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ABSTRACT

We present a framework to apply Volterra series to analyze multi-
layered perceptrons trained to estimate the posterior probabilities of
phonemes in automatic speech recognition. The identified Volterra
kernels reveal the spectro-temporal patterns that are learned by the
trained system for each phoneme. To demonstrate the applicability
of Volterra series, we analyze a multilayered perceptron trained us-
ing Mel filter bank energy features and analyze its first order Volterra
kernels.

Index Terms— Volterra series, multilayered perceptrons,
speech recognition

1. INTRODUCTION

Multilayered perceptron (MLP) based acoustic modeling is being ex-
tensively used in the state-of-the-art automatic speech recognition
(ASR) [1][2]. The MLP is trained as a phoneme classifier, and es-
timates the posterior probabilities of the phonemes conditioned on
the input features. The estimates of posterior probabilities are used
in ASR typically as local acoustic scores in hybrid hidden Markov
model (HMM) - artificial neural network system [3] or as features
(after logarithm and principal component analysis transformation)
to a standard HMM - Gaussian mixture model system [4].

MLP based acoustic modeling has been shown to improve
recognition accuracies in ASR. However, once trained, the MLP is
typically not further analyzed. The estimated posterior probabilities
are typically evaluated using (i) frame-level phoneme classification
accuracy (ii) phonetic confusion matrix (iii) mutual information
between the estimated posterior probabilities and its ground truth
phonetic labels or (iv) the final speech recognition accuracy. While
the above metrics indicate the goodness of the phoneme posterior
estimates, none of them reveal any information on the spectro-
temporal patterns that the trained system has learned.

One way to analyze the trained system is to treat it as a nonlinear
black-box and present white Gaussian noise as input. The character-
istics of the unknown system can be measured by cross-correlating
the input white noise and the output of the system [5]. However,
the three layered MLP based phoneme posterior estimator, which is
typically used in ASR is simple enough to be analyzed analytically.

We formulate a framework to apply Volterra series [6] to an-
alyze the trained MLPs. It is important to incorporate the feature
extraction into this analysis because the identified Volterra kernels
can then be interpreted as spectro-temporal patterns. The combined
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system is nonlinear and time-invariant, where the finite impulse re-
sponse (FIR) filters used in feature extraction introduce memory and
the activation functions in the MLP introduce nonlinearity. Volterra
series has been used to model recurrent neural networks to analyze
nonlinear properties of electronic devices [7]. The contributions of
our work include (i) formulation of a framework to apply Volterra se-
ries to analyze MLPs estimating posterior probabilities of phonemes
(ii) analytical identification of the Volterra kernels, (iii) addressing
the effect of feature mean and variance normalization, and (iv) as an
example, application of Volterra series to analyze an MLP trained on
Mel filter bank energies

2. PHONEME POSTERIOR ESTIMATOR

Fig. 1(a) is the block schematic of a typical phoneme posterior prob-
ability estimator, showing the feature extraction as well as the MLP
classifier. Auditory analysis is a common stage across almost all fea-
ture extraction techniques. Short time Fourier analysis is performed
on speech signal with an analysis window of typically 25 ms and
a frame shift of 10 ms. Auditory filters that are equally spaced in
Mel or Bark frequency scale are applied on the Fourier magnitude
spectrum, and log energies in the auditory channels are computed.

The trajectories of the log energies from the auditory analysis
are then processed by a linear time-invariant (LTI) system whose im-
pulse response is decided by the feature extraction being used. For
Mel frequency cepstral coefficients (MFCC), this system consists of
discrete cosine transform (DCT), the FIR filters required to com-
pute the delta and delta-delta coefficients, and the filters creating a
temporal context of features. In the case of multi-resolution relative
spectra (MRASTA) features [8], the LTI system consists of a bank
of zero mean filters whose shape is that of either the first or second
derivative of a Gaussian function. For Mel filter bank energy (MFB)
features, the system consists of bank of time shifted Kronecker delta
functions required to create a temporal context of features. From a
mathematical perspective, the difference between the above feature
extraction techniques is in the impulse response of the LTI system.

A three layered MLP with sigmoid nonlinearity at the hidden
layer and softmax nonlinearity at the output layer is typically used.
The MLP weights are trained to minimize the cross entropy between
the estimated posterior probabilities and the phonetic labels.

3. VOLTERRA SERIES

An LTI system can be completely characterized by its impulse re-
sponse function. Volterra series is an infinite series which can be
used to express the input-output relationship in a nonlinear time-
invariant system. Each term in the series is a multi-dimensional con-
volution between the input to the system and its Volterra kernels.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


softmax

MLP
nonlinear

feature
normalization

system
LTI 

analysis
Auditory

log−energies

features

normalized
features

phoneme

probabilites

filter bank

speech

posterior

(a)

⇒

.

.
2

1

M

2

1

MLP
input nodes

MLP
hidden nodes

MLP
output nodes

N

filter bank
log−energies

LTI
system

hl(t)

hL(t)

h1(t)

xk(t)

xK(t)

x1(t)

uk,l(t) wi
k,l c

j
i

Σ si(t)
φi(t)

i

uk,L(t)

uk,1(t)

j

yj(t)Σ

(b)

Fig. 1. (a) Estimation of posterior probabilities of phonemes using an MLP. (b) Part of the system that is analyzed using Volterra series.

The identified Volterra kernels completely characterize the nonlin-
ear system. Ifx(t) is the input to a nonlinear system andy(t) its
output, Volterra series expansion for the system can be expressed as

y(t) =

∞
X

n=0

Gn [gn, x(t)]

where,{Gn} is the set of Volterra functionals, and{gn} is the set
of the Volterra kernels for the nonlinear system. The zeroth order
Volterra functional is given byG0 [g0, x(t)] = g0 ; the first and
second order functionals are given by

G1 [g1, x(t)] =

Z

R

g1(τ)x(t − τ)dτ

G2 [g2, x(t)] =

Z

R2

g2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

The first order Volterra functionalG1 [g1, x(t)] is the linear convolu-
tional integral, and its kernelg1(t) is the most familiar time-domain
description of an LTI system (i.e. impulse response function). In
the following section, we present a mathematical framework to ap-
ply Volterra series expansion to a three layered MLP estimating the
posterior probabilities of phonemes.

3.1. Volterra Kernel Identification: Three layered MLP

Fig. 1(b) shows a part of the phoneme posterior estimator that is
modeled using Volterra series. It is a multi-input, multi-output, non-
linear time-invariant system comprising of an LTI filter bank fol-
lowed by the MLP. The input to the system are log energies from the
auditory analysisxk(t), k = 1, 2 . . . K, whereK is the number of
auditory channels. The output of the system is the accumulated sum
yj(t), j = 1, 2 . . . N before the output nonlinearity, whereN is the
number of output nodes in the MLP. The Volterra series expansion
of such a system can be expressed as

yj (t) = gj
0

+
K
X

k1=1

Z

τ1

gj

k1
(τ1) xk1

(t − τ1) dτ1 +
K
X

k1=1

K
X

k2=1

Z

τ1

Z

τ2

gj

k1k2
(τ1, τ2) xk1

(t − τ1) xk2
(t − τ2) dτ1dτ2 + . . . (1)

where, the termsgj
0
, gj

k1
(τ1), gj

k1k2
(τ1, τ2) are the zeroth, first,

and second order Volterra kernels respectively of the phonemej.

The variablesτ1, τ2 . . . denote time, andk1, k2 . . . denotes the fre-
quency on the Mel or Bark scale. We identify the above Volterra
kernels in terms of the impulse response of the LTI system and the
parameters of the MLP.

Even though the above system is a discrete-time system, we use
continuous-time notations through out this paper for clarity. The LTI
system, which is a part of feature extraction consists of a bank ofL
FIR filters, each with an impulse response ofhl(t), l = 1, 2 . . . L.
The component of the feature vectoruk,l (t) is obtained by convolv-
ing the inputxk(t) with the impulse responsehl(t), and given by

uk,l (t) =

Z

τ

hl (τ) xk (t − τ) dτ. (2)

The MLP consists ofK × L input nodes which is same as the di-
mension of the feature vector,M hidden nodes, andN output nodes.
The inputsi (t) to the hidden nonlinearity functionφi(.) is the lin-
ear combination of the input featuresuk,l(t) weighted by the MLP
weights from the input to the hidden layerwi

k,l, and given by

si (t) =
K
X

k=1

L
X

l=1

wi
k,luk,l (t) . (3)

Here, we assume that features presented to the MLP are not normal-
ized. Kernel identification for normalized features is discussed in
section 3.2. The accumulated sum at thejth output node is the lin-
ear combination of the outputs at the hidden layer and the weights
connecting the hidden and the output layer of the MLP, and given by

yj (t) =
M
X

i=1

cj
i φi (si (t)) . (4)

φi(.) = φ(hi + .) is the nonlinearity at theith hidden node, where
hi is the bias andφ(.) is the nonlinear activation function (sigmoid,
hyperbolic tangent). To derive the Volterra kernels,φi(.) is approxi-
mated using a polynomial expansion of the form

φi (si (t)) = a0,i + a1,isi (t) + a2,isi (t)2 + . . . , (5)

where the coefficientsa0,i, a1,i . . . are scalar constants. Polynomial
expansion of the nonlinearity and the estimation of the coefficients
is discussed in section 3.3. By substituting (5) in (4), we obtain

yj (t) =
M
X

i=1

cj
i

ˆ

a0,i + a1,i si (t) + a2,i si (t)2 + . . .
˜

. (6)



By substituting (2) and (3) in (6), and comparing the resulting equa-
tion to the Volterra series expansion in (1), we are able to identify
the Volterra kernels. The first three Volterra kernels are given by

gj
0

=
M
X

i=1

cj
i a0,i (7)

gj

k1
(τ1) =

M
X

i=1

cj
i a1,i

L
X

l1=1

wi
k1l1

hl1 (τ1) (8)

gj

k1k2
(τ1, τ2)=

M
X

i=1

cj
ia2,i

L
X

l1=1

L
X

l2=1

wi
k1l1

wi
k2l2

hl1 (τ1) hl2 (τ2) (9)

The intermediate steps in the derivation of the Volterra kernels are
described in [9]. The identified Volterra kernels are functions of the
impulse responses of the filters in the LTI system, and the parameters
of the functions are determined by the weights of the MLP.

3.2. Volterra Kernel Identification: Feature Normalization

In practice, the input features to the MLP are normalized to zero
mean and unit variance so that the operating point on the hidden
activation function is in the linear region, leading to a faster conver-
gence of the back propagation training algorithm [10]. Suppose that
the feature vector componentuk,l(t) has a meanµk,l and a standard
deviationσk,l. By substituting the normalized feature component
ûk,l (t) = (uk,l (t) − µk,l)/σk,l in (3), we obtain

si (t) =
K
X

k=1

L
X

l=1

wi
k,l ûk,l(t) =

K
X

k=1

L
X

l=1

ŵi
k,l uk,l (t) − ∆i (10)

where, ŵi
k,l =

wi
k,l

σk,l

, and ∆i =
K
X

k=1

L
X

l=1

wi
k,l

µk,l

σk,l

(11)

The parameter∆i can be interpreted as the correction to the hidden
bias introduced by the feature mean. Volterra kernels can be derived
in the same way as described in Section 3.1, but using (10) instead
of (3). The first two Volterra kernels are identified as

gj
0

=

M
X

i=1

cj
i â0,i ; gj

k1
(τ1) =

M
X

i=1

cj
i â1,i

L
X

l1=1

ŵi
k1l1

hl1 (τ1) (12)

All higher order Volterra kernels are of the same mathematical form
as those corresponding to unnormalized features, but the weights and
the coefficients of polynomial expansion are appropriately modified
by the mean and variance of the features. The new weights connect-
ing the input and hidden layer of the MLP̂wi

k,l is given by (11).
The new polynomial coefficients are weighted linear combination of
the coefficients of the polynomial expansion (5). The newrth order
polynomial coefficient atith hidden node is given by

âr,i =

∞
X

n=r

 

n

r

!

an,i (−∆i)
n−r (13)

It can be seen from (12) and (13) that due to feature normalization,
the Volterra kernels are also in the form of an infinite series. How-
ever, in practice the order of the Volterra series as well as the Volterra
kernels is decided by the order of the polynomial approximation of
the hidden nonlinearity. Moreover, the coefficientsan,i in (13) ap-
proach towards zero as the ordern is increased. In cases where the
features are zero mean but non-unit variance, the polynomial coeffi-
cients remain unchanged as∆i = 0, but MLP weights are appropri-
ately scaled by the feature variance.

3.3. Polynomial expansion of the activation function

A key aspect in the derivation of the Volterra kernels is the polyno-
mial expansion (5) of the nonlinearity at the hidden nodes. Polyno-
mial expansion of activation functions such as sigmoid is divergent
if approximated for all possible values of the input(−∞,∞). How-
ever, as a consequence of feature normalization, the operating point
on the nonlinearity is in a relatively small region containing the lin-
ear part of the function.
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Fig. 2. (a) Histogram of the input to the sigmoid at an hidden node.
(b) Sigmoid function and its3rd order polynomial expansion.

Fig. 2(a) shows the histogram of the input (which includes the
bias) to the sigmoid function at a hidden node, and is obtained on the
cross-validation data. We fit a polynomial function of certain order
in the range of values observed in the histogram, leaving out a small
fraction on the tail. The coefficients of the polynomial are optimized
to minimize the least mean square error between the sigmoid func-
tion and its polynomial approximation in the region of interest. Fig.
2(b) is the plot of the sigmoid activation function and its polynomial
approximation. Since the hidden bias is incorporated in the poly-
nomial expansion, the estimated coefficients are different for each
hidden node.

3.4. Interpretation of Volterra kernels

The first order Volterra kernelgj

k(t) (t denotes time,k denotes fre-
quency, andj denotes the phoneme) is the linear transfer function
of the posterior feature extraction system. The time-reversed linear
kernel can be interpreted as a matched filter capturing the spectro-
temporal patterns learned by the system. The second order kernel
gj

k1k2
(t1, t2) for the phonemej reveals the correlations across dif-

ferent frequency bands (k1, k2) at different times (t1, t2). Similarly
the higher order Volterra kernels reveal the higher order correlations
in the nonlinear system.

4. VOLTERRA ANALYSIS ON MFB FEATURES

To demonstrate the applicability of Volterra series expansion, we an-
alyze a posterior feature extraction system, where the MLP trained
on the standard TIMIT database using using Mel filter bank energy
(MFB) features. The log-energies from the 26 auditory channels
are presented to the MLP with a context of 170 ms. Hence the LTI
system in Fig. 1 is a bank of 17 FIR filters with shifted Kronecker
delta impulse response functions. The input layer of the MLP con-
sists of 442 nodes, the hidden layer consists of 1000 nodes, and the
output layer consists of 39 nodes corresponding to the number of
phonemes. The training set consists of 153 minutes (375 speakers),
cross-validation set consists of 34 minutes (87 speakers), and test set
consists of 68 minutes (168 speakers) of speech.



The Volterra kernels are derived using (12). We fit a polynomial
function of order3 to the hidden nonlinearity, leaving out5% of the
points on the tail of the histogram. The identified kernels are applied
in the Volterra series (1) to estimate the phoneme posterior proba-
bilities. The estimated probabilities are evaluated by applying them
in isolated phoneme recognition experiments1. Viterbi algorithm is
applied on the phoneme posterior probabilities with a minimum du-
ration of three states per phoneme [3]. Table 1 shows the phoneme
classification accuracy obtained by using linear and quadratic ap-
proximation of the MLP using Volterra series. The accuracy ob-
tained using Volterra series should converge to the accuracy obtained
using the MLP as the order of the series is increased.

model series order accuracy (%)
linear 1 38.2

quadratic 2 43.7
MLP ∞ 77.9

Table 1. Phoneme classification accuracy obtained by linear and
quadratic approximation of the MLP using Volterra series.
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Fig. 3.Linear Volterra kernels for phonemes /iy/ (left) and /eh/ (right)

Fig. 3 shows the first order Volterra kernel for phonemes /iy/
(e.g. beat) and /eh/ (e.g. bet). It can be seen that in the case of
phoneme /iy/, the system has learned to emphasize 200-300 Hz fre-
quency band which corresponds to its first formant. In case of /eh/,
the system has learned to emphasize slightly higher frequency region
of 400-500 Hz, which corresponds to its first formant. Fig. 4 shows
the first order Volterra kernel for the phonemes /s/ (e.g. see) and /z/
(e.g. zoo). It can be seen that for both these phonemes, the system
has learned to emphasize the higher frequency regions. However,
the unvoiced phoneme /s/ is distinguished from the voiced phoneme
/z/ by the lack of energy in its low frequency region.
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1Phoneme classification facilitates accurate analysis of theresults as in-
sertions and deletions are avoided. However, the trends observed in phoneme
classification are also observed in phoneme recognition experiments.

5. SUMMARY AND CONCLUSION

The main objective of this work was to provide a framework to apply
Volterra series to analyze MLP based phoneme posterior probability
estimation. We include a part of the feature extraction (LTI system
following the auditory analysis) in the analysis framework because
the Volterra kernels can be interpreted as spectro-temporal patterns.

The applicability of Volterra series is demonstrated by analyz-
ing an MLP trained using MFB features. However, the proposed
framework is generic and can be applied where the MLP is preceded
by an LTI system. Volterra analysis for MRASTA features [8] is
straight forward and is shown in [9]. In case of MFCC, application
of Volterra series is not straight forward as the DCT transform mixes
the energies across different auditory channels. However, the cosine
transformation can be incorporated into the weights of the MLP and
the proposed framework can be applied as discussed in [9].

In this work, the linear Volterra kernels are interpreted as
spectro-temporal patterns. The second order kernels could reveal
useful correlations across different frequency channels at different
time instants. The spectro-temporal patterns given by the Volterra
kernels may not be consistent with the existing acoustic phonetic
knowledge of phonemes in all aspects. This is because the Volterra
kernels can only reveal the information learned by the MLP to
discriminate among phonemes.

Analytical identification of Volterra kernels becomes compli-
cated if the phoneme posterior estimator is more complex such as
an MLP with more than one hidden layer or a hierarchal structure
of more than one MLP. In such a case, the system can be modeled
using Wiener series [11], whose functionals are orthogonal with re-
spect to white Gaussian noise. The Wiener kernels are estimated
using cross-correlation based methods [5], and Volterra kernels can
be subsequently computed from the Wiener kernels.
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