreground. The individual likelihood are modeled as:

p(πb) =
1

Cte
exp
(

−λ f
b Abϕ (πb)

)

(14)

whereCte is a normalization factor, andϕ() is defined as:

ϕ(x) =

{

1−Tbot , x < Tbot
1−exp(−λ1 · (Ttop − x)), x ≤ Ttop
1−exp(−λ2 · (x−Ttop), x > Ttop

(15)

where we defineλ1 andλ2 values for different body parts. Alterna-
tively, p(πb) can be learned from training data. Notice that in Eq 14,
the term in the exponential is weighted by the areaAb of the bound-
ing boxRb. Thus, there will be less probability variations w.r.t. to
observations for small regions than for large ones.
Color model :
As color models we used multidimensional color distributions rep-
resented by normalized histograms in the HSV space and gathered

(a) (b)
Figure 3: Initialisation (a) manually marked bounding box on the
original image, (b) the three bounding boxes from the 3D human
body model corresponding to the initial state, projected on the
undistorded image. Notice the strong specular reflections.

inside the candidate bounding boxesRb associated with the stateXk.
Note however that only the pixels labeled as foreground inZ f are
used to build the histograms. The use of different regions allows
to add spatial layout information in the model. Consequently, the
computation of the normalized multidimensional histogram results
in a vectorb(Xk) = (bj(Xk)) j=1..N , whereN = 3× (Nh ×Ns ×NV )
with Nh, Ns andNV representing the number of bins along the hue,
saturation and value dimensions respectively (Nh = Ns = NV = 10).
At time t, the candidate color modelb(Xt) is compared to a refer-
ence color modelbre f . As a distance measure, we employed the
Bhattacharyya distance measure [1, 2]:

Dbhat(b(Xt),bre f ) =

(

1−
N

∑
j=1

√

bj(Xt)b
j
re f

)1/2

(16)

and assumed that the probability distribution of the square of this
distance for a given object follows an exponential law,

pcol(Z
col |Z f ,Xk) ∝ exp{−λbhat D2

bhat(bk(Xk),bre f )} . (17)

We used the histogram computed in the first frame as reference
model [1, 2].

Multiple camera case: Due to the 3D state-space and particle fil-
ter approach, the only algorithmic modification to account for the
availaibility of several cameras consists of modifying the likelihood
term. We have now observations for each of the camera view:
Z = (Zv)v=1...Nv , where each camera view observations are com-

posed of foreground and color observationsZv = (Z f
v ,Zcol

v ), as in
the single camera case, andNv denotes the number of camera views
where the object is visible. Assuming that the observation are inde-
pendent given the state value, we can model the joint camera likeli-
hood as:

p(Z|X) =

(

Nv(X)

∏
v=1

p(Zv|X)

)

1
Nv(X)

(18)

where each p(Zv|X) is itself defined according to Eq 12, andNv(X)
denotes the number of camera in which the object located at state
X is visible. Importantly, in this model, we have normalized the
likelihood by taking the geometric mean of all the single view like-
lihoods, so that the overall likelihoods of states/objects which are
visible in a different number of cameras are still comparable.

3. RESULTS

The evaluation protocol is the following:

Data We used three 2h30 minutes of video footage captured by
three different cameras in the Torino metro station (one camera view
is in Fig 2, Fig. 3 shows a second view. A third camera looks at the
scene from a symetric position at an opposite location w.r.t. the
camera of Fig. 3). The sequences are very challenging, due to the
camera view points (small average people size and large people size
variations in a given view, occlusion), and the presence of many



specular reflections on the ground which in combination with cast
shadows generate many background subtraction false alarms. In ad-
dition most people are dressed with similar colors. The background
subtraction was obtained using a robust multi-layer algorithm [9].
In order to compare the single and multiple camera tracking cases,
we adopted the following annotation scheme. A set of ground truth
tracks was annotated. For each track, the corresponding person was
tagged from his entrance in the field of view of one camera until
his disappearence of the same view. This segment of the ground
truth will allow us to measureon the same data the improvement
of the tracking due to the use of multiple cameras (E1 scenario).
Then, the track ground truth was prolongated as long as the person
remained visible in any of the 3 views until the person completely
disappeared from the scene (E2 scenario). The annotation consisted
of the person’s bounding box and the camera number it appears in,
gathered every second. A representative set of people were tagged
in medium crowding situations, for a total of 36 people. We will
denote E1 the single camera tracking scenario, where only the first
part of the track is used (the person is visible in one given camera
only), and E2 the multi-camera scenario where the full track is used
as ground truth (the person is always visiblein the scene). The aver-
age duration of one track is 35 seconds in the E1 scenario, and 46s
when considering the full length of the tracks in scenario E2, for a
total of around 8000 frames.

Performance measure: For each of the person, the bounding box
sequence of the ground truth is compared with the bounding box se-
quence produced by the tracker. A coverage test is passed to assess
whether the output region of the tracker matches that of the ground
truth. It consists in computing the following measures:

πeval =
|Btr ∩Bgt |

|Btr|
,ρeval =

|Btr ∩Bgt |

|Bgt |
,

1
Feval

=
1
2

(

1
ρeval

+
1

πeval

)

where |.| denotes the set operator (the area), andπeval and ρeval
denote the precision and recall measures between the ground truth
and tracker bounding boxesBgt andBtr, respectively. In order to
have a good match, both these measures needs to be high, and this
is reflected in the Fmeasure Feval . Thus, if Feval is higher than a
threshold TF , (in practice we used 0.2) we say that the tracker match
the ground truth, otherwise not. Note that as soon as the coverage
test is not satisfied at one instant, the tracking is said to have failed
for the rest of the sequence. As performance measures, we report
the percentage of times the tracker was able to successfully track
the person up to T% of its full appearence duration in the camera
(scenario E1) or in the scene (scenario E2).

The algorithm: Currently, assuming a ’tag-and-track’ scenario, we
assume that an initial bounding box is manually marked on the orig-
inal image as shown in Figure 3(a). The bottom central point was
used to initialize the person’s location on the ground plane. The
height of the transformed bounding box was used to compute ini-
tial person height. Based on this initial state, we project the used
3D human body model to get three bounding boxes projected onto
the warped image as shown in Figure 3(b). These three projected
bounding boxes are subsequently used to compute the object ref-
erence multi dimension histogram.Importantly, note that for the
multi-camera case, only this single reference histogram computed
from the initialization view is used, even if the person is seen from
another camera view in the initial state. Finally, all model param-
eters were set to standard values and kept identical for all experi-
ments.

Results: Figure 4a) presents the tracking results in the E1 scenario.
Overall, the results are quite good, demonstrating the robustness
of the algorithm, even with a single camera, and despite the pres-
ence of full occlusions in the majority of the tracks. Surprisingly,
the use of multiple cameras is performing similarly to the single
camera case, although the errors do not appear for the same tracks.
While the use of multiple cameras allows to correctly track several
people that were missed when using a single camera, it also intro-
duces some rare and spurious errors when the number of views in
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Figure 4: E1 scenario. Comparison of the tracking results when us-
ing one or multiple cameras. Top) the tracking success rates. Bot-
tom) for each track, the average F measure Feval , computed only on
the frames until the failure occurs.

which the tracked person appears is changing (esp. increasing), i.e.
the person is about to appear in a new view. In this situation, the
algorithm usually gives preference to particles with less measure-
ments, as they may provide a better (geometric) average likelihood
(cf Eq. 18) since the current 3D state estimate might not allow for
good person localization in the new view1, and the tracker is mo-
mentarily ’locked’ to match a single view mesurements, and the
track is lost. To address this issue, one approach could be to enforce
having all particles at each time step to rely on the same number of
view measurements, or to exploit a proposal that would include in-
formation from the new view. Note however that multiple cameras
allows to cover more space and track people for longer periods, and
that from other qualitative experiments we conducted, it was shown
that multi-camera improves the results and the robustness of the
tracking (e.g. we were able to correctly track a person for more than
10 minutes in the hall in presence of many simultaneous occlusions,
which was not possible with a single camera). Also, while 2D local-
ization was not improved in the 2D view that was ground truthed to
evaluate the precision of the tracking (Fig 4b)), we could observed
a better 3D localization on the ground plane (which is more difficult
to evaluate though).
To study the compromise between computational ressources and
tracking robustness, we evaluated the results by varying the number
of particles in the sampling approximation. As expected, there is a
drop in performance when diminishing this number, but it is not dra-
matic. Also, when using more than 200 hundred particles, we can
see that there is no specific improvements (differences can be due to
random fluctuations since the tracking process is stochastic). With
100 particles, the algorithm runs at approximately 4 to 2 frame per
second for single camera tracking, and around 1 to 2 frame/sec in
the multi-camera case. Most of the time is indeed spent in the back-
ground subtraction algorithm. Finally, Figure 6 shows than when
tracking the people in the whole scene, the performance remains
approximately the same. One can notice a performance drop at the
end of the tracks. This is mainly due to the fact that most of the
tracks end up beyond the gates (see camera view in Fig. 2): the per-
son is therefore very small, partially occluded (bottom of the legs
not visible), and visible only in one view.

Finally, Figure 7 illustrates on one typical example the tracking
result with a single camera.

1Note also that the color model was not learned on the new view aswell.



a) b) c)

d) e) f)

Figure 7: Single camera tracking result. Initialization at time 0s in Fig. 3. results, at time 4.6s, 28s, 29s, 31s, 32s, 34s. a) the person is
buying tickets at the vending machine, b) leaving the vending machine, partial occlusion d) and e) before and after full occlusion.
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Figure 5: E1 scenario. Tracking performance in function of the
number of particles used. a) single camera tracking b) multiple
camera tracking.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed and evaluated a new method to address
the ’tag & track’ user scenario. The method relies on a particle
filter approach with a 3D state representation and 3D people mod-
eling. Numerical experimentation on real challenging surveillance
data showed that our approach is quite robust, even with a single
camera.

Several issues remain to be investigated. One is the develop-
ment of a simple interface to initialize the tracking from a live video
(e.g. by a single click on a person head). Accordingly, we need
to investigate the influence of the approximate initialisation on the
tracking performance. Also, to improve the tracking, we would like
to study the use of several color models (since they may change de-
pending on the camera view) as well as their adaptation (e.g. during
the instant when the person is isolated in a view).
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