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Abstract. In this paper we propose the use of infinite models for the clustering of speakers.
Speaker segmentation is obtained trough a Dirichlet Process Mixture (DPM) model which can
be interpreted as a flexible model with an infinite a priori number of components. Learning is
based on a Variational Bayesian approximation of the infinite sequence. DPM model is compared
with fixed prior systems learned by ML/BIC, MAP/BIC and a Variational Bayesian method.
Experiments are run on a speaker clustering task on the NIST-96 Broadcast News database.
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1 Introduction

Speaker clustering is a main task in many audio processing systems. Most common approaches are
based on statistical models in which data are represented by an ergodic HMM (each state represents a
speaker) with emission probability modeled by GMM ([1]). The actual number of speaker is generally
not known and must be estimated from data using a model complexity criterion (e.g. Bayesian
Information Criterion [6] or Variational free energy [14]).

We propose here the use of a flexible model based on the Dirichlet Process Mixture (DPM). DPM
can be interpreted as a bayesian model with an a priori infinite number of components. The learning
algorithm infers the actual number of components out of the initial infinite number. In other words our
prior model is an ergodic HMM with an unbounded number of states (speakers) emitting according
to a GMM with an unbounded number of gaussian components.

In general speaker clustering situations, number of speakers is not known and can considerably
change from file to file. Furthermore in the same file, amount of data available per speaker can be very
heterogeneous (e.g. many speakers provide just few minutes of speech). In those cases we would like
to represent speakers with a variable number of gaussian components proportional to the amount of
available data. This issue was addressed for example in [13] where a complex model is used if enough
data from a given speaker is provided and a simpler model is used if only poor amount of data is
available. DPM provides an elegant framework for handling this problem because the initial number
of speakers (i.e. HMM states) and gaussian components per speaker is infinite and final complexity
is inferred during the training according to statistical properties of data.

Dirichlet Process Mixture Models have been introduced in the framework of non-parametric
Bayesian statistics in [2] and [3] but only in recent years efficient training techniques have been pro-
posed and they have been applied to many machine learning, language modeling and image processing
problems [7]. We describe here a first investigation in the field of audio processing.

The paper is organized as follows: in sections 2 and 3 we introduce basic concepts of Dirichlet
Process and Dirichlet Process Mixture, in section 4 we discuss learning algorithms, in section 5 we
describe a speaker clustering model based on DPM and finally we discuss results on Broadcast News
data.

2 Dirichlet process

A Dirichlet Process designated as DP (G0, α) is a measure on measures, i.e. a stochastic process,
and is parametrized using a probability measure G0 known as base measure and scalar value α. The
original definition proposed in [2] says that a measure G is distributed according to a Dirichlet process
DP (G0, α) if for all natural numbers k and measurable partition of an ensemble {B1, ..., Bk},

(G(B1), ..., G(Bk)) ∼ Dir(αG0(B1), ...., αG0(Bk) (1)

where Dir designates a Dirichlet distribution. The general definition provided in equation (1) is not
very self explicative and DP clustering properties for infinite series are not easily deductible from
definition. We refer to the review done in [7] which gives three different representations of the DP. A
DP has inherently some clustering properties. Let us consider N random variables {y1, ..., yN} drawn
according to G ∼ DP (G0, α) and let us compute the probability of sample yN+1 conditioned on the
previous samples. It can be shown [8] that:

p(yN+1|y1, ..., yN ) ∝ α G0(yN+1) +

N∑

i=i

δyi
(yN+1) (2)

where G0 is the base measure and δa(b) is a function equal to one if a = b and zero elsewhere. This
is the so called Polya Urn scheme [8]. Let us designate the values of variables yn with {c1, ..., cN},
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expression (2) can be rewritten as:

yN+1 = ci with probability
#(j : yj = ci)

N + α
(3)

yN+1 = cnew, cnew ∼ G0 with probability
α

N + α
(4)

where #(j : yj = ci) is the number of time yj is equal to ci. From equation (3) we notice that the
probability of the observation yN+1 = ci is proportional to the number of times the value ci was seen
before i.e., the probability of seeing a value we have seen before is higher if this value appeared already
many times. Furthermore there is always a probability α/(N +α) to explore new values that have not
been seen before (equation 4). In a speaker clustering task this corresponds to adding a new speaker
to the model or a new gaussian component to a speaker model. The capacity of generating new values
is regulated by the value of α; if α is comparable to N there is a high probability of exploring new
speaker (or speaker components) rather than clustering in previous ones.

According to expression (2) a DP can be interpreted as a mixture model with N fixed classes and
one component responsible for creating new classes. In other words the model automatically adjusts
the number of classes increasing progressively the number of components.

Another important representation of the Dirichlet Process is the Stick breaking construction ([10]).
Let us assume two sequences of independent random variables vi and yi generated as:

(vi)
∞

i=1 ∼ Beta(1, α) (yi)
∞

i=1 ∼ G0 (5)

where Beta(.) designates a Beta distribution. The Dirichlet Process G ∼ DP (α,G0) can be rewritten
as:

G =

∞∑

i=1

πiδyi
with πi = vi

i−1∏

j=1

(1 − vj) (6)

Representation (6) is called stick breaking representation (designated as Stick(α)) . It is easy to verify
that

∑
∞

k=1 πk = 1 like in mixture models. Here an important inconvenient of G can be noticed: a
measure drawn from a DP is discrete with probability one even if its base measure is continuous. In
fact G is composed of an infinite sum of δa(b) functions which are equal to 1 only if a = b; in other
words the support of G is discrete. We explain in section 3 how to overcome this problem.

Another useful representation is the infinite limit of finite mixture models. We will use it in
the following for deriving the speaker clustering model. Let us consider a mixture model with L
components i.e. G =

∑L

i=1 πipi where π = {π1, ...., πL} are mixing proportions and pi is a base
measure (e.g. a gaussian distribution) . Let us set a symmetric prior over π as a Dirichlet distribution
with hyperparameters {α0/L, ..., α0/L}. If the limit L → ∞ is considered then the Dirichlet prior

reduces to a Stick distribution Stick(α) (see [11] for details) and model G =
∑L

i=1 πipi coincides with
model in equation (6). In other words in the limit case of an infinite number of mixture components,
the model behaves like a DP.

3 Dirichlet process mixture

The discreteness of DP is a serious drawback if the model must handle continuous variables. It can
be shown that a DP is discrete with probability one on the set of Borel probability measures even if
G0 is continuous [11]. A simple way for overcoming this problem is using the DP as non-parametric
prior distribution in a hierarchical bayesian framework [3]. This is achieved by drawing a measure
G ∼ DP (α,G0) and assuming that G is a prior distribution for model parameters θn i.e., θn ∼ G. In
other words we add a level of hierarchy and we assume that model parameters have a distribution that
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follows a DP obtaining a continuous distribution. In mathematical terms, a data set Yn is modeled
as a DPM if :

G|α0, G0 ∼ DP (α,G0) (7)

θn|G ∼ G (8)

Yn|θn ∼ p(Yn|θn) (9)

If the distribution p(.) is continuous, the model consists in a convolution of a degenerate density G with
a continuous function p(.) that is a continuous distribution. This model is referred as Dirichlet Process
Mixture (DPM) [7]. As example, we can rewrite a common Gaussian Mixture Model with an infinite
number of components in the same formalism of equations (7-9) using the Stick breaking representation
of equation (5). Let us introduce an hidden variable Xn that designates which component emitted
observation Yn. Data follows the process:

Vi|α ∼ Beta(1, α), i = {1, 2, ...,∞} (10)

θi|G0 ∼ G0 i = {1, 2, ...,∞} (11)

For the nth observation Yn

Xn|{V1, V2, ...} ∼ Mult(π(V )) (12)

Yn|Xn ∼ p(yn|θXn
) (13)

where Mult(π(V )) designates a multinomial distribution with parameters π(V (i)) defined as in equa-
tion 6 and Vi can be interpretated as an hidden variable.

An infinite sequence of parameters θi is drawn from the base measure G0 (expression (11)) together
with probabilities Vi (expression (10)). For each observation Yn an hidden variable Xn is drawn
from a multinomial distribution defined by the set of Vi (expression (12)). Finally the parametric
likelihood p(yn|θxn

) is computed according to the parameter θxn
(expression (13)). In case of a

GMM, distribution p(.) is a gaussian distribution with parameters θi = {µi,Σi} where µi and Σi are
mean vector and covariance matrix. In bayesian terms this model can be interpreted as a model with
an a priori distribution composed of an infinite number of components. Model grows according to
statistical properties and amount of data.

Likelihood of an observation Yn conditioned on Xn can be written as:

p(Yn|Xn, {θi}) =
∞∏

i=1

p(Yn|θXn
)1[Xn=i] (14)

where i represent the component number (out of the possible infinite components) and the function
1[a = b] is equal to 1 if a = b and zero otherwise.

4 Inference in a DPM

Even if DPM defines an infinite prior model, processing of finite amount of data will produce a finite
posterior model. In fact, if N is the data set size, posterior model will have a maximum number
of components equal to N , i.e. one component per sample. The clustering algorithm should learn
posterior probability over DPM together with model complexity i.e. the number of components.

Monte Carlo Markov Chains sampling methods are probably the most popular method for making
inference in models based on DP and DPM. Anyway sampling methods are generally slow and pro-
hibitive when the amount of data is large like in applications that involve the processing of many hours
of speech . For this reason we consider here a deterministic approximation based on a Variational
Bayesian method as proposed in [12].

Variational Bayesian (VB) methods are suitable in those cases in which the complexity of the
model must be determined (e.g. the number of speaker in a file and the number of components per
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speaker in the model) (see [16]). The well known Bayesian Information Criterion is a special case of
VB model selection. In our previous work ([14]) we investigated the use of VB learning in the case of
a model with fixed a priori number of components. The use of DPM as non-parametric prior extends
somehow the flexibility of the model that use infinite prior.

Variational Bayesian methods approximate real posterior distributions over parameters θ and
hidden variables X with a distribution q(X, θ)(see [12]). A simplified form for q(X, θ) is chosen
on the basis of a mean-field approximation that considers independence assumption between elements
of X and θ i.e.

q(X, θ) =

I∏

i=1

q(Xi)

J∏

j=1

q(θj) (15)

where I is the number of hidden variables and J is the number of parameters. If the parametric form
for q(.) belongs to the conjugate-exponential family, a coordinate ascent algorithm can be derived for
iteratively optimizing q(X, θ) (for details see [12]). Actually, the condition on the form of q(.) is not
particularly restrictive, in fact a large variety of models satisfy this condition (e.g. HMM, mixture
models, state space models, etc.).

For example, in model described by equations (10-13) posterior distributions over parameters θ
and hidden variables X and V will factorize as:

q(V,X, θ) =
∞∏

i=1

q(Vi)
N∏

n=1

q(Xn)
N∏

n=0

q(θn) (16)

where q(Vi) is a Beta distribution, q(Xn) is a multinomial distribution and q(θn) is a function of the
exponential family. In expression (16) the product

∏
∞

i=0 q(Vi) has an infinite number of terms. To
handle this infinite series we choose the approximation proposed in [12] in which the infinite posterior
is truncated up to a certain value T i.e., the posterior distribution q(Vi) = 0 for i > T . Some important
remarks must be done on this approximation. First of all, the prior distribution is still infinite, only
the posterior distribution is truncated i.e. the model can grow up only to number of components equal
to T . We are not imposing the number of components of the model but just its maximum number.
This choice is not that difficult if the amount of training observations N is known: the model cannot
have a number of components larger than N . A reasonable choice for T is N , but all values T > N
will result in a maximum of N components.

It is interesting to investigate what happens when the number of components is exactly equal to
N ; if we suppose the base measure G0 to be gaussian, the model results in the sum of N gaussians;
this is equivalent to the Parzen window estimation method which consists of estimating probability
of unseen data with a sum of gaussian kernels equal in number to the training data.

5 Speaker clustering based on DPM

In this section we present a DPM based model for speaker clustering purposes as limit case of a
finite model. The most popular approach for speaker clustering uses an ergodic HMM with emission
probability modeled by a GMM. As long as the current speaker number is not known, it must be
estimated from data using a model selection criterion (e.g. BIC, Bayesian integral, etc.). This is
sometimes achieved introducing a large number of initial states (i.e. speakers) and merging them
successively. The approach we use here is completely different. The prior model is infinite i.e. an
infinite number of state (speakers) that emit according to a mixture model with an infinite number or
components. Without loss of generality let us define a finite model for the ergodic HMM/GMM as :

P (O) =

S∏

i=1

ai

M∏

j=1

cijP (O|µij ,Σij) (17)
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File File 1 File 2
Nc acp asp K Nc acp asp K

(a) ML/BIC 10 0.80 0.86 0.83 9 0.72 0.77 0.74
(b) MAP/BIC 10 0.68 0.71 0.87 9 0.70 0.78 0.74

(c) VB 12 0.85 0.89 0.87 14 0.84 0.81 0.82
(d) DPM 18 0.87 0.91 0.89 14 0.87 0.92 0.89

File File 3 File 4
Nc acp asp K Nc acp asp K

(a) ML/BIC 15 0.77 0.83 0.80 12 0.63 0.80 0.71
(b) MAP/BIC 15 0.76 0.83 0.80 21 0.75 0.64 0.69

(c) VB 14 0.75 0.90 0.82 13 0.63 0.80 0.71
(d) DPM 16 0.74 0.91 0.82 19 0.63 0.85 0.76

Table 1: Results on NIST 1996 HUB-4 evaluation test for speaker clustering

where O is an observation ai is the weight for speaker i, cij is the weight for gaussian component
j in speaker i, µij and Σij are mean and covariance matrix. S and M are fixed number of speakers
and number of gaussian mixture components per speaker. We assume here that the transition from
one speaker to another is not regulated by a Markov process; this reduce the HMM to a mixture
model and allows the model written as in equation (17). Let us now impose a prior distribution over
parameters in (17). We use Dirichlet distributions for ai and cij and Normal-Wishart distributions
for joint distribution of µij and Σij i.e.

P (aj) = Dir(λa 0/S) P (cij) = Dir(λc 0/M)

P (µij |Γij) = N(ρ0, ξ0Γij) P (Γij) = W (ν0,Φ0) (18)

where Dir(), N(), W () are respectively Dirichlet, Normal, Wishart distributions and {λa 0, λc 0, ρ0, ξ0, ν0,Φ0}
are hyperparameters as in [17]. The correspondent DPM model with infinite number of components is
obtained taking the limit S → ∞ and M → ∞. In the limit case Dirichlet distributions Dir(λa 0/S)
and Dir(λc 0/M) become Stick breaking distributions Stick(λa 0) and Stick(λc 0) over an infinite num-
ber of speakers and components per speaker. Learning can be done applying the variational algorithm
for truncated posterior distributions briefly described in section 4 (for details see [12]).

6 Experiments

We compare the infinite DPM model with three different systems: a classical ML/BIC system (Maxi-
mum Likelihood for the training, BIC for the model selection system) referred as System I, a MAP/BIC
system (Maximum a Posteriori for the training, BIC for the model selection system) referred as System
II, a Variational Bayesian system which simultaneously performs the training and the model selection
(see [14] for a description) referred as system III. We run experiments on the evaluation data set
NIST-1996 HUB-4. It consists of 4 recordings of half an hour long in which speech and non-speech
events occur together (music, noise, etc.). All files are processed in order to obtain 12 LPCC coeffi-
cients. In those files amount of speech provided by different speakers is very heterogeneous making
unsupervised clustering difficult; here comes the need for a flexible model.

The training procedure uses the following algorithm: the system is initialized with a large number
of speakers Minitial then optimal parameters are learned using criteria VB, ML and MAP. Initial
speaker number is then reduced progressively from Minitial to 1 and parameter learning is done for
each intermediate number of speakers. Optimal number of speakers is estimated scoring the different
models with VB free energy for system III and with BIC criterion for systems I and II. On the
other hand in the DPM based system we just have to provide the truncation order T for the posterior
distribution: the model will grow automatically up to the maximum number of components imposed by
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Figure 1: Speaker clustering K function of the truncation order.

the order of the truncation. The DPM is learned as well with a Variational Bayesian approximation
as system III. However system III has a fixed dimension prior model while DPM has an infinite
distribution as prior model. Details about estimation formula for the ML and VB learning applied to
model (17) can be found in [15]. Results are shown in table 1 provided in terms of estimated number
of speaker Nc, average cluster purity (acp), average speaker purity (asp) and K =

√
acp · asp (for

details see [15]). Choice of prior distributions is done heuristically. In order to make a fair comparison,
we initialized the three Bayesian approaches (MAP,VB and DPM) with the same prior distributions
over parameters (this does not mean that the number of prior components is the same, in fact in the
DPM case it is infinite). The Bayesian Information Criterion need a tuning factor λ in order to be
really effective; we set this tuning factor in order to obtain the best possible performance in order to
compare with the best possible BIC system.

The ML/BIC baseline is poor compared to other bayesian approaches. This is probably due to
the regularization effect of the prior distribution. On the other hand DPM is the bayesian approach
that performs better both in terms of acp and asp. Considering that MAP is a special case of VB
(see [14]) and that DPM is an extension of VB to a more flexible model with an infinite number of
prior distributions, results are not surprising. On file 3 all the systems perform almost the same while
the largest improvements are obtained on files 2 (15% relative) and 4 (17% relative). File 4 is the file
with the lowest amount of data per speaker (22 speakers for half an hour) and very heterogeneous
distribution (some speakers talk just few utterances); DPM system provides the best performance
probably because there is no priori information on the number of components per speaker which are
automatically inferred by the system allowing more model flexibility. We verify in the DPM system
that number of gaussian component is proportional to the amount of data provided per speaker.

The robustness of the system to the level of truncation is investiagated as well; figure 1 plots
speaker clustering score K function of the truncation level T in the 4 files. If the truncation level is
large enough (more than 25), the clustering score does not change significantly. Small fluctuation are
seen due to different local minima. This means that in real data problems with finite amount of data
the truncation algorithm can be efficiently applied.

7 Conclusion and Discussions

In this paper we have presented and discussed a first system for speaker clustering based on a Mixture
of Dirichlet Process as flexible model with an unbounded number of prior components. Theoretical
bases of DPM model were presented and discussed. Experiments on Broadcast news data show
interesting improvements . In future work we would like to consider different learning approaches for
the DPM models like Expectation-Propagation and comparing results with the current variational
truncated method. Robustness with respect to prior distribution must be addressed as well.
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