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Abstract. This paper presents an approach for the recognition of the roles played by speakers

participating in radio programs. The approach is inspired by social cognition, i.e. by the way

humans make sense of people they do not know, and it includes unsupervised speaker clustering

performed with Hidden Markov Models, Social Network Analysis and Mixtures of Bernoulli and

Multinomial Distributions. The experiments are performed over two corpora of radio programs

for a total of around 45 hours of material. The results show that more than 80 percent of the

data time can be labeled correctly in terms of role.
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1 Introduction

In this work, we address the problem of recognizing the role of speakers in radio programs, i.e.
of mapping the speakers into categories such as anchorman or guest which correspond to specific
functions in broadcast data. The approach we propose is inspired by social cognition, the mental
process that takes place unconsciously each time we make sense of people, i.e. each time we predict
the behavior of people we know little or nothing about in order to select the most appropriate form
of interaction, or non-interaction, with them [14].

The mechanisms underlying social cognition are still debated, but two points seem to be widely
accepted: the first is that social cognition is a form of categorical thinking about others [16], i.e. it
consists in mapping people into categories (or stereotypes) which reasonably complete the information
we miss about them. The second is that social cognition is based on relationship patterns [9], i.e. it
infers information from the relationships that individuals have with other, if possible better known,
people.

The approach we propose is composed of two stages which correspond to the above two elements
(see Figure 1): the first is the extraction of feature vectors accounting for people relationships, the
second is the recognition algorithm mapping the feature vectors into categories corresponding to the
roles. The feature extraction stage (left dotted box in Figure 1) starts by splitting the news bulletins
into single speaker segments using an unsupervised clustering approach [23]. The output of the
clustering is used to extract a Social Affiliation Network [27] and to model the distribution of the time
associated to each role. Since the Social Affiliation Network captures the pattern of the interactions
between the different speakers, this step corresponds to the use of relationships in social cognition.

The second stage (right dotted box in Figure 1) maps the feature vectors into six classes corre-
sponding to six different roles. This task is performed using mixtures of Bernoulli and Multinomial
distributions [6] trained using the Expectation-Maximization technique [15]. This step can be inter-
preted as a simulation of the categorical thinking in social cognition.

To our knowledge, this is one of the earliest approaches using Social Network Analysis to extract
information about people in audio or video data. Other works using SNA for similar purposes include
only an approach to identify the main characters in movies [29], and another role recognition approach
based on Social Networks and Machine Learning techniques different from those presented in this
work [25]. The experiments are performed over two corpora of radio programs for a total of around
45 hours of material. The results show that more than 80 percent of the data time can be labeled
correctly in terms of role.

Role recognition can be useful in several applications: browsers can be enhanced by enabling users
to select interventions corresponding to a given role, retrieval systems can use the role as a clue
for filtering the results, summarization systems can use the role as a criterion for the selection of
information rich data segments, etc.

The rest of the paper is organized as follows: Section 2 presents a survey on related work, Section 3
presents the interaction pattern extraction, Section 4 describes the role assignment technique, Section 5
presents experiments and results, and Section 6 draws some conclusions.

2 Related Work

To our knowledge, only few works have addressed the problem of role recognition so far and they can
be split into two main groups: the first addresses data like TV and radio programs where the roles are
defined a-priori and correspond to specific functions (e.g. anchorman or interview participant), the
second addresses data like meeting recordings where the interactions are more spontaneous and the
roles are defined according to sociological criteria (e.g. attacker or neutral). The first group includes
the work in [4], where the roles are recognized through lexical specificities, and the approaches proposed
in [25][24], where the roles are recognized using Social Networks and statistical modeling of network
related features like the centrality [27]. The second group includes the works in [30][21], where features
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Figure 1: Role recognition approach. The picture show the two main stages of the approach: the
feature extraction and the actual role recognition.

extracted from audio and video are fed to Support Vector Machines for role classification, and the
approach proposed in [3], where the roles are detected through audio features and tree-based classifiers.

Many other works have aimed at recognizing human behavior, i.e. at understanding what people
do in data captured through cameras, microphones, wearable devices and smart rooms [19]. Such
works can be divided into two broad groups: the first includes the approaches trying to recognize the
activity of a single individual, the second involves the techniques capturing the interaction between
several persons.

There are two main ways of addressing activity recognition for single persons: the first is trying
to recognize generic behaviors corresponding to sequences of movements, the second is to take into
account the context of the actions and to consider not only person movements, but also data from the
environment where the person operates. Examples of the first approach are mostly based on video
analysis: the work in [5] represents the movements of legs, arms and other body parts using vectors
and then models actions as vector sequences extracted from few video frames, the work in [7] uses
Hidden Markov Models to segment videos into single action shots, the work in [8] uses 3-dimensional
models of the human body to follow the sequence of steps composing a given action or behavior,
the approach in [31] tries to avoid the definition of a predefined set of actions by clustering videos
similar from the point of view of the displayed movements, and the work in [28] investigates the use
of multiple cameras. Examples of the second approach for the recognition of single person activities
take advantage from a wide spectrum of sensors: the work in [20] tries to predict the actions of a car
driver by taking as input steering and acceleration data, the approach in [26] recognizes the actions
of the workers on an assembly line by using worn accelerometers and microphones.

While single individual actions are recognized mostly through video analysis, collective actions are
recognized in general through multiple sensors. The main reason is that the simultaneous location and
tracking of different people is difficult in videos, while it is more simple using other kinds of sensors.
Examples of video based collective action recognition use stochastic grammars modeling sequences of
elementary movements and interactions [13][22]. Works involving multiple sensors include the following
examples: the work in [11] describes the use of infrared cameras, the approach in [18] uses videos as
well as activities such as calling or typing on the computer keyboard to recognize the interactions
between work colleagues, and the work in [17] models jointly audio and video to recognize meeting
collective events such as discussions, agreement or presentations.

3 Interaction Pattern Extraction

This section presents the technique used in this work to extract and represent the interaction pattern
of each speaker. The technique includes two steps: the first is the segmentation of the recordings into
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single speaker segments, the second is the extraction of the corresponding Affiliation Network. The
next two sections show the two steps in detail.

3.1 Speaker Clustering

This section provides a general description of the speaker clustering approach used in this work (for
a full description see [2][1]).

The algorithm is based on an ergodic continuous density Hidden Markov Model (HMM) where
each state corresponds to a cluster of observation vectors (see below) and, in principle, to a single
speaker voice. The emission probability is modeled with Gaussian Mixture Models (GMM) [6], the
observation vectors are 12 dimensional Mel Frequency Cepstral Coefficients (MFCC) vectors extracted
every 10 ms from a 30 ms long window [12]. The reason is that these features are effective in speaker
recognition tasks and seem to capture the characteristics of the voice [1].

The first step of the process is the initialization of the above HMM. The audio data is segmented
into M uniform non-overlapping segments, where M is the initial number of states in the HMM and it
is a number significantly higher than the expected number of speakers. The HMM is trained using the
uniform segmentation as groundtruth and the result is a parameter set Θ(0). The resulting HMM can
be aligned with the data using the Viterbi algorithm to find the best sequence of states (i.e. speakers):

q(0) = arg max
q

p(q|O,Θ(0)) (1)

where q is a sequence of states and O = {~o1, . . . , ~oK} is the sequence of the observation vectors. The
alignment results into a segmentation different from the uniform one used for the initialization. The
HMM can thus be retrained and a new parameter set Θ(1) is obtained:

Θ(1) = arg max
Θ

p(q(0)|O,Θ) (2)

where Θ = {θ1, . . . , θM}, i.e. the parameter set of the HMM, can be thought of as a set of GMM
parameters.

Since the number M is higher than the expected number of speakers, the data is oversegmented
and there are clusters that should be merged since they contain data belonging to the same speaker.
For this reason, two states are merged when the following condition is met:

log p(Om+n|θm+n) ≥ log p(Om|θm) + log p(On|θn) (3)

where Om, On and Om+n are the observation vectors attributed to cluster m, n and their union
respectively, θm and θn are the parameters of GMMs in states m and n and θm+n are the parameters
of a GMM trained with Expectation-Maximization on Om+n.

After the merging, the HMM has less states and it can be realigned with the data in order to
obtain a new segmentation which can be used to train again the HMM. The new states satisfying the
above condition will be thus merged again and the whole procedure will be iterated. The merging
between states is performed by keeping constant the number of parameters:

|θm+n| = |θm| + |θn|, (4)

so the likelihood will not decrease just because the number of parameters gets lower, but rather it
increases until the states that are merged actually correspond to the same or similar voices and it de-
creases when the states that are merged correspond to voices too different. This provides the stopping
criterion for the iteration, in fact the alignment and training steps are repeated until the likelihood
reaches its maximum. The segmentation corresponding to the likelihood maximum is retained as the
result of the speaker clustering process.
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Figure 2: Interaction pattern extraction. The picture shows the Affiliation Network extracted from a
speaker segmentation. The events of the network correspond to the windows wj and the actors are
linked to the events when they talk during the corresponding windows. The actors are represented
using vectors ~xi where the components account for the links between actors and events.

3.2 Affiliation Network Extraction

The result of the speaker clustering process is that each recording is split into a sequence S =
{(∆ti, si)}, where i = 1, . . . , |S|, ∆ti is the duration of the ith segment, and si is the speaker la-
bel of the ith segment. The label si belongs to the set A = {a1, . . . , aG} of unique speaker labels
output by the speaker clustering process (see lower part of Figure 2).

This information can be used to create an Affiliation Network, i.e. a Social Network where there
are two classes of nodes: the actors and the events [27]. Actors can be linked to events, but no
links are allowed between nodes of the same kind (see upper part of Figure 2). In our experiments,
the actors correspond to the speakers in the broadcast news and the events correspond to uniform
non-overlapping windows spanning the whole length of the recordings. The reason is that the network
is expected to capture the relationships between the speakers and one of the most reliable evidences
of interaction is the proximity in time [10]. In fact, two persons talking during the same window are
more likely to interact with each other than two people talking in different windows.

One of the main advantages of this representation is that each actor ai can be represented with
a vector ~xi where the component j accounts for the participation of ai in the jth event. In our
experiments, we used two kinds of representation: in the first one, the jth component is 1 if the
speaker talks during the jth window and 0 otherwise (the corresponding vectors are shown at the
bottom of Figure 2). In the second the jth component is the number of times that speaker ai talks
during the jth window. In the first case the vectors are binary, in the second case they have integer
components higher or equal to 0. In both cases, people that interact more with each other tend to
talk during the same windows and are represented by similar vectors.
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4 Role Recognition

This section describes the statistical foundations of the role assignment process used in our experi-
ments.

Section 3 has shown that the relationship pattern of each speaker ai is represented by a vector
~xi = (xi1, . . . , xiD), where D is the number of windows, that can have either binary or semidefinite
positive integer components. Speaker ai talks during a fraction τi of the total time of a bulletin and∑G

k=1 τk = 1, where G is the total number of speakers in the bulletin. In this way, each speaker is
represented by a vector ~yi = (τi, ~xi).

Consider the vector ~r = (r1, . . . , rG), where ri is the role of speaker ai, and the set Y = {~y1, . . . , ~yG},
where ~yi is the vector representing speaker ai. The problem of assigning the role to all speakers can
be thought of as the maximization of the a-posteriori probability p(~r|Y ). By applying the Bayes
Theorem and by keeping into account that p(Y ) is constant during the recognition the problem can

be thought of as finding ~̂r such that:

~̂r = arg max
~r∈RG

p(Y |~r)p(~r), (5)

where R is the set of the predefined roles. In order to simplify the problem, we make the assumption
that the roles of the different speakers are statistically independent and the above expression becomes:

~̂r = arg max
~r∈RG

G∏

k=1

p(~yk|rk)p(rk). (6)

The maximization of the product can be thus achieved by maximizing separately each factor p(~yk|rk)p(rk).
In order to further simplify the problem, we assume that ~xi and τi are statistically independent

given the role, thus:
r̂i = arg max

r∈R
p(~xi|r)p(τi|r)p(r). (7)

The problem left open is the estimation of the probabilities p(~x|r), p(τ |r) and p(r). This is the
subject of the next three sections.

4.1 Modeling Binary Interaction Patterns

This section shows how we model the interaction patterns extracted from the Affiliation Networks
when the components are binary. Given a labeled training set, there are Nr speakers playing the
role r. Each one of them is represented by a binary vector ~x. We estimate p(~x|r) using mixtures of
Bernoulli distributions (the dependence on the role r is omitted for simplicity) [6]:

p(~x|~µ, ~π) =

K∑

k=1

πk

D∏

j=1

µ
xj

kj(1 − µkj)
1−xj (8)

where ~µ = (~µ1, . . . , ~µK) is the concatenation of K vectors ~µk, ~π = (π1, . . . , πK) with the constraint∑
k πk = 1 is the vector of the mixing weights, D is the number of windows used to split the recordings,

µkj is the component j of ~µk, and xj is the component j of ~x.
When K = 1, the Maximum-Likelihood (ML) estimate of the parameters has an analytical expres-

sion:

µi =
1

Nr

Nr∑

n=1

x
(n)
i . (9)

The parameter µi is thus the average of the xi values in the training set.
When K > 1, the maximization of the likelihood does not lead to closed form solutions and it is

necessary to apply the Expectation-Maximization (EM) technique [6][15], an iterative procedure that
leads to parameter estimates corresponding to a local maximum of the likelihood.
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4.2 Modeling Multinomial Interaction Patterns

This sections shows how to model the vectors extracted from the Affiliation Networks when the
components are integer higher or equal to 0. Given a vector ~x = (x1, . . . , xD), where D is the number
of windows, each component xi can be represented with a vector ~zi defined as follows:

~zi = (zi1, . . . , ziN ), (10)

where zij ∈ {0, 1} and
∑N

j=1 zij = 1. In other words, xi is represented with a N -dimensional vector
where all the components are 0 except one, i.e. the component zin = 1, where n is the number of times
that the actor represented by ~x talks during event i. As a result, ~x is represented with a concatenation
of vectors ~z = (~z1, . . . , ~zD). The vector ~z can thus be modeled with a multinomial distribution:

p(~z|~µ) =

D∏

i=1

N∏

j=1

µ
zij

ij , (11)

or with a mixture of multinomial distributions:

p(~z|~µ, ~π) =
K∑

k=1

πk

D∏

i=1

N∏

j=1

µ
zij

kij . (12)

The parameters ~µ and ~π can be estimated by maximizing the likelihood over a training set X . In the
case of the single Multinomial, this leads to a closed form expression for the parameters:

µij =
1

Nr

Nr∑

n=1

z
(n)
ij , (13)

where Nr is the number of vectors corresponding to role r. In the case of the mixture, the maximization
of the likelihood is performed using the Expectation-Maximization technique [6][15].

4.3 Modeling Durations

This section shows how we estimate the probabilities p(τ |r). Given a labeled training set, there is a
number Nr of speakers playing role r. Each one of them accounts for a fraction τ (n) of the bulletin
he or she is involved in, where n = 1, . . . , Nr. We estimate p(τ |r) using a Gaussian Distribution
N (τ |µr, σr), where µr and σr are mean and variance respectively. The Maximum Likelihood estimates
of the parameters are sample mean:

µr =
1

Nr

Nr∑

n=1

τ (n) (14)

and sample variance:

σr =
1

Nr

Nr∑

n=1

(τ (n) − µr)
2. (15)

A different Gaussian distribution is obtained for each role.

4.4 Estimating Role Probabilities

This section shows how we estimate the probability p(r) of a given role being observed. Given a labeled
training set, the total duration of the recordings belonging to it is T , and the sum of the intervention
lenghts of the speakers playing the role r is Tr. The probability p(r) is estimated as follows:

p(r) =
Tr

T
, (16)

i.e. as the fraction of training set that the role r accounts for.
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Corpus AM SA GT IP AB MT
C1 41.2% 5.5% 34.8% 4.0% 7.1% 6.3%
C2 17.3% 10.3% 64.9% 0.0% 4.0% 1.7%

Table 1: Role fractions. The table reports the percentage of data time each role accounts for.

5 Experiments and Results

This section presents experiments and results obtained in this work. The next three sections describe
data and roles, the performance measures and the role recognition results.

5.1 Data and Roles

The experiments of this work have been performed over two different corpora of broadcast news
provided by Radio Suisse Romande, the French speaking Swiss National broadcasting service. The
first corpus (referred to as C1 in the following) contains 96 news bulletins with an average length of 11
minutes and 50 seconds. The corpus contains all news bulletins broadcasted during February 2005 and
can thus be considered a representative sample of this kind of programs. The second corpus (referred
to as C2 in the following) contains 27 one hour long talk-shows called Forum and broadcasted during
February 2005 (one recording has been lost for technical reasons). Also in this case, the corpus can
be considered a representative sample of this specific kind of program.

The roles are the same for both C1 and C2: the Anchorman (AM), i.e. the person managing
the program, the Second Anchorman (SA), i.e. the person supporting the AM, the Guest (GT),
i.e. the person invited to report about a single and specific issue, the Interview Participant (IP),
i.e. interviewees and interviewers, the Abstract (AB), i.e. the person reading a short abstract at
the beginning of the program, and the Meteo (MT), i.e. the person reading the wheather forecasts.
Table 1 shows the distribution of the data time across different roles. The distributions are significantly
different in C1 and C2 and this enables us to show how robust is the role reognition approach with
respect to such a characteristic.

5.2 Speaker Clustering Results

The relationship patterns used at the role assignment step are extracted from the speaker segmentation
obtained with the clustering process. Errors in the clustering (inclusion of different speakers into a
single cluster, or split of a single speaker into several clusters) lead to spurious interactions that can
mislead the role assignment process.

The effectiveness of the clustering is measured with the Purity π, a metric showing on one hand
to what extent all vectors corresponding to a given speaker are grouped into the same cluster, and
on the other hand to what extent all vectors in a given cluster correspond to a single speaker. The
Purity ranges between 0 and 1 (the higher the better) and it is the geometric mean of two terms: the
average cluster purity πc and the average speaker purity πs. The definition of πc is as follows:

πc =

Nc∑

k=1

Ns∑

l=1

nk

N

n2
lk

n2
k

, (17)

where Ns is the number of speakers, Nc is the number of clusters, nlk is the number of vectors
belonging to speaker l that have been attributed to cluster k, nk is the number of feature vectors in
cluster k and N is the total number of feature vectors. The definition of πs is as follows:

πs =

Ns∑

l=1

Nc∑

k=1

nl

N

n2
lk

n2
l

(18)
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(see above for the meaning of the symbols).
The application of the speaker clustering process requires the setting of the initial number of

states M in the fully connected Hidden Markov Model (see Section 3). The value of M must be
significantly higher than the number of expected speakers for the clustering process work correctly. In
our experiments, we set a-priori M = 30 for C1 and M = 90 for C2 and not other values have been
tested. The average purity is 0.81 for C1 and 0.79 for C2.

5.3 Role Recognition Results

The application of the role assignment algorithm requires to set two hyperparameters: the first is the
number D of windows, the second is the number K of distributions in the mixtures. The value of D

has been set to 15 for C1 and to 30 for C2. In both cases, the value of D has been set a-priori and
no other values have been tested. For what concerns K, values between 1 and 5 have been tested
showing that there are no major changes in the role recognition performance. For this reason, no
crossvalidation has been performed in order to find the best value of K and the results show that the
use of mixtures rather than single distributions does not really help in this case. In the following, the
performance is measured with the Accuracy α, i.e. the percentage of data time correctly labeled in
terms of role.

The experiments have been performed using a leave-one-out approach [6]: the models are trained
using all the recordings in a given corpus except one which is used as a test set. Each recording in a
corpus is used once as test set so it is possible to test the approach over all data at disposition.

Tables 2 and 3 report the role recognition results for corpora C1 and C2 respectively as a function
of K. The distribution used to model the interaction patterns is indicated with B (Bernoulli) and
M (multinomial). The best overall α is around 80 percent for both C1 and C2 independently of the
corpus and this means that the role recognition approach is robust with respect to changes in the
time distribution across the roles. This is important because the same role is played in different ways
depending on the specific program and the approach seems to ba capable of adapting automatically
to the different situations.

The multinomial is significanlty less effective over the C1 corpus. The loss is particularly evident
in the case of the MT which accounts for most of the performance difference. The reason is probably
that the MT is often accompanied by background music that induces errors in the clustering process.
The MT interventions are thus split into several segments separated by spurious speakers: the number
of times the MT talks during a window is thus multiplied and this creates a difference between test
and training conditions (where the MT talks only once per window). The Bernoulli distribution is
not sensitive to this effect because it does not take into account the number of times speakers talk,
but only their presence or absence in a window.

However, for the rest of the roles and the data, the use of the multinomial rather than the Bernoulli
distribution seems not to affect the performance. This means that the information about the number
of times a speaker talks (conveyed by the multinomial) does not add information with respect to the
simple absence or presence of the speakers in a given window (conveyed by the Bernoulli distribution).
This is not surprising because the important aspect for the role recognition, at least in this case, is
the fact that two people interact and not how they interact. In other words, the results do not change
if two people interact through just one question and one answer or through a discussion including a
large number of interventions.

The use of mixtures does not improve the Accuracy. This might mean that the interaction patterns
associated to each role are stable enough to be modeled with a single distribution, but also that the
data at disposition are not sufficient to train appropriately the mixtures. In fact, the number of
parameters increases linearly with K (the number of distributions in the mixtures), but the amount
of data available for the training remains constant. Experiments over larger corpora can probably
provide more reliable answers about this point.

The 20 percent of mislabeled data time is due to two main sources of error: the first is the delay of
the clustering process in correspondence of speaker changes. On average, the speaker changes in the
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K all AM SA GT IP AB MT
1 (B) 81.3 94.9 0.0 95.8 0.0 58.9 76.9
3 (B) 81.2 97.8 4.0 89.9 0.0 58.9 79.1
5 (B) 80.4 97.8 4.5 90.1 0.0 58.9 79.0

1 (M) 73.9 94.9 1.6 85.0 3.3 53.6 13.0
3 (M) 73.7 94.9 3.1 86.8 3.0 53.6 13.0
5 (M) 73.7 94.9 3.1 86.8 3.0 53.6 13.0

Table 2: Role recognition performance for C1. The table reports the role recognition results for the
corpus C1. The results are reported as a function of K and show both the overall accuracy and the
accuracy for each role. The ”B” stands for Bernoulli, and the ”M” stands for Multinomial.

K all AM SA GT IP AB MT
1 (B) 83.9 62.2 88.3 96.4 0.0 22.0 0.0
3 (B) 83.6 62.2 88.3 96.0 0.0 22.0 0.0
5 (B) 83.6 62.2 88.3 95.9 0.0 22.0 0.0

1 (M) 83.6 70.2 88.3 93.3 0.0 18.2 35.1
3 (M) 81.9 62.5 84.8 93.5 0.0 18.3 35.1
5 (M) 81.9 92.5 84.8 93.5 0.0 18.3 35.1

Table 3: Role recognition performance for C2. The table reports the role recognition results for the
corpus C2. The results are reported as a function of K and show both the overall accuracy and the
accuracy for each role. The ”B” stands for Bernoulli, and the ”M” stands for Multinomial.

output of the clustering process are delayed by around 2 seconds with respect to the actual speaker
changes. The average number of changes in C1 is 30 and this results into roughly 60 seconds of
mislabeling (around 10 percent of the average C1 recording length). Similar figures can be found for
C2 where roughly 10 percent of the time again is mislabeled beacuse of the delays between actual
and detected speaker changes. The performance of the system when using the groundtruth speaker
segmentations rather than the output of the speaker clustering is 92.8 percent for C1 and 93.9 for C2.
This seems to confirm that around 10 percent of the error is actually due to the above phenomenon
(the results have been obtained using a single Bernoulli distribution).

The second major source of error is the classification of IP, MT and AB into GT. Such roles have
similar interaction patterns, but the a-priori probability of the GT is much higher. In this way the
system tends to favor the GT role. Fortunately, the IP, MT and AB do not account for a large fraction
of the data time and the impact on the overall performance is small.

6 Conclusions

This paper has presented experiments on the recognition of roles in radio broadcast news. The
experiments have been performed over two corpora for a total of roughly 45 hours of material. The
results show that around 80 percent of the data time can be labeled correctly in terms of role with
a fully automatic process. The errors are due in part to speaker clustering problems, in part to
misclassifications performed by the role recognition step.

The main limit of the experiments is that they are performed over broadcast data where the
interactions follow some more or less rigorous constraints. This means that the roles are actually
defined a-priori and result into relatively stable patterns across different recordings. The situation is
likely to be different in data where the interactions are more spontaneous, e.g. meeting recordings,
and this can represents a problem for the approach presented here. However, brodcast data are an
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important case and the results obtained in this work can have a positive impact on any application
dealing with digital libraries of TV or radio programs.

The main novelty of the proposed approach is the use of Social Network Analysis [27] for extracting
features that account for the social relationships of the speakers. SNA seems to be a suitable tool for
role recognition because roles are not characteristics of a single individual, but rather of individuals
interacting with the others. To our knowledge, only few works have used SNA before to extract
information about people in audio and video data [29][25].

Two main directions have been identified as a future work: the first is the use of clustering
techniques as a mean to identify roles in an unsupervised way, the second is the use of role models as
a-priori information to improve the performance of technologies like speaker diarization and speaker
segmentation.
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