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ABSTRACT system is nonlinear and time-invariant, where the finite impulse re-

Wi f K v Vol . | | _sponse (FIR) filters used in feature extraction introduce memory and
e present a framework to apply Volterra series to analyze multly,e activation functions in the MLP introduce nonlinearity. Volterra

layered perceptrons trgined to estimate.t.he posterior pr.o.babilities Qeries has been used to model recurrent neural networks to analyze
phonemes in automatic speech recognition. The identified Volterr onlinear properties of electronic devices [7]. The contributions of
ker.nels reveal the speciro-temporal patterns that are Iearneq by.F &ir work include (i) formulation of a framework to apply Volterra se-
tr?{?eld system for each plhoneme. IT? demgnstrate the appl'c?jb'“%s to analyze MLPs estimating posterior probabilities of phonemes
of Volterra series, we analyze a multilayered perceptron traine USii) analytical identification of the Volterra kernels, (iii) addressing
ing Mel filter bank energy features and analyze its first order Volterrqhe effect of feature mean and variance normalization, and (iv) as an
kernels. example, application of Volterra series to analyze an MLP trained on
Index Terms— \olterra series, multilayered perceptrons, Mel filter bank energies
speech recognition

2. PHONEME POSTERIOR ESTIMATOR
1. INTRODUCTION
Fig. 1(a) is the block schematic of a typical phoneme posterior prob-

Multilayered perceptron (MLP) based acoustic modeling is being exability estimator, showing the feature extraction as well as the MLP
tensively used in the state-of-the-art automatic speech recognitiotiassifier. Auditory analysis is a common stage across almost all fea-
(ASR) [1][2]. The MLP is trained as a phoneme classifier, and esture extraction techniques. Short time Fourier analysis is performed
timates the posterior probabilities of the phonemes conditioned oan speech signal with an analysis window of typically 25 ms and
the input features. The estimates of posterior probabilities are useaiframe shift of 10 ms. Auditory filters that are equally spaced in
in ASR typically as local acoustic scores in hybrid hidden MarkovMel or Bark frequency scale are applied on the Fourier magnitude
model (HMM) - artificial neural network system [3] or as features spectrum, and log energies in the auditory channels are computed.
(after logarithm and principal component analysis transformation)  The trajectories of the log energies from the auditory analysis
to a standard HMM - Gaussian mixture model system [4]. are then processed by a linear time-invariant (LTI) system whose im-

MLP based acoustic modeling has been shown to improvgulse response is decided by the feature extraction being used. For
recognition accuracies in ASR. However, once trained, the MLP idMel frequency cepstral coefficients (MFCC), this system consists of
typically not further analyzed. The estimated posterior probabilitiegliscrete cosine transform (DCT), the FIR filters required to com-
are typically evaluated using (i) frame-level phoneme classificatiopute the delta and delta-delta coefficients, and the filters creating a
accuracy (ii) phonetic confusion matrix (iii) mutual information temporal context of features. In the case of multi-resolution relative
between the estimated posterior probabilities and its ground trutbpectra (MRASTA) features [8], the LTI system consists of a bank
phonetic labels or (iv) the final speech recognition accuracy. Whilef zero mean filters whose shape is that of either the first or second
the above metrics indicate the goodness of the phoneme posteriderivative of a Gaussian function. For Mel filter bank energy (MFB)
estimates, none of them reveal any information on the spectrdeatures, the system consists of bank of time shifted Kronecker delta
temporal patterns that the trained system has learned. functions required to create a temporal context of features. From a

One way to analyze the trained system is to treat it as a nonlineanathematical perspective, the difference between the above feature
black-box and present white Gaussian noise as input. The charact@xtraction techniques is in the impulse response of the LTI system.
istics of the unknown system can be measured by cross-correlating A three layered MLP with sigmoid nonlinearity at the hidden
the input white noise and the output of the system [5]. Howeverlayer and softmax nonlinearity at the output layer is typically used.
the three layered MLP based phoneme posterior estimator, which iBhe MLP weights are trained to minimize the cross entropy between
typically used in ASR is simple enough to be analyzed analytically.the estimated posterior probabilities and the phonetic labels.

We formulate a framework to apply Volterra series [6] to an-
alyze t_he t_rained_ MLPs. I_t is important to incgrporate the feature 3. VOLTERRA SERIES
extraction into this analysis because the identified Volterra kernels

can then be interpreted as spectro-temporal patterns. The combinﬁﬂ LTI system can be completely characterized by its impulse re-
This work was supported by the Swiss national science foiodander ~ SPONS€ function. Volterra series is an infinite series which can be

the Indo-Swiss joint research program on keyword spottitBSPOT) as ~ Used to express the input-output relationship in a nonlinear time-
well as the Swiss National Center for Competence in ReseBiCER) under  invariant system. Each term in the series is a multi-dimensional con-
the Interactive Multimodal Information Management (IM2) @i, volution between the input to the system and its \olterra kernels.
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Fig. 1. (a) Estimation of posterior probabilities of phonemes using an MLP. (i) &f¢he system that is analyzed using Volterra series.

The identified Volterra kernels completely characterize the nonlinThe variables, 7 . .. denote time, and;, k- . . . denotes the fre-

ear system. Ifz(¢) is the input to a nonlinear system ap) its

quency on the Mel or Bark scale. We identify the above Volterra

output, Volterra series expansion for the system can be expressed kernels in terms of the impulse response of the LTI system and the

y(t) = 3 G [gn, ()]

n=0

where,{G,, } is the set of Volterra functionals, ardd, } is the set

parameters of the MLP.

Even though the above system is a discrete-time system, we use
continuous-time notations through out this paper for clarity. The LTI
system, which is a part of feature extraction consists of a barik of
FIR filters, each with an impulse responsehgft), [ = 1,2... L.

of the Volterra kernels for the nonlinear system. The zeroth ordeThe component of the feature vectar, (¢) is obtained by convolv-

Volterra functional is given byGo [go, z(t)] = go ; the first and
second order functionals are given by

G (g1, 2(t)] = / g (P)a(t - 7)dr

G2 [ge, x(t)] = /}R2 g2(11, 72)x(t — 71)x(t — T2)dT1dT2

The first order Volterra functiona¥; [g1, z(¢)] is the linear convolu-
tional integral, and its kernef (¢) is the most familiar time-domain

description of an LTI system.g. impulse response function). In
the following section, we present a mathematical framework to ap-
ply Volterra series expansion to a three layered MLP estimating the

posterior probabilities of phonemes.

3.1. Volterra Kernel Identification: Three layered MLP

Fig. 1(b) shows a part of the phoneme posterior estimator that i
modeled using Volterra series. It is a multi-input, multi-output, non-
linear time-invariant system comprising of an LTI filter bank fol-

lowed by the MLP. The input to the system are log energies from the

auditory analysisc; (t), k = 1,2... K, whereK is the number of

auditory channels. The output of the system is the accumulated su

vy’ (t), 7 = 1,2... N before the output nonlinearity, wheié is the

number of output nodes in the MLP. The \Volterra series expansio

of such a system can be expressed as

K K K
VO =2+ > [ o e t-mdn + 3 Y
ki=17YT1

k1=1ko=1

/ / gil,m (11, 72) Tpy (t — T1) Ty (¢ — T2) dTadr2 + ... (1)
T1 T2

where, the termgy, gil (11), gim (11, 72) are the zeroth, first,

and second order Volterra kernels respectively of the phongme

ing the inputzy (¢) with the impulse responge (¢), and given by

uk, () = / hy (1) (t — 7) dr. )

The MLP consists of’ x L input nodes which is same as the di-
mension of the feature vectay/ hidden nodes, an¥ output nodes.
The inputs; (¢) to the hidden nonlinearity functiog;(.) is the lin-
ear combination of the input features ; (¢) weighted by the MLP
weights from the input to the hidden Iayef;,l, and given by

$i(t) =D > wiguki(t).

k=1 1=1

©)

Here, we assume that features presented to the MLP are not normal-
ized. Kernel identification for normalized features is discussed in
section 3.2. The accumulated sum at jHe output node is the lin-

gar combination of the outputs at the hidden layer and the weights
connecting the hidden and the output layer of the MLP, and given by

M
v (8) = el ¢i(si(1). (4)
1=1
BY(.) = ¢(hi + .) is the nonlinearity at th¢” hidden node, where
h; is the bias and(.) is the nonlinear activation function (sigmoid,
Iﬂyperbolic tangent). To derive the Volterra kernelg.) is approxi-
mated using a polynomial expansion of the form

@i (si (t)) = ao,i + ar,isi (t) + az,i8: (t)2 +..., (5)

where the coefficientsy ;, a1, . . . are scalar constants. Polynomial
expansion of the nonlinearity and the estimation of the coefficients
is discussed in section 3.3. By substituting (5) in (4), we obtain

yj (t) = ZC’Z [ao,i —+ ai,i Si (t) —+ az,i Si (t)2 +.. ] .

1=1

(6)



By substituting (2) and (3) in (6), and comparing the resulting equa3.3. Polynomial expansion of the activation function

tion to the Volterra series expansion in (1), we are able to identify
the Volterra kernels. The first three Volterra kernels are given by A key aspectin the derivation of the Volterra kernels is the polyno-
mial expansion (5) of the nonlinearity at the hidden nodes. Polyno-

. mial expansion of activation functions such as sigmoid is divergent
- Z ci o, @) if approximated for all possible values of the infutoo, o). How-
' ever, as a consequence of feature normalization, the operating point
on the nonlinearity is in a relatively small region containing the lin-

gl (1) Zc ar Z Wiy 1, by (T1) (8) ear part of the function.
l1=1
) M ) L ] ] 0.05
gil,w(ﬁ,Tz):ZCﬁaz,i Z Z Wiy 1y Whyty Mty (71) huy (72) (9) 004 ! ST

i=1 l1=11l2=1 I3
The intermediate steps in the derivation of the Volterra kernels are év
described in [9]. The identified Volterra kernels are functions of the 2
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impulse responses of the filters in the LTI system, and the parameters 001 a g
of the functions are determined by the weights of the MLP. 0 o5 poy
-30 -20 -10 0 10 20 -20 -10 0 10 20
sigmoid in sigmoid in
3.2. Volterra Kernel Identification: Feature Normalization @) )

In practice, the input features to the MLP are normalized to zero

mean and unit variance so that the operating point on the hiddehig. 2. (a) Histogram of the input to the sigmoid at an hidden node.
activation function is in the linear region, leading to a faster conver{b) Sigmoid function and it3"* order polynomial expansion.

gence of the back propagation training algorithm [10]. Suppose that

the feature vector componemt ; (t) has a meapy,,; and a standard Fig. 2(a) shows the histogram of the input (which includes the
deviationoy,;. By substituting the normalized feature componenthias) to the sigmoid function at a hidden node, and is obtained on the

G, (t) = (uk, (t) — pea)/ow, in (3), we obtain cross-validation data. We fit a polynomial function of certain order
K L K L in the range of values observed in the histogram, leaving out a small

si (t) = Z (1) = Wy uk () — Ay (10) fraction on the tail. The coefficients of the polynomial are optimized
1 1=1 o1 1=1 to minimize the least mean square error between the sigmoid func-

tion and its polynomial approximation in the region of interest. Fig.

Wi K L 2(b) is the plot of the sigmoid activation function and its polynomial
where, W), = —2 and Ai= ZZw,@ylﬂ (11)  approximation. Since the hidden bias is incorporated in the poly-
nomial expansion, the estimated coefficients are different for each
The parameten\; can be interpreted as the correction to the hidderftidden node.
bias introduced by the feature mean. Volterra kernels can be derived
in the same way as described in Section 3.1, but using (10) insteagl4. |nterpretation of Volterra kernels
of (3). The first two Volterra kernels are identified as

u The first order Volterra kernef, () (¢ denotes timek denotes fre-

R quency, angi denotes the phoneme) is the linear transfer function
ZCZ“ ; gkl 1) ZCJ @i Z Wy, g (11) (12) of the posterior feature extraction system. The time-reversed linear
=1 kernel can be interpreted as a matched filter capturing the spectro-
All higher order Volterra kernels are of the same mathematical formemporal patterns learned by the system. The second order kernel
as those corresponding to unnormalized features, but the weights a@g (t1,t2) for the phonemeg reveals the correlations across dif-
the coefficients of polynomial expansion are appropriately modlflederent frequency band#{, k) at different times{, t2). Similarly
by the mean and variance of the features. The new weights conneche higher order Volterra kernels reveal the higher order correlations
ing the input and hidden layer of the ML4; ; is given by (11). in the nonlinear system.

The new polynomial coefficients are weighted linear combination of
the coefficients of the polynomial expansion (5). The né&vorder
polynomial coefficient at*" hidden node is given by

=1

4. VOLTERRA ANALYSIS ON MFB FEATURES

. < (n e To demonstrate the applicability of Volterra series expansion, we an-
Qr,i = Z , |0 (=Aq) (13) alyze a posterior feature extraction system, where the MLP trained
on the standard TIMIT database using using Mel filter bank energy

It can be seen from (12) and (13) that due to feature normalizatioMFB) features. The log-energies from the 26 auditory channels
the Volterra kernels are also in the form of an infinite series. How-are presented to the MLP with a context of 170 ms. Hence the LTI
ever, in practice the order of the Volterra series as well as the Volterraystem in Fig. 1 is a bank of 17 FIR filters with shifted Kronecker
kernels is decided by the order of the polynomial approximation ofdelta impulse response functions. The input layer of the MLP con-
the hidden nonlinearity. Moreover, the coefficients; in (13) ap-  sists of 442 nodes, the hidden layer consists of 1000 nodes, and the
proach towards zero as the ordeis increased. In cases where the output layer consists of 39 nodes corresponding to the number of
features are zero mean but non-unit variance, the polynomial coeffphonemes. The training set consists of 153 minutes (375 speakers),
cients remain unchanged as = 0, but MLP weights are appropri- cross-validation set consists of 34 minutes (87 speakers), andttest se
ately scaled by the feature variance. consists of 68 minutes (168 speakers) of speech.

n=r



The Volterra kernels are derived using (12). We fit a polynomial 5. SUMMARY AND CONCLUSION

function of order to the hidden nonlinearity, leaving ot of the h in obiective of thi K ide af K |
points on the tail of the histogram. The identified kernels are applied "€ Main objective of this work was to provide a framework to apply

in the \olterra series (1) to estimate the phoneme posterior probélolterra series to analyze MLP based phoneme posterior probability

bilities. The estimated probabilities are evaluated by applying the stim{;\tion. We inplude a par.t Of. the feature gxtraction (LTI system
in isolated phoneme recognition experimeht¥iterbi algorithm is ollowing the auditory analysis) in the analysis framework because

applied on the phoneme posterior probabilities with a minimum du-the \olterra kernels can be interpreted as spectro-temporal patterns.

ration of three states per phoneme [3]. Table 1 shows the phoneme The applica_bility of'VoIterra series is demonstrated by analyz-
classification accuracy obtained by using linear and quadratic agld @" MLP trained using MFB features. However, the proposed
proximation of the MLP using Volferra series. The accuracy ob-r@meworkiis generic and can be applied where the MLP is preceded

tained using Volterra series should converge to the accuracy obtaingé{ an LTI system. \_/olterra ar_1a|ysis for MRASTA features_ [8]_is
using the MLP as the order of the series is increased. straight forwal_rd a_nd IS shoyvn in [3]. In case of MFCC, appllcat_lon
of Volterra series is not straight forward as the DCT transform mixes

the energies across different auditory channels. However, theecosin

model | series order| accuracy (%) X X ; ;

linear 1 382 transformation can be incorporated into the weights of the MLP and
quadratic 5 437 the proposed framework can be applied as discussed in [9].

MLP - 77'9 In this work, the linear Volterra kernels are interpreted as

spectro-temporal patterns. The second order kernels could reveal
useful correlations across different frequency channels atrelifte
time instants. The spectro-temporal patterns given by the Volterra
kernels may not be consistent with the existing acoustic phonetic
knowledge of phonemes in all aspects. This is because the Volterra
kernels can only reveal the information learned by the MLP to
discriminate among phonemes.

Table 1. Phoneme classification accuracy obtained by linear and
quadratic approximation of the MLP using Volterra series.

3 m

2 ol 15 Analytical identification of Volterra kernels becomes compli-

g 1 cated if the phoneme posterior estimator is more complex such as
b 05 an MLP with more than one hidden layer or a hierarchal structure
[0}

s 0 of more than one MLP. In such a case, the system can be modeled

using Wiener series [11], whose functionals are orthogonal with re-
spect to white Gaussian noise. The Wiener kernels are estimated
using cross-correlation based methods [5], and Volterra kernels can
be subsequently computed from the Wiener kernels.
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