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ABSTRACT

We investigate the invariance of posterior features estimated using
MLP trained on auxiliary corpus towards different data condition
and different distance measures for matching posterior features in
the context of template-based ASR. Through ASR studies on iso-
lated word recognition task we show that posterior featuresestimated
using MLP trained on auxiliary corpus with out any kind of adapta-
tion can achieve comparable or better performance when compared
to the case where the MLP is trained on the corpus same as that of
the test set. We also show that local scores, weighted symmetric KL-
divergence and Bhattacharya distance yield better systemscompared
to Hellinger distance, cosine angle, L1-norm, L2-norm, dotproduct,
and cross entropy.

Index Terms— Posterior features, Automatic speech recogni-
tion, Templates, Local scores, Multilayer perceptron

1. INTRODUCTION
There is a renewed/growing interest in template-based automatic
speech recognition (ASR) system for different reasons: (a)avail-
ability of large amount of data so as to better handle the undesirable
variabilities (differences between speakers, accents, conditions etc.)
in the templates in conjunction with the availability of large stor-
age and computation resources; (b) perceptual studies suggests that
human tends to store both verbal (spoken message related) and non-
verbal (e.g. speaker, dialect) information as episodes/traces, and
uses both these information during recognition [1, 2]. An episode
can be likened to a template; (c) it has been found that combination
of template-based ASR and hidden Markov model (HMM) based
ASR can yield improved performance [3, 4].

In template-based ASR system [5], each speech unit (e.g., word)
is represented by a set of reference templates. A template typically
being a sequence of feature vectors for an utterance of the speech
unit. The training phase consists of generation of the reference tem-
plates. The test phase consists of generation of test template, (option-
ally) reference templates selection, and search for the best matching
word sequence (by matching against the reference templates). The
choice of feature vector and distance measure for local score not
only influences the performance of the system but also practical is-
sues such as, storage space and computation time.

Earlier research on template-based ASR typically used standard
short-term spectrum based features, such as cepstral coefficients
as features and Euclidean/Mahalanobis distance as the local score.
However, the spectral-based features can be susceptible toundesir-
able variabilities such as, speaker, environment etc. Thus, putting
demand for larger number of reference templates to achieve bet-
ter generalization, and for storage and computational resources.
Recent works have focussed on transforming the standard spectral-
based features to discriminative features that tend to carry more

linguistic class related information [6, 7, 8, 9]. Particularly, in a
more recent work the use of phoneme class conditional posterior
probabilities estimated using multilayer perceptron (MLP) as fea-
tures was proposed [8]. These features also referred to as posterior
features benefit from the ability of a well trained MLP to achieve
invariance towards speaker and environmental characteristics while
transforming the input spectral-based feature vector to linguistically
meaningful dimensions. Template-based ASR studies using the
posterior features showed that they can yield better performance
compared to standard spectral-based features using only a fewer
number of templates. Furthermore, it was also found that local
scores that take into account the probabilistic nature of the feature,
such as Kullback-Leibler (KL) divergence, Bhattacharya distance
yield better performance compared to geometric distance measures
such as Euclidean distance (L2-norm) [10, 9].

This paper builds up on the previous work of using MLP-based
posterior features for template-based ASR investigating the follow-
ing two aspects:

1. Choice of MLP training data: One of the main requirements
in using posterior features is the availability of a trainedMLP.
The MLP can be trained on the same corpus or an auxiliary
corpus. In the previous studies [8, 9], the improvements over
the spectral-based features have been observed for both the
cases, i.e., using MLP trained on the same corpus as well
as on an auxiliary corpus. However, there remains a ques-
tion how invariant are posterior features estimated with MLP
trained on an auxiliary corpus towards data condition. In
other words, without any kind of adaptation is it possible to
achieve same level of performance as the ideal case where the
MLP is trained on the same corpus as the test set. This can
be possibly answered by evaluating the posterior features esti-
mated by MLP trained on auxiliary corpus in terms of amount
of auxiliary data, local scores, and number of templates, and
comparing against the ideal case where posterior features are
estimated using MLP trained on the same corpus as the test
set.

2. Choice of distance measure for local score estimation: Each
dimension of posterior feature vector has physical signif-
icance, i.e., each dimension corresponds to a particular
phoneme. Also, the posterior feature vector has proper-
ties such as each dimension can take only a value between
0.0 and 1.0 and, the sum over the dimensions is1.0. So,
it is possible to use local measures that explicitly takes into
account the phoneme class information. Also, there are other
geometric distance measures, such as, L1-norm and cosine
angle, and probabilistic distance measures such as Hellinger
distance that may also suit the posterior features.

We investigate these aspects on small vocabulary (75 words)and



medium vocabulary (600 words) isolated word recognition tasks us-
ing Phonebook corpus with conversation telephone speech corpus as
the auxiliary corpus.

Section 2 presents the different local scores studied. Section 3
describes the experimental studies and results. Finally, in Section 4
we summarize the work.

2. LOCAL SCORE

Given a pair ofK-dimensional posterior feature vectorsp =
[p1 · · · pk · · · pK ]T corresponding to the reference template and
q = [q1 · · · qk · · · qK ]T corresponding to the test template different
types of measures for local scores can be motivated:

• Geometric measure: In this case each posterior feature is
treated like a higher dimensional vector and traditional dis-
tance metrics such as,

1. Euclidean (Eucl)

Eucl(p, q) =
K

X

k=1

(pk − qk)2

2. L1-norm (L1-norm)
L1-norm(p, q) =

K
X

k=1

|pk − qk|

3. Cosine angle (cosine)
cosine(p,q) =

p
T
q

|p||q|
are estimated. It is interesting to note that the MLP parame-
ters are typically learned by minimizing the cross entropy be-
tween one-hot-encoding target vector (i.e., 1.0 for true class
and 0.0 for other classes) and the posterior probability vector
at the output of the MLP. So in case of a well trained MLP,
the output of the MLP can be expected to lie in the simplex of
the posterior feature space. In case ofcosine distance an ad-
ditional log operation can better take this aspect into account.

• Probabilistic measure: Here each of the posterior feature vec-
tor is treated as a discrete probability distribution and local
score is estimated by using distance/divergence measures,

1. Kullback-Leibler divergence
(a) Withp as reference distribution (KL)

KL(p, q) =
K

X

k=1

pk log
pk

qk

= H(p,q) − H(p)

where,H(p,q) is the cross entropy withp as the
reference distribution andH(p) is the entropy of
distributionp.

(b) With q as reference distribution (RKL)

RKL(p, q) =
K

X

k=1

qk log
qk

pk

= H(q,p) − H(q)

(c) Symmetric measure (SKL)
SKL(p, q) = KL(p, q) + RKL(p,q)

(d) Weighted symmetric measure (wSKL) [9]
wSKL(p, q) = wp·KL(p, q)+wq·RKL(p, q)

wp =
1

H(p)

( 1
H(p)

+ 1
H(q)

)
, wq =

1
H(q)

( 1
H(p)

+ 1
H(q)

)

2. Bhattacharya distance (Bhatt)

Bhatt(p,q) = − log(
K

X

k=1

√
pk · qk)

3. Hellinger distance (Hellinger)

Hellinger(p,q) = 1.0 −
K

X

k=1

√
pk · qk

• Linguistic measure: Here the measure is defined such that
the local score takes into account the probability mass asso-
ciated to each dimension (phoneme class) explicitly. In other
words, measures how much a given pair of vectors belong to
the ”same phoneme class”, such as,

1. Dot product (dotProd)

dotProd(p,q) = p
T
q =

K
X

k=1

pk · qk

The probability that pair of posterior feature vectors
(p,q) belong to the same class [11, 12].

2. Cross entropy

(a) p as reference distribution (cross)

H(p,q) = −
K

X

k=1

pk · log(qk)

(b) q as reference distribution (R-cross)

H(q,p) = −
K

X

k=1

qk · log(pk)

(c) Symmetric cross entropy (S-cross)
S-cross(p,q) = H(p,q) + H(q,p)

(d) Weighted symmetric cross entropy (wS-cross)
wS-cross(p,q) = wp ·H(p,q)+wq ·H(q,p)

These local scores have their counter parts in the local scores
defined earlier in geometric sense and probabilistic sense.
For dotProd, we use an additionallog operation similar to
cosine. We found it to be beneficial. It can be observed
that RKL andR-cross will yield exactly same results for
isolated word recognition task asH(q) is constant at each
time frame across all the words.

In the previous work [8, 10, 9], local scoresEucl, KL, RKL,
SKL, wSKL, andBhatt have been investigated but not all of them
jointly on the same task. In this paper, we study the local scores de-
scribed in this section together.

3. EXPERIMENTS AND RESULTS
3.1. Experimental Setup

We perform isolated word recognition studies using Phonebook
(PB) speech corpus [13]. The test set contains 8 different sub-sets of
75 different words spoken only once on an average by 11 different
speakers. This setup was originally defined for speaker-independent
task-independent HMM-based ASR [14] and, later adopted for
template-based ASR with a two template and one template scenario
in [9]. In this study, we use the same template-based ASR setup.
Furthermore, in addition to studies on the small vocabulary75 words
task we also perform studies on 600 words task (created by merging
the 8 sets) as done in [14, 15].

For estimating posterior features,

• MLP trained on the same corpus: We use off-the-shelf MLP
trained to classify context-independent phonemes on Phone-
book corpus with 6.7 hours of speech data for speaker-
independent task-independent HMM-based ASR system.
The hybrid HMM/MLP system on the test set described
above yield word error rates (WERs) of 1.2% and 4.0% for
75 words task and 600 words task, respectively [15].



• MLP trained on auxiliary corpus: We use off-the-shelf MLPs
trained with varying amount of speech data on conversa-
tion telephone speech (CTS) corpus to classify context-
independent phonemes.

For further details about the MLPs, the reader may refer to [16, 15].
One of the main strengths of template-based ASR is that the tem-
plates can be obtained from entirely different data set/condition than
the one used to test. In this sense, generation of reference templates
with posterior features estimated using MLP trained on Phonebook
serves as an idealistic scenario, where except for different speakers
and words present in the training and test data, a good match between
training and test data conditions can be expected.

3.2. Results and Discussion
Tables 1 and 2 present the results measured in terms of WER across
different local scores described earlier in Section 2 for 75words task
and 600 words task, respectively. The major observations are sum-
marized as follows:

1. Posterior features estimated from MLP trained with ”suffi-
cient amount of data” on auxiliary corpus can yield perfor-
mance comparable or better than the ideal well matched sce-
nario i.e., posterior features estimated from MLP trained on
the same corpus. This is observed for both two templates case
and one template case.

2. For all local scores, the performance generally improveswith
the increase in the CTS MLP training data for both two tem-
plates case and one template case. The probabilistic local
scores tend to achieve performance closer to the matched sce-
nario with fairly low amount of MLP training data (compared
to other local scores), especially on 600 words task. Over-
all, local scorewSKL consistently yields the best system for
both 75 words and 600 words tasks with local scoreBhatt
being close next best.

3. Among the geometrically motivated local scores,cosine
yields the best system for both the tasks. Interestingly,
L1-norm yields a system that performs better than the sys-
tem usingEucl as local score.

4. In the case of the local scores that take into account proba-
bilistic nature of the feature,wSKL, Bhatt, andSKL per-
form better and yield competing systems. As the amount of
CTS MLP training data increasesKL andHellinger yield
competing systems. Local scoreRKL yields the lowest per-
formance.

5. S-cross yields the best system among the linguistically mo-
tivated local scores. Furthermore, all the local scores i.e.,
dotProd, cross, S-cross, andwS-cross yield performance
lower than their counter parts,cosine, KL, SKL, and
wSKL, respectively. An exception beingS-cross yielding
a competitive system compared toSKL on 75 words task.
The lower performance can be due to the following reason.
Given two pairs of posterior vectors(p,q) and(x,y), where,
p = q, x = y, andp 6= x local scores such ascosine or
KL will yield exactly same score for both the pair of vectors
but dotProd or cross will yield entirely different scores. It
can be also observed that the gap in the performance typically
reduces as the CTS MLP training data increases.

It can be observed that there is a wider performance gap be-
tween the systems using local scorescross andKL, especially for
one template case of 600 words task. The essential difference be-
tween the two local scores is the use of extra informationH(p) by
KL. If the reference template feature vectorp were to be a delta
(δ) distribution (i.e., all probability mass assigned to one dimen-
sion), the local scorescross andKL are same. Since we use the

estimate of phoneme posterior probabilities as posterior feature the
difference in the performances can possibly be explained interms of
mismatch between pronunciation model and observation where, the
reference template serves as the pronunciation model. For instance,
the sequence of phoneme posterior probability vectors in the refer-
ence template witharg max operation over the dimensions of each
vector can be likened to pronunciation models in standard HMM-
based ASR system. We know each test template posterior feature
vector contains the probability for each phoneme. The localscore
cross can be now seen as similar to local score estimation in hybrid
HMM/MLP system (assuming equal priors for all phoneme classes).
However, the reference template is susceptible to errors made by
MLP and thus can serve as an erroneous pronunciation model. This
can lead to mismatch and yield lower performance. In case ofKL,
the problem of matching with erroneous pronunciation is handled
by taking uncertainty in the model (which is different for different
words at each time instant) into account via entropyH(p). This is
also indicated by almost 4% drop in the performance gap for 600
words task when the CTS MLP training data increases (which in
turn can lead to better estimation of posterior features). In addition,
it can be said that when usingcross/KL as local score we are in-
troducing pronunciation model like constraints similar tostandard
HMM-based system.

Along the similar lines parallel between the system using
R-cross/RKL as local score and knowledge-based ASR ap-
proach [17] can be drawn. When estimatingR-cross/RKL the
test template feature vectorq is the reference distribution which is
same at each time frame across all the words. So, each test tem-
plate feature vector serves like a phoneme classification output or
can be seen as segmentation of the test template into phonemes
(each segment being of length 1 frame). As described earlier, the
reference template can be seen like a pronunciation model. Given
this, the estimation ofR-cross and the decoding process is equiva-
lent to lexical matching or computation of a quantity like weighted
Levenshtein distance. Alternatively, these interpretations about
cross/KL and R-cross/RKL can also be simply visualized by
converting the respective reference distribution toδ distribution by
assigning all probability mass to the best phoneme class dimension
(found byarg max operation). Systems using local scoresSKL,
wSKL, S-cross, and wS-cross can be seen as benefiting from
the mix of two different methods i.e., statistical HMM-based ASR
like pronunciation model constraint introduced by the use of local
scoreKL/cross and knowledge-based ASR like lexical matching
introduced by the use of local scoreRKL/R-cross.

4. SUMMARY

In the context of template-based ASR, we investigated the invariance
of posterior features towards data condition by using MLPs trained
with varying amount of auxiliary data and comparing it against MLP
trained on the same corpus as the test set. In conjunction with it we
also studied different local measures. Our studies showed that pos-
terior features estimated using MLP trained with sufficientamount
of auxiliary data can achieve comparable or better performance than
the MLP trained on the same corpus. In addition the studies showed
that local scores, weighted symmetric Kullback Leibler divergence
and Bhattacharya distance yield better systems. Furthermore, we
also elucidated the use of local scores based on Kullback Leibler di-
vergence and cross entropy in terms of standard HMM-based ASR
like pronunciation model constraint and knowledge-based ASR like
lexical matching. This aspect is open to future research.



Corpus CTS PB CTS PB
Hours 232 116 69 46 23 10 6 6.7 232 116 69 46 23 10 6 6.7
#Template 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

Geometric
Cosine 1.2 1.1 1.4 1.3 1.3 1.9 1.8 1.4 1.8 2.0 2.3 2.1 2.4 3.0 3.6 2.4
L1-norm 1.9 2.1 2.2 2.0 2.7 3.4 3.2 2.2 4.1 4.5 4.8 4.7 5.4 6.6 7.2 4.9
Eucl 3.4 3.2 4.0 3.7 4.2 5.5 5.9 3.1 6.0 6.1 7.0 7.0 7.8 9.8 10.7 6.4

Probabilistic

wSKL 0.9 0.9 0.9 0.9 1.0 1.1 1.2 1.1 1.4 1.4 1.6 1.6 1.7 2.2 2.6 2.0
SKL 0.9 1.0 1.0 1.1 1.0 1.3 1.5 1.3 1.6 1.7 1.9 1.8 2.0 2.5 3.0 2.3
KL 0.9 1.1 1.0 1.2 1.0 1.5 1.4 1.3 1.9 2.1 2.1 2.4 2.3 3.3 3.6 3.0
RKL 1.8 1.7 2.0 1.9 2.2 2.5 2.8 1.7 2.8 2.9 3.1 3.1 3.7 4.4 5.0 3.6
Bhatt 0.9 0.9 1.0 1.0 1.1 1.3 1.6 1.1 1.5 1.7 1.8 1.7 2.0 2.5 3.0 2.1
Hellinger 1.1 1.1 1.1 1.1 1.3 1.6 1.9 1.3 2.0 2.0 2.2 2.3 2.5 3.1 3.7 2.7

Linguistic

dotProd 1.4 1.6 1.5 1.3 1.8 2.1 2.4 1.4 2.2 2.4 2.5 2.4 2.8 3.6 4.1 2.3
cross 2.5 2.8 2.7 2.9 3.1 4.3 4.8 2.1 5.2 5.6 6.3 6.2 6.7 8.9 9.5 4.8
R-cross 1.8 1.7 2.0 1.9 2.2 2.5 2.8 1.7 2.8 2.9 3.1 3.1 3.7 4.4 5.0 3.6
S-cross 0.9 1.1 1.0 1.1 0.9 1.3 1.5 1.1 1.5 1.7 1.8 1.8 1.9 2.7 3.1 2.3
wS-cross 1.6 1.6 1.7 1.8 2.0 2.4 2.4 1.2 2.6 2.6 2.8 2.9 2.9 3.9 4.2 2.3

Table 1. WER averaged over 8 sub-sets on 75 words task. Boldface represents the best performing system across different local measures.

Corpus CTS PB CTS PB
Hours 232 116 69 46 23 10 6 6.7 232 116 69 46 23 10 6 6.7
#Template 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

Geometric
cosine 4.1 4.1 4.6 4.6 5.3 6.9 8.0 4.1 7.1 7.2 7.8 8.1 9.3 11.3 13.0 8.2
L1-norm 6.7 7.1 7.5 8.0 9.1 11.2 11.9 7.4 13.0 13.5 14.5 15.0 15.9 18.5 20.0 15.2
Eucl 9.9 9.8 10.3 11.1 12.8 16.3 16.9 9.4 16.4 16.4 17.3 18.2 20.0 24.1 26.1 17.0

Probabilistic

wSKL 2.8 2.9 3.1 3.5 3.8 4.9 5.8 3.4 5.7 6.0 6.1 6.7 7.5 9.4 10.7 7.7
SKL 3.0 3.3 3.5 3.6 4.0 5.2 6.2 3.7 6.3 6.7 6.9 7.4 8.2 10.2 11.5 8.4
KL 3.6 3.7 4.2 4.1 5.0 6.2 6.6 4.2 7.7 7.9 8.9 8.9 9.8 11.5 12.8 9.8
RKL 5.2 5.5 5.8 6.2 7.4 8.5 9.9 6.6 9.6 10.3 10.6 11.1 12.4 15.0 16.7 12.1
Bhatt 2.9 3.2 3.3 3.7 4.1 5.2 6.4 3.3 6.0 6.4 6.5 7.0 8.1 9.6 11.3 7.6
Hellinger 3.5 3.8 4.0 4.5 4.9 6.2 7.3 4.1 7.5 7.8 8.0 8.7 9.5 11.6 13.0 9.3

Linguistic

dotProd 5.3 5.7 5.9 6.3 6.9 8.5 9.6 4.4 8.5 8.9 9.5 10.0 10.8 13.1 14.8 8.5
cross 9.8 10.6 10.8 11.8 12.4 15.1 17.4 8.2 17.7 18.2 19.6 20.5 21.2 24.6 26.7 16.4
R-cross 5.2 5.5 5.8 6.2 7.4 8.5 9.9 6.6 9.6 10.3 10.6 11.1 12.4 15.0 16.7 12.1
S-cross 3.4 3.8 4.0 4.2 4.6 5.6 6.7 3.9 6.9 7.3 7.6 8.2 8.7 10.6 12.3 8.9
wS-cross 5.8 6.0 6.8 7.1 7.3 9.3 10.1 4.7 9.5 9.8 10.6 11.5 11.8 14.1 15.5 9.2

Table 2. WER for 600 words task. Boldface represents the best performing system across different local measures.
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