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Abstract. This work shows how features accounting for nonverbal speaking characteristics can

be used to map people into predefined categories. In particular, the results of this paper show

that the speakers participating in radio broadcast news can be classified into journalists and non-

journalists with an accuracy higher than 80 percent. The results of the approach proposed for

this task is compared with the effectiveness of 16 human assessors performing the same task. The

assessors do not understand the language of the data and are thus forced to use mostly nonverbal

features. The results of the comparison suggest that the assessors and the automatic system have

a similar performance.
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Figure 1: Approach. The figure shows the flow of the data through the system. The first stage applies
Signal Processing techniques to the raw input data to track the pitch. This last is used at the feature
extraction stage in order to convert the audio into vectors in an appropriate feature space. Machine
Learning techniques are then applied to the vectors to perform the recognition of the social status.

1 Introduction

Sociologists use the term status to define the position of an individual in a given social environment [27].
Social statuses are perceived as objective by the members of the environment and are, in general,
related to observable and measurable characteristics [28]. One of the simplest examples of status is
the position of an individual in the organizational hierarchy of an organization. In this case, the status
is clearly defined and explicitly stated. A more complex example is the status of a parent. In this
case, the status characteristics are not defined explicitly, but each culture has a socially accepted idea
of parenthood to which people tend to conform [28].

The nonverbal communication literature shows that people are effective in recognizing the social
status by just listening to the way individuals talk, and this apply in particular to the cases where
the status is identified with professional activities [12],[8]. The work presented here shows that, in
the specific case of radio broadcast news, the social status can be recognized automatically using
nonverbal characteristics of the way people talk. In particular, the experiments presented in this work
show that the speakers can be split into journalists and non-journalists using purely acoustic features.
In other words, speakers are classified as journalists and non-journalists with an accuracy of around
80 percent without taking into account what they say, but simply the way they talk. The features
used in the experiments are inspired by the nonverbal communication literature and, in particular, by
vocalics, i.e. the study of nonverbal aspects in the human voice [14][25].

The approach is illustrated in Figure 1: the first stage applies signal processing techniques to split
the speech signal into voiced and non-voiced segments, the second stage extracts features accounting
for nonverbal speaking characteristics, and the third one applies machine learning techniques to classify
speakers into journalists and non-journalists. The results are obtained over a corpus of 686 audio clips
where each one containing a single speaker intervention. The number of speaking subjects is 330 and
284 of them are represented only in the training set or only in the test set. This ensures that the
system does not recognize the identity of the speakers, but their actual way of speaking.

The results of the automatic system are compared to those of human assessors performing a
similar task: 16 persons were asked to classify the speaker in 30 randomly selected audio clips from
the abovementioned corpus into the journalist or non-journalist category. The audio clips are in
French and all assessors had no or limited understanding of such language. This ensures that they
classify the clips using mostly nonverbal characteristics and not what is said. The mother tongues of
the assessors include English, Serbian, Hindi, Chinese, Farsi and Arabic. This significantly limits the
possibility that the assessors use their native language to understand even partially what the speakers
say. Overall, the performance of the human assessors is around 80 percent and this seems to suggest
that the system is as effective as humans in recognizing the social status through purely nonverbal
features. However, since the assessment is time consuming, the test had to be performed on a subset
of the whole corpus, thus the comparison is only indicative.

The recognition of social status can be useful in several applications: browsing systems can be
enhanced by showing the social status of speakers in audio or video recordings, indexing and retrieval
systems can include the status information in the data features in order to enrich the spectrum of
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queries that can be addressed, and summarization systems can use the status to select only inter-
ventions that are likely to provide useful information. In more general terms, the attempt to extract
information based on noverbal communication is a step towards social aware systems, which are sen-
sitive to the same kind of social signals which humans use to communicate with each other [5],[21].
To our knowledge, no other works presented in the literature have used to classify individuals into
predefined categories and this is the main novelty of this work.

The rest of this paper is organized as follows: Section 2 presents a survey of previous work, Section 3
describes the extraction of nonverbal features, Section 4 introduces the recognition approach, Section 5
shows experiments and results, and Section 6 draws some conclusions.

2 Previous Works

This section presents a survey of works where nonverbal characteristics of speech are used to extract
information from the content of multimedia data. Nonverbal behaviors include body position, facial
expression, gestures, etc., but this survey focuses on speech because this is the source of nonverbal
features used in this work. The papers presented in this section can be grouped into three major areas:
the first is the recognition of the affective or emotional state of people, the second is the extraction of
information about social interactions, and the third concerns the detection of the so-called speaking
mode, i.e. a set of prosodic features used to improve the performance of speech recognition systems.

Emotion recognition approaches are typically grouped under the collective name as that of af-
fective computing and involve data as diverse as videos, physiological signals and eye gaze (see [22]
for an extensive monograph). This quick survey focuses on techniques using audio. Some works
address the problem of emotion recognition independently of an application [4],[17],[34]. The work
in [4] tries to detect emotions through the pitch, i.e. the oscillation frequency of the vocal folds (see
Section 3), the experiments in [17] concern spoken dialogues where the detection of the affective state
provides clues about the development of the discussion, and the work in [34] shows the advantages
of combining features extracted from both audio and video channels of the same recording. In the
multimedia community, the emotions are typically used as a low level feature to infer higher level
information [11],[10],[3]. Emotions have been used to identify the most important moments of sport
videos [10] or movies [3], as well as indexes in retrieval systems [11].

The extraction of information about social interactions from audio is not as established as the
affective computing and most of the approaches proposed so far are still at a relatively early stage.
Several pioneering works have been dedicated to the extraction of social signals, i.e. nonverbal be-
haviors that human use in social interactions [1]. Audio features aiming at capturing social signals
have been shown to be effective in predicting with high accuracy (more than 75 percent) the outcome
of job interviews and salary negotiations [6], and the centrality of individuals in professional social
networks [7],[20]. Other works address the problem of finding the most dominant person in meetings
using not only audio, but also video recordings and the output of other sensors [13],[26]. Meeting
recordings are analyzed also in [33] to map the behavior of people into a predefined set of sociological
models, and in [15] to assess the satisfaction of people involved in group discussions. Recent works use
the output of speaker clustering techniques to extract social networks allowing one to recognize the
roles of people talking in broadcast news [29] and to segment news bulletins into stories [30]. Similar
techniques, but based on video, have been used to detect the main characters in movies [31].

The last group of papers includes works where the analyisis of nonverbal speaking characteristics
aims at improving the performance of speech recognition systems. Some works recognize the disfluen-
cies (hesitations, pauses, repetitions, etc.) to avoid recognition errors [18],[16],[32]. Other approaches,
specifically targeting the recognition in broadcast news, try to detect the speaking mode, i.e. try to dis-
tinguish between different ways of speaking (fluent and continuous, slow and hesitant, etc.) to adapt
the recognition system [19],[9]. One approach considers the speaking mode as a hidden variable [19],
while the other models the influence of the speaking rate on the word pronunciations [9].
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Figure 2: Autocorrelation function. The upper plot shows the autocorrelation function extracted from
a voiced segment. The period is roughly 2.5 ms which corresponds to a frequency of 400 Hz. The
lower plot is extracted from an unvoiced segment and no peridicity is observed.

3 Nonverbal Features Extraction

This section presents the nonverbal features extracted from the voice of the speakers. The extraction
process includes two steps: the first is the estimation of the pitch and the second is the estimation of
the relative entropy of voiced and unvoiced segment length distributions. The next sections show the
two steps in detail.

3.1 Pitch Estimation

When humans produce voiced sounds, they push air from the lungs to the vocal tract. At the beginning
of the vocal tract, the air passes through the glottis where the vocal folds oscillate like the cords of
a guitar. The oscillation frequency is called pitch and it is the characteristic that alone contributes
more than anything else to the quality of a voice [23]. For this reason, the automatic estimation of the
pitch has been investigated extensively since the early times of speech processing and the literature
offers a wide spectrum of methods for this task [24]. In this work, the pitch is used to split speech
data into voiced and unvoiced segments, i.e. into segments where the vocal folds oscillate and do
not oscillate respectively. Unvoiced segments do not correspond only to silences, where there is no
emission of sound at all, but also to a certain number of elementary sounds, the so-called phonemes,
that are used in a given language to compose all possible words. An example of unvoiced phoneme is
the sound /s/ at the beginning of the words start and sale.

Since the goal of the pitch estimation is the discrimination between voiced and unvoiced segments,
it is not necessary to have an accurate pitch estimate, but simply one that is accurate enough to
distinguish between the two above conditions. For this reason, the pitch estimation (or pitch tracking)
technique used in this work is relatively simple. The approach includes three steps: the first is the
estimation of the pitch using the autocorrelation function, the second is the estimation of the pitch
using the Fourier Transform, and the third is the averaging of the two estimates. The use of two pitch
estimation techniques aims at making the method more robust.
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The first step of the process is the extraction of the autocorrelation function:

Rn[k] =

∞
∑

m=−∞

s[m]w[n − m]s[m + k]w[n − m − k] (1)

where s[n] is the speech signal, w[l] is the analysis window, n is an integer number ranging between
−∞ and ∞, and k is the lag. In general, the analysis window is different from zero only in an interval
of finite length N , thus the autocorrelation is zero whenever the lag k is higher than N . In fact, when
k > N there are no values of m where both w[n − m] and w[n − m − k] are different from zero. In
this work, w[n] is a rectangular window:

w[n − m] =

{

1 0 ≤ m < N
0 otherwise.

(2)

The main property of the autocorrelation function is that if s[n] is periodic, then Rn[k] is periodic with
the same period. This means that the autocorrelation function can be used to detect the dominant
frequency, if any, in a signal s[n]. In the case of the speech, the dominant frequency is the pitch (in
voiced segments), thus the autocorrelation can provide a measure, although noisy, of the pitch.

Figure 2 shows the autocorrelation function extracted from one voiced (upper plot) and one un-
voiced (lower plot) segment. While the upper plot is clearly periodic, the second does not show any
significant structure. The reason is that voice segments have a dominant frequency, while unvoiced
segments do not. The amplitude of the autocorrelation decreases with the lag because the intersection
between w[n − m] and w[n − m− k] becomes shorter, thus less and less terms are different from zero
in the sum of Equation 1.

The pitch can be estimated by measuring the average time distance between two consecutive peaks
of Rn[k], i.e. the period of the autocorrelation. The inverse of such value is the pitch estimate. In our
experiments, the value of N is 256, and the pitch estimation is peformed at regular time steps 128
samples appart. Since the speech signal is sampled at 8000 Hz, 256 samples correspond to roughly 30
ms. This is the minimum time required to change the configuration of the vocal tract, i.e. to change
significantly the properties of the voice. In other words, the value of N corresponds to a time interval
which is too short to observe significant changes in the voice properties.

The second step in the pitch tracking process is based on the Fourier Transform (FT) [24]. The
FT is extracted from from signal segments of length N and at regular time steps of 128 samples.
In other words, the FT is extracted at the same instants and from the same segments from which
the autocorrelation is extracted. The extraction of the FT results into the so-called spectrogram (see
Figure 3) showing the evolution of the spectral properties over time. The lower plot of Figure 3 shows
one column of the spectrogram, i.e. the power spectrum extracted at the same instant when the
autocorrelation of Figure 2 is extracted. The frequence with the highest energy is around 400 Hz,
which corresponds to a period of 0.0025 sec. which is roughly the the distance between two peaks of
the autocorrelation function in Figure 2 (upper plot).

The third step of the pitch tracking process is the averaging of the two pitch estimates. If pa[t]
and ps[t] are the pitch estimates extracted using the autocorrelation and the spectrogram respectively,
then a robust estimate p[t] of the pitch can be obtained by simply averaging the two:

p[t] =
1

2
(pa[t] + ps[t]) (3)

The value of p[t] is plotted in Figure 4 and shows how it tends to have higher values in correspondence
of the non-voiced segments (the peaks of the plot). The reason is that in such segments high frequency
noise tends to become dominant. The average value p̄ of the pitch estimate in a given recording can
be used as a threshold to discriminate between voiced and unvoiced frames. The horizontal line
in Figure 4 corresponds to the threshold and it shows how voiced and unvoiced segments can be
discriminated.
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Figure 3: Spectrogram. The upper plot shows the spectrogram for five seconds of a clip. Darker areas
correspond to higher energy frequencies, the parallel bands of the voiced segments are the so-called
formants, i.e. integer multiples of the pitch. The lower plot shows a column of the spectrogram. The
peaks correspond to the highest energy frequencies.

3.2 Nonverbal Features

After the pitch estimation, the data is split into voiced and non-voiced segments. The distribution of
the segment lengths (both voiced and unvoiced) can be estimated by simply counting the number of
times a given length is represented. The value of the pitch is estimated at regular time steps and the
length of the intervals can be only a multiple of the length of a single step. In other words, the length
of voiced and unvoiced segments is quantized and the resulting distributions are discrete. The length
distribution of the voiced interval lengths is pv(l), while the one for the unvoiced segments is pu(l).
In both cases, the distribution enables one to estimate the relative entropy:

Hi =
−

∑

l∈L
pi(l) log pi(l)

log |L|
(4)

where i is u or v, L is the set of the lengths represented in a given speech segment, and |L| is the
cardinality of L. The relative entropy is bounded between 0 and 1 and it accounts for the variation
in the interval lengths: the closer Hi is to 1, the more the distribution is uniform and the variability
is high.

Each speech segment can be represented with a vector ~y where the components are Hv and Hu.
The vectors can be decorrelated using the Principal Component Analysis (PCA) and Figure 5 shows
the resulting vectors ~x for the audio clips used in the experiments of this work (see Section 5 for more
details). Despite the overlap, journalists and non-journalists seem to form two separate classes. The
variability in the length of voiced and non-voiced segments seems thus to capture the status of the
speakers. This is in agreement with the nonverbal communication theory because skilled speakers, i.e.
speakers that are more effective in conveying their message, tend to have higher variations in nonverbal
characteristics than non skilled speakers [14],[25]. Since journalists are more used to speaking in front
of the microphones they are likely to have, on average, higher variation in voiced/unvoiced segment
lengths and this affects the distribution of the points in the space of Figure 5.



IDIAP–RR 07-33 7

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
Pitch vs Time

Time (sec.)

P
itc

h 
(H

z)

pitch
threshold

Figure 4: Pitch. The plot shows the evolution of the pitch estimate along the time. The regions above
the threshold are assumed to correspond to unvoiced segments.

The length of the intervals for both voiced and unvoiced segments ranges between 0.1 and 0.5
seconds. Since nobody can control phenomena taking place at such a small temporal scale, the length
of the intervals, and correspondently the two features described above, are the result of an unconscious
process. This is important because, in general, the least conscious nonverbal behaviors carry the most
reliable information. The reason is that such behaviors cannot be simulated, thus cannot be used to
lie [14],[25].

4 Statistical Foundations

The social status recognition task can be performed by finding the status s∗ which maximizes the
a-posteriori probability p(s|~x):

s∗ = arg max
s∈S

p(s|~x) (5)

where s is the social status, ~x is the vector representing a given speech segment (see Section 3), S is
the set of all possible social statuses and p(s|~x) is the a-posteriori probability of the social status. By
applying Bayes theorem, the above equation can be rewritten as follows:

s∗ = arg max
s∈S

p(~x|s)p(s) (6)

where p(~x|s) is the likelihood of the vector ~x given the model corresponding to status s and p(s) is
the a-priori probability of status s, i.e. the probability of observing s.

The problem is how we can estimate p(s) and p(~x|s). The a-priori probability can be estimated
by simply using the fraction of training data which corresponds to a given status. The likelihood can
be estimated using a multivariate Gaussian distribution [2]:

N (~x|~µs,Σs) =
1

(2πDΣs)
1
2

e−
1
2 (~x−~µs)T Σ−1

s (~x−~µs) (7)
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Figure 5: Scatter Plot. Each point account for a single clip. Journalists and non-journalists are
plotted using a different symbol to show that they tend to form separate classes.

where D is the dimensionality of the data. Means ~µ and covariance matrices Σ can be estimated by
maximizing the likelihood of the model over a training set X = {~x(1), . . . , ~x(M)}.

In our experiments, the vectors ~x are the projections of the feature vectors described in Section 3
onto the Principal Components extracted from the training set [2]. This means the data is decorrelated
and the covariance matrices are diagonal. In this case, the multivariate Gaussian distributions are
products of Gaussians:

N (~x|~µs,Σs) =

D
∏

i=1

1

(2πσ2
si)

1
2

e
−

(xi−µsi)
2

2σ2
si (8)

where µsi and σsi are mean and variance of the ith component in model s, and xi is the ith component
of ~x. The value of the different means and variances can be estimated by using sample means and
sample variances of the components of the vectors in the training set X :

µsi =
1

Ns

Ns
∑

n=1

x
(n)
i (9)

σsi =
1

Ns

Ns
∑

n=1

(x
(n)
i − µsi)

2 (10)

where Ns is the number of samples of status s in the training set.

5 Experiments and Results

The next sections present in detail the data used in this work and the results of the experiments.

5.1 Data and Experimental Protocol

The experiments of this work have been performed over a corpus of 686 audio clips extracted from 96
news bulletins broadcast by Radio Suisse Romande, the French speaking Swiss national broadcasting
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service, in February 2005. Each clip corresponds to an intervention of a single speaker. The total
duration of the clips is 7 hours and 10 minutes, the number of journalist clips is 313 and the number
of non-journalist clips is 373, corresponding to 45.6 percent and 54.4 percent of the data respectively.

The corpus was split into two partitions containing respectively 377 and 311 clips. The first
partition contains clips of the first 15 days of February 2005, the second partition contains clips of the
remaining 13 days of the same month. When the first partition is used as a training set, the second
one is used as test set and vice-versa. This makes it possible to perform experiments over the whole
corpus while still preserving the necessary separation between training and test set. All the results
presented in this work are the weighted average of the performances obtained over the two different
partitions.

The number of individuals in the set of non-journalist clips was 234 and only 7 people appear
in both dataset partitions. This means that the identity has a negligible effect on the performance
of the automatic system so the recognition is based on the actual way of speaking. In the case of
the journalists, the number of identities is 96 and 39 individuals appear in both dataset partitions.
This means that the effect of identity is more important than in the case of the non-journalists. The
number of audio clips per identity follows a Zipf Law:

Nn ∼
1

n
(11)

where Nn is the number of identities represented n times. Around one third of the identities are
represented only once (N1 = 112) and 60 percent of the identities are represented less than four times
(N2 = 57 and N3 = 35). This means that in most cases the identity plays a minor role or no role at
all in the recognition of the social status.

5.2 Automatic Recognition Results

The overall recognition rate of the system based on the approach depicted in Figure 1, i.e. the
percentage of clips classified correctly, is 81.0 percent. The recognition rate for journalists and non-
journalists is 85.9 and 76.9 percent respectively (see Section 5.1 for details about the experimental
protocol). The performance can be compared with the recognition rate of two simple baseline systems.
The first system simply apply the highest a-priori probability rule, i.e. it assigns each clip to the most
probable class. In the case of our data, the most probable class is the non-journalist one and the
performance when assigning all clips to such class is 54.4 percent. The second simple baseline guesses
randomly the class of each clip. The probability of guessing class s is given by the a-priori probability
p(s) of s. In this case, the recognition rate is 50.4 percent. The difference between the performance
of the system described in the previous part of the paper and the two simple baselines described
above is statistically significant. This means that its performance is not due to simple chance or to
an unbalanced distribution of classes in the test set.

The plot in Figure 6 shows how the performance changes when only the first t seconds of the test
clips are retained to extract the features. When the system uses only the first 4 seconds of the clips,
the recognition rate is 54.5 percent, similar to the performance obtained through a random guess
or by applying the highest a-priori probability rule. The curve increases roughly linearly until 45
seconds, then it converges to the overall performance of 81 percent. The plateau is probably due to
the fact that the number of clips longer than 45− 50 seconds is small, then the impact on the overall
performance tends to decrease as the number of retained seconds increase. However, the plot seems
to suggest that longer clips are easier to classify and this is not surprising: the reason is that the
features are based on probability distributions estimated using the speech data (see Section 3) and
longer clips allow more reliable estimations.

The effect of the clip length is probably the explanation of the recognition rate difference between
journalists and non-journalists. In fact, non-journalist clips are shorter, on average, than journalist
clips. Moreover, for the journalists there are more individuals represented in both training and test
sets, so the identity has a higher influence than in the case of the non-journalists. However, some
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Figure 6: Recognition rate vs time. The plot shows the recognition rate as a function of the number
of seconds preserved in the test clip.

misclassifications are due to the intrinsic ambiguity of the data: some non-journalist speakers, e.g.
politicians and actors that often appear in the media, use the same nonverbal techniques as the
journalists and, at the same time, some journalists are not as effective as their colleagues in delivering
their message.

To our knowledge, no other systems performing a similar task have been presented in the literature.
This makes it difficult to say whether the performance of the system is satisfactory or not. For this
reason, the next section proposes the results of a test where human assessors are asked to perform the
same recognition task as the system. The results will provide a term of comparison.

5.3 Test with Human Assessors

The performance of the automatic system has been compared with the results obtained by 16 human
assessors on a similar task. A set of 30 audio clips were randomly selected from the data corpus. In
this set, 17 clips correspond to journalists and 13 to non-journalists. The length of the clips ranges
from 3.5 to 75 s and it reproduces roughly the length distribution of the data corpus.

The human assessors have listened to the clips and have assigned each one of them to one of the
two classes. In order to reduce as much as possible the influence of the content, the assessors do not
speak the language of the clips (French) and their mother tongues include English (2 persons), Hindi
(5 persons), Chinese (6 persons), Farsi (1 person), Serbian (1 person) and Arab (1 person). The group
of the assessors includes 5 women and 11 men.

The total number of judgments made by the assessors is 480 and their overall performance, i.e.
the fraction of correct judgments, is 82.3 percent. The women have an overall performance of 88
percent (on average 26.4 correct judgments out of 30), while the men have an overall performance of
79.0 percent (on average 23.7 correct judgments out of 30). On average, each clip has been recognized
correctly by 13.2 assessors, but there are two ambiguous clips, recognized by only 2 and 4 assessors
respectively, that reduce significantly the average. Without taking into account such clips, the average
number of correct classifications per clip is 13.9. The correlation coefficient between the clip length and
the number of correct classifications is 0.44. This means that the length does not affect significantly
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the performance of the assessors and the results are roughly the same while being independent of
the length of time the speaker spoke. This is an important difference with respect to the automatic
system which is sensitive to the amount of time retained to extract the features (see Figure 6).

The comparison is only indicative because the test set is not the same for the automatic system and
for the human assessors. The reason is that the assessors should listen to the whole test set (more than
seven hours) and this is not possible for practical reasons. However, the results seem to suggest that
the humans have a performance similar to the algorithm when they rely on nonverbal communication.
The performance of the automatic system over the 30 clips used during the assessment is 73.3 percent.
The difference with respect to the performance of the assessors is not statistically significant due to
the small number of test samples.

6 Conclusion

This paper has presented experiments where features inspired by the nonverbal communication liter-
ature have been used to discriminate between journalists and non-journalists in radio broadcast news.
The results show that the recognition rate of the automatic system is around 80 percent although the
classifier is a simple multivariate Gaussian. The recognition rate of the system has been compared
with the results obtained by 16 human assessors performing a similar task. The assessors do not
understand the language of the data (French) and their judgments are based mostly on nonverbal
aspects. The average recognition rate of the human assessors is around 80 percent and this seems to
suggest that the automatic system is not far from the human performance. However, the assessors
used a subset of the data corpus used during the experiments, so the comparison is only indicative.
The performance of the system over the subset used by the human assessors is around 70 percent, but
the number of audio clips (30) is too small to conclude that the difference is statistically significant.

The most important novelty of this work is that the content of the audio clips, i.e. what the people
say, has not been taken into account. The classification has been performed using only two features
which account for micro-characteristics of the speech; the time intervals taken into account are less
than 0.5 seconds, so it cannot be consciously controlled by the speakers. This seems to suggest that
nonverbal characteristics can not only be detected automatically, but also used to infer higher level
information, in this case the status of the speakers, potentially difficult to extract by other means. To
our knowledge, this is the first work which uses nonverbal features to map speakers into predefined
categories.

The main advantage of nonverbal features is that they require relatively simple technologies, like
the pitch tracking technique used in this work, and allows one to avoid the automatic transcription
of the speech that is typically needed in content based approaches, i.e. in techniques that try to infer
high level information using what people say. Moreover, nonverbal features are language independent
and, to a certain extent, culture-independent. Thus they can cope with multilingual and multicultural
data sources.

The main limit of this work is that the people in broadcast news are less spontaneous than in data
like meeting recordings or home videos. For this reason, future work will focus on different kinds of
data where nonverbal features can face more difficult problems. Moreover, one of the most important
aspects of nonverbal features is that it plays a major role in social interactions, thus approaches similar
to the one presented here should be used to extract information from the exchanges between different
individuals rather than from a single person at a time.
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