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ABSTRACT scanning strategy, to speed up the search, while maingainin
The sliding window approach is the most widely used tech:[he dete_ctl_on_ rate. We_ analyze the probability for a classifi
fall within its detection range both for the standard scan

nigue to detect faces in an image. Usually a classifier is ap}gng technique and for the proposed approach. The key to our

) ) . i
plied on a regular grid and to speed up the scanning, the grﬂI . . ! . . -
spacing is increased, which increases the number of miss d§:ernatlve scanning technique is to build a classifier et

tections. In this paper we propose an alternative scannin cts(;he :‘jace bounding box with high performance (both in
method which minimizes the number of misses, while im- eed and accuracy).

proving the speed of detection. To achieve this we use an Thi; pagerr].isdorganized ashfol_:%wst.) Selgtio? 2 g/ives fthe
additional classifier that predicts the bounding box of a&fac motivation behind our approach. The baseline lace/noe-fac

within a local search area. Then a face/non-face classifier F|aSSIerrIS described in Section 3. In Section 4 we predent t

used to verify the presence or absence of a face. We propos? g)pos_ed a_pproach and t_he face patch classifier which _is used
new combination of binary features which we termuaSerns or estimating _the b°“”d'T‘9 box. We show our experiment
for bounding box estimation, which performs comparable 0(§sult§ n _Sectlon 5 and finally conclude and provide future
better than former techniques. Experimental evaluation OHII‘GCIIOHS in Section 6.

benchmark database show that we can achieve 15-30% im-

provement in detection rate or speed when compared to the 2. MOTIVATION

standard scanning technigue.
In this section we describe the motivation for coming up with

alternative scanning technique. We start by formulatirey th
probability of hit P, as the probability for the target object
to be within the classifier detection range, with respechéo t
1. INTRODUCTION scanning grid intervals(,, s5), and to the translation toler-

) . _ance {y, tp) of the classifielCopjc.t, (Se€ Fig. 1a).
The most popular technique to detect an object from an im-

age is the sliding window approach since the pioneering work P~ twth 1

from Rowley [1]. With the introduction of cascade of clas- h™= SwSh (1)

sifiers and fast computation of features [2], it is possible t . ]

speed up the search for faces in an image. As more and more AS an example, lets assume that the object present in the

applications are integrating more processing (face trapki Image is of the same size as the classifier is tramed_ Wlth, and

and recognition) in addition to face detection, and stigste If tw = tn = 3 ands, = s, = 6 then the probability of

ing them to run in real-time, it is necessary to speed up éurth 9etting ahit?, is 0.25, which is very low. As we decreasg

without loosing much of the performance. andsy, (a finer search)p;, mcre:.;tses,.whlle scanning speed
Most of the work on face detection concentrated on bu"d_decre_ases (slower). Our goal Is to Increaﬁewnhout de-

ing a good classifier using Neural Networks [1, 3], SVM [4] creasing toq much_of_ the scanning speeq (make it faster), and

or boosting [2, 5], but not much work was done to develog?oW We achieve this is described in Section 4.

alternative scanning techniques. Given an image the standa

scanning technique creates a pyramid of images according to

a scale factor. Then a classifier is applied at every location 3. BASELINE FACE CLASSIFIER

the image (usually on a regular grid) to detect an object. The

grid spacing controls the speed of scanning process. UnfoMany different classifiers and features are available foe fa

tunately, as the grid spacing is increased the number of mistetection task. We choose Modified Census Transform

detection increases. In this paper we propose an alteenati{MCT) features as it has been shown to be robust to lighting

Index Terms— Face detection, Binary features, Naive
Bayesian, Boosting
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(a) Standard scanning technique
tion dataset by fixing the detection rate. The non-face sesnpl

Image . o
for each stage are collected from many images containing no
- Bounding Box Prediction face using bootstrapping technique. The final baseline face
° ° ° o ° ° o classifierCy,.. has a detection rate of 99% with false posi-
— C object tive rate of 0.02%.
o_ _ R o [ : [ E L] L] °
L Lo oGP 4. THE PROPOSED APPROACH
° hp: ° : ° ° ° ° ° . . . . . .
Lot The approach described in this section tries to increase the
Wp probability of hit by using a patch classifier which identfie
° ° ° ° ¢ ° ° a part of face and infers the bounding box location (see Fig.
- 1b). If the bounding box estimation is good enough, we can
(b) Our proposed scanning framework achieve better chances to detect a face with larger grid-spac
ing.

Fig. 1. Standard scanning technique vs our proposed scan-

ning framework. The dots represent the scanning grid with.1. Probability of hit with our approach
interval (s.,, sp), target object sizeo(,, o3), translation tol-
erance {y, t5) of target object classifiel;..+, target patch
size (., un), and target patch classifi€l,...,. The classifier
Cpaten predicts the bounding box f@F, je.. in our approach.

In this subsection we explain how our method increases
the probability of hit. Assuming that we have a classifier
Chater, that predicts the patch location with prediction rate
dpater Within the translation toleranog,,, t,) of the classi-
fier Copject, then the probability of hit can be approximately

variations and does not require any preprocessing [5]. Aivenby:
face/non-face classifief',.. is built using boosted MCT Py, = dpatchpi ©))

Leyatures as described in [5]. A single stage classifier isrgiv wherep; — (Ow_uwtggzruhﬂ)’ (1w, 1) i the patch width

% and height, ando,,, oy,) is the object width and height, with
O constraintsu,, < o, anduy, < oy (see Fig. 2). Fou,, =
H.(1) = ;w’“hkm @) 14, 0n = on = 19, 55 = 5 = 6, ANderen = 0.8
(this value is taken from our experiment results), welget
where ! is the input images represents the stage number,(.8, which is approximately 55% greater than standard scan-
wy, is the weight associated with the weak classifigt/),  ning approach. The smaller the patch size is, the more the
and K is the number of features in each stage. The weakpacing between the grid can be, for a increase in scanning
classifierh; (1) in this case is parameterized by a location ancspeed. Unfortunately, it also increases the number ofielass
a look up table (see [5] for more details). fiers that needs to be evaluated. Our goal is to build a patch
For building our baseline face classifier we obtain approxclassifier with high performance (both in speed and accuracy
imately 35,000 cropped face images (19x19) from standargf estimation).
face database (BANCA, Purdue, and XM2VTS). A subset of
15,000 face images are used for training, 10,000 are used fﬁr
validation and the rest 10,000 are used for testing. We use
the non-face test dataset from [6]. A cascade of 5 stages We represent a set of patches{®; = (i4;, ¢;)}, whereld €
trained and for each stage a threshold is estimated on valid®“~*“+ js the appearance and= {1, ..., N} is class label

2. Face patch classifier



of the patch. We hav& = (0, — uy + 1) X (0, —up + 1) of the patch in the face region. Since we want to measure how
possible overlapping patches. The goal here is to builds claclose the estimated patch location is to the true patchitmtat
sifier which estimates the class label for a new patch. Weve use squarefl, norm to evaluate the estimation error:

use similar approach as described in [7] to build class condi

tional probabilities of binary features (Ferns) and at tiame A= (Ze —ze)® + (e — ye)? (6)
use these probabilities to select the pattern with highilest | o i

lihood. Ferns are considered over SIFT features [8] as it i¥/N€re €c, vc) and (., y.) are the estimated and true patch
shown in [7] that it performs better and has less computatioffcation. We defing()) as the number of test patches that
time. We propose here a new binary feature, referred to d4ve estimation error of, and ;he cumulative distribution
u-Ferns, as a simple comparison of a pixel with the averag@f €stimation error ag(\) = 57, p(j). Fig. 3 shows the
value of pixels in patcli/, where as Ferns compare two pix- cumulative distribution of estimation error far-Ferns and

els at two pixels at random locations. The binary feagiyris ~ F€Ms for square patch sizes of 14, 13 and 12. From Fig. 3,
we see thap-Ferns perform slightly better than Ferns. The

defined as R . :
best patch prediction is obtained for the patch size of 14 for
fo= 1 if U(zk,yr) < avg(U) both features. Ideally we would like to have a smaller patch
o0 otherwise size so that the grid spacing could be increased to speed up

_ ) ) o the search, but we see that the accuracy of estimation dsops a

where (1, yx) is the pixel location within patchi/,  the number of classifier grows. There is a trade off between
k =1,..,K, andK is the total number of binary features. ne grid spacing and the patch size. We select patch size of 14
Given a set of featureg,, f», ..., fx the idea is to find the  for our proposed scanning framework, since it achieves good
best clasg such that detection rate with less computation time compared to other

R smaller patch sizes.
c:argmjaxP(cj|f1,f2,...,fK) (4)

Using Bayes’ Formula, assuming uniform pridfc;) and T
independence between features, the problem is reduced to: ok e AT ®

¢ = argmax ITy P(fx|c;) (5) osf
J

—@— u-Fems, patch size 14
—4— u-Fems, patch size 13
—@— u-Ferns, patch size 12
- @ = Ferns, patch size 14

To obtain the probability( fx|c;), we just countthe num- =
ber of times the featuré, takes the value 1 and 0. It is then o]

=k - Ferns, patch size 13
normalized by dividing by the number of training examples. osf ol
5. EXPERIMENT EVALUATION ol
We evaluate the performance of the face patch classifier an o 1 s s : s 6 7 s

then use this classifier with our proposed scanning frame estimation error A

work. The detection rate and scanning speed are evaluated
with respect to the scanning grid interval. Fig. 3. Cumulative distribution of patch estimation erpofor
patch sizes of 14,13 and 12, fofFerns and Ferns.

5.1. Evaluation of face patch estimation

We compare the performan_ce of our proposed fe"?‘“"_‘?r.”s 5.2. Evaluation of proposed scanning framework
with Ferns for patch estimation. We use the same training and
test dataset as described in Section 3 for this evaluatian. VWWe now evaluate the performance of standard scanning tech-
follow the same procedure as described in [7] to train Ferngaique and our proposed scanning approach. For this task we
for a patch. Since the pixel pairs in Ferns are selected ratake CMU+MIT [9] and Fleuret [10] face databases, with a
domly, the performance at each run varies. Therefore we rutotal of 375 images and 1085 faces of various size. We use a
many trials and keep the one with best performance. We hayg/ramid based scanning approach to detect faces at differen
considered the locationc(, i) to be on a uniform grid for scales. The scaling parameter is set to 1.2. Multiple detec-
u-Ferns. To make a fair comparison we use the same nuntions are merged by averaging the detection within a certain
ber of binary features for both the approaches. Given a tesadius which is a function of scale. The estimated eye coor-
patch, we use Equation 5 to estimate the best class tabel dinate of merged detection are compared with ground truth
Each class label has an associated (, y.) location within  eye coordinates using Jesorsky measure [11], which is set to
the face region. We consider, y.) to be the top left corner 0.3 for all our experiments. We obtain for each parameter



(patch size and grid spacing), the number of correct detecate. We also proposed a new featyr&ern which is com-
tion and time taken to scan 375 images. Fig. 4 shows thparable or better than Ferns for our task. For our future work

performance of both scanning techniques with respect tb griwe would like to investigate if any further improvements in
o.f,peed can be achieved. One of the immediate extension of

spacing. We can see clgarly that we obtain higher detecp our approach is to predict the scale or rotation or different
rate for larger gm_j spacing. We also plot the_averagg t'm‘?/iews of an object. The other extension would be to detect
taken to scan an image with respect to detection rate in Fignterest points first and use the bounding box predictiog onl
5. We achieve roughly 15-30% improvement in detection ratet those locations.

or speed when using the bounding box estimation for scan-

ning. We also notice that when the grid spacing gets smaller 7. ACKNOWLEDGMENT
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6. CONCLUSION AND FUTURE WORK

In this paper we proposed an alternative scanning strategy t
speed up the scanning process while maintaining the detecti



