

I

C
O

M
M

U
N

C
A

T
I

O
N

I
D

I
A

P

Av. des Prés−Beudin 20

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

A Weighted Finite State

Transducer tutorial

Philip N. Garner a

IDIAP–Com 08-03

December 2007

a IDIAP Research Institute

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147957326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IDIAP–Com 08-03 1

Contents

1 Background 2

1.1 ASR . 2

1.2 Finite State Transducers . 3

1.3 FSTs and ASR . 3

2 Structural optimisation 5

2.1 Introduction . 5

2.2 Determinisation . 5

2.3 Auxiliary labels . 6

3 Context dependency 6

4 Weighted Finite State Transducers 7

4.1 Introduction . 7

4.2 Weight pushing . 7

4.3 A probabilistic interpretation . 8

5 Stochastic optimisation 8

5.1 Stochasticity . 8

5.2 Stochastic weight pushing . 9

5.3 Fudge factors . 9

6 Composition walk-through 9

6.1 Introduction . 9

6.2 Grammar . 10

6.3 Lexicon . 11

6.4 Lexicon-Grammar composition . 11

6.5 Context dependency . 12

6.6 Context dependency composition . 13

7 Silence modelling 13

7.1 Short pause in context dependency . 15

7.2 Experimental evaluation . 16

7.3 Asymptotic performance . 17

8 Conclusions and recommendations 18

8.1 Summary . 18

8.2 Future work . 18

A Improvements to Juicer 19

A.1 Introduction . 19

A.2 FST structural changes . 19

A.3 FST probabilistic changes . 20

A.4 Decoder changes . 20

B Drawing the graphs 20

2 IDIAP–Com 08-03

1 Background

1.1 ASR

The object of Automatic Speech Recognition (ASR) is normally to recognise words given some audio
signal. This is typically represented probabilistically as a maximisation problem: choose the word
sequence, ĝ, with the highest likelihood given an acoustic sequence a. The symbol g is used to
suggest more general grammar entities, and to fit with notation in the literature.

As the recognition model is based on the acoustics having been generated dependent upon the
word sequence (a generative model), the direction of inference is reversed to reflect this using Bayes’s
theorem thus:

ĝ = argmax
g∈G

f (g | a) = argmax
g∈G

f (a | g) f (g) (1)

where G is the set of all possible word sequences, and the denominator of Bayes’s theorem is ignored
as it just affects the numerical value, not the optimal word sequence. Note that parameters or training
data are normally required, but omitted for clarity.

In order to relate the audio signal to the words, the words are broken down into component parts,
typically phones, context dependent phones, and ultimately states of an HMM. Noting first that the
word sequence can be described in terms of one or more phone sequences, l, (or lexical sequences),

f (a | g) =
∑

l∈L

f (a | l, g) f (l | g) ,

where L is the set of all possible lexical (phone) sequences. As a is conditionally independent of g

given l, the first term in the summation simplifies to f (a | l).
Next note that phone sequence can be broken down into a sequence c of context dependent phones

f (a | l) =
∑

c∈C

f (a | c, l) f (c | l) ,

where C is the set of context dependent phone sequences and the same simplification can be applied
by comparison with the previous equation.

Finally, note that the context dependent phone sequence can be represented by a sequence, h, of
PDFs arranged in a set of HMMs.

f (a | c) =
∑

h∈H

f (a | h, c) f (h | c) ,

where, as above, H is the set of all possible PDF sequences, and the conditional independence simpli-
fication applies.

Substituting these components into the original expression yields

ĝ = argmax
g∈G

∑

l∈L

∑

c∈C

∑

h∈H

f (a | h) f (h | c) f (c | l) f (l | g) f (g) . (2)

ASR is not normally expressed in the above terms because the summations either correspond
to only a single possible sequence (in the case of context dependency), or are approximated by a
maximisation via the Viterbi algorithm. However, the formulation will be useful in the following
discussion. In summary, note that each of the sets G, L, C and H are capable of representing two
distinct things:

1. A ‘structural’ or ‘grammatical’ restriction concerning which entities can follow which other
entities.

2. A probabilistic restriction that favours some grammatical sequences over others.

IDIAP–Com 08-03 3

1.2 Finite State Transducers

It has long been common to represent the allowable word sequences, G, using a grammar. In general,
the grammar can be represented by a directed graph with probabilities on the arcs, and words on
either the arcs or the vertices. Even N-gram language models, which are typically not thought of as
graphs, can be represented in this way [1]. In the probabilistic interpretation, the graph is thought
of as a generative model, and is hence a Finite State Machine (FSM), also known as a Finite State
Automaton (FSA). In FSM terminology, the arcs are transitions and the vertices are states. There
are two types of FSM:

1. In a Moore1 machine, an output is produced for each state.

2. In a Mealy2 machine, an output is produced for each transition.

It is always possible to write a Moore machine as a Mealy machine by moving the output on each
state either forward to each outgoing transition or backward to each incoming transition. Writing a
Mealy machine as a Moore machine is also trivial, but can require the introduction of extra states.

Now consider what happens if we take a FSM, but add an input associated with each output. The
resulting automaton can still generate output, but can be constrained by an external input sequence.
Such a FSM is known as a Finite State Transducer (FST).

For the purposes of ASR, we define a FST to be a Mealy machine where each transition has an input
and an output. Further, each input or output can be labelled with the null label ǫ (epsilon). Epsilon
input labels consume no input, and epsilon output labels produce no output. Epsilon transitions
enable FSTs where the input sequence is not the same length as the output sequence.

This type of FST was developed for ASR purposes at AT&T by Mehryar Mohri and colleagues
and is documented extensively in a series of papers, a representative summary being Mohri et al. [2].

In FST theory, a FSM is known also as a Finite State Acceptor.

1.3 FSTs and ASR

Consider an ASR situation where a grammar is used to restrict the possible word sequences to be
recognised. If the grammar can be represented as a FSM, and since a FST is a superset of a FSM,
we can use a FST, G, to represent this grammar. Such a FST is shown in figure 1. The grammar has

0 1
<s>:<s>

2
NO:NO

YES:YES
3

</s>:</s>

Figure 1: Simple yes no grammar.

start and end symbols, which can be mapped to silence later, and simply allows one or other of the
words ‘YES’ or ‘NO’. The grammar has ‘matched’ input and output symbols, the reason for which
will become clear shortly.

Now consider the lexicon, L. A lexicon is more often known as a dictionary, and not generally
represented as a FST. However, figure 2 illustrates how it can be represented as such. Notice that
the symbol <eps> is used to represent the null label, ǫ. The transition from state 4 back to state 0 is
known as a ‘closure’, and allows the lexicon to represent a sequence of transductions.

The reason for the representation as a FST becomes clear in the context of FST composition.
Composition takes two transducers and finds all possible paths though each transducer such that the
output labels of the first and the input labels of the second produce the same sequence. The output
is another transducer representing those matching paths, with the input labels of the first transducer

1Mnemonic: mOOre, On circles (states)
2Mnemonic: mEAly, Every Arc

4 IDIAP–Com 08-03

0

1y:YES

3
n:NO

4
sil:<s>

sil:</s>

2eh:<eps>

ow:<eps>

<eps>:<eps>

s:<eps>

Figure 2: Simple lexicon transducer.

and the outputs of the second. The matching labels are annihilated. Mathematically, the composition
of lexicon L and grammar G is written

L ◦ G. (3)

Practically, it results in the transducer shown in figure 3.

0 1
sil:<s>

2n:NO

4

y:YES
3

ow:<eps>

5
eh:<eps>

6
sil:</s>

s:<eps>

Figure 3: Transducer resulting from composition of grammar and lexicon.

Notice that this is simply a rather obvious substitution of lexical elements for words. This sort of
thing can be done in an ASR decoder without great strain on computing resources. The real power
of FSTs, however, is illustrated as follows. Imagine that it is desirable to represent an abbreviation
of the word ‘YES’ without the final ‘s’ sound. This might be pronounced ‘YEAH’, and it might be
either a distinct word, or an alternative pronunciation. The extra word and pronunciation can be
trivially added to G and L as shown in figure 4, but the composition results in the transducer in

0 1
<s>:<s>

2

NO:NO

YEAH:YEAH

YES:YES

3
</s>:</s>

0

1y:YES

3n:NO

5sil:<s>

sil:</s>

4

y:YEAH

2eh:<eps>

ow:<eps>

<eps>:<eps>

s:<eps>

eh:<eps>

Figure 4: Grammar and lexicon transducers for extra pronunciation.

figure 5. Notice that the result is not just a simple substitution; the composition algorithm has also

IDIAP–Com 08-03 5

0 2
sil:<s>

3n:NO

4

y:<eps> 6

ow:<eps>

9
eh:<eps>

8
sil:</s><eps>:YEAH

s:YES

Figure 5: Transducer representing words ‘YES’, ‘NO’ and ‘YEAH’.

taken advantage of the shared pronunciation of two words by ‘pushing’ the labels ‘YES’ and ‘YEAH’
towards the end of the transducer. This results in compression of the final transducer and (crucially) a
reduction of the decoder search space. It should be clear by inspection that if the two pronunciations
had been introduced as pronunciations of the same word, then that word could have been left at the
beginning of the transducer.

This effect, known as prefixing, is directly analogous to the tree structured lexicon that is typically
used in ASR decoders (see for instance Haeb-Umbach and Ney [3], who attribute it to Bahl et al.). In
addition, the composition generally performs suffixing. Both effects can be enhanced using minimi-
sation algorithms. This type of optimisation has been shown to significantly improve ASR decoder
performance (in terms of speed) for marginal increases in memory [4, 5].

Many of the main benefits of the use of FSTs come from the lexicon compression. However,
another benefit is the unified approach to representation. This is evident in the fact that both the
context dependency and the HMMs themselves can also be represented as transducers. The general
ASR grammar composition can then be written

H ◦ C ◦ L ◦ G. (4)

A discussion of the context dependency transducer, C, only makes sense after some discussion of
structural optimisation.

2 Structural optimisation

2.1 Introduction

In this section, the structural aspects of WFSTs are discussed, particularly determinisation.

2.2 Determinisation

Composition works by finding common paths through the output labels of one FST and the input
labels of another. It follows that reducing the number of such paths will reduce the final size of
the composed FST. One way to reduce the number of common paths is known as determinisation.
Determinisation is discussed at length in the literature from AT&T in the context of general FST
theory [6], and an algorithm is provided to determinise a non-deterministic FST.

A deterministic FSM is one where any given sequence can correspond to only one path through
the FSM. One way to achieve this is to make sure that each transition out of any given state has a
different label. When FSTs are used instead of FSMs, it is possible to consider three different types
of determinism:

1. w.r.t. the input labels.

2. w.r.t. the output labels.

3. w.r.t. both the input and output labels combined.

6 IDIAP–Com 08-03

By convention, determinism in FSTs refers to the first case, i.e., the input labels only. The second
case is achieved by defining the inverse of FST X to be X−1, where the input and output labels are
swapped. A FST can then be said to have a deterministic inverse. The third case is achieved in
software by re-coding the FST with output labels merged into the input labels, i.e., encoding as an
acceptor.

With the above in mind, it now possible to make a key observation:

The composition X ◦ Y will proceed more easily and to a smaller result if one or both
of X−1 and Y are deterministic.

Another key point about determinisation is that the composition of two deterministic transducers is
determinisable. Hence, in a transducer hierarchy where the composition

X ◦ (Y ◦ Z) (5)

is required, if both Y and Z are both deterministic, then Y ◦ Z can be determinised and the final
transducer is then determinisable.

2.3 Auxiliary labels

If a FST is not deterministic, it can be worth (in terms of FST size and decoding speed) going to
some trouble to force it to be deterministic. One trick to aid this process is the use of auxiliary labels.
These labels are added during the generation of the initial FST, and can either be removed at some
stage in the composition process, or left in place to be used by the decoder.

There are two exemplary situations where auxiliary labels are of use:

1. In the back-off transitions of FSTs representing n-gram language models.

2. In the pronunciations of homophones in the lexicon FST.

In each case, the auxiliary labels render a non-deterministic FST either deterministic or determinisable,
or ensure that the result of a subsequent composition is determinisable. Their use is illustrated in the
composition walk-through below.

3 Context dependency

Context dependency is not normally represented as a FST, but it can be done, albeit not trivially. It is
discussed by Riley et al. [7]. Note that the transducer in figure 4 of that paper is synchronous, i.e., the
input phone corresponds to the centre phone of the output triphone. It also requires determinisation.

Typically, a FST is required that is the inverse of the one in [7], with input context dependent
phones and output phones. Further, an algorithm exists that produces a FST that does not require
determinisation. The output of such an algorithm is illustrated in figure 6. The central state labeled
‘sil’ (silence phone) is a ‘context independent’ state; all transitions leaving this state output the context
independent label ‘sil’ and lead to states on a first concentric circle. All transitions leaving the first
concentric circle either ‘back-off’ to the context independent state, or lead to context dependent states
on another (outer) concentric circle. In general, sequences of context dependent phones are matched
by moving around the outer concentric circle only. This figure is a compromise between readability
and completeness; many of these outer circle transitions are not shown.

Notice that each state of this example FST has exactly 3 exit transitions, each labelled on the
output with one of the 3 phones in the example (x, y and sil). This means that the FST is deterministic
w.r.t its output (or, equivalently, has a deterministic inverse).

Notice also that the context dependent input labels are delayed by one phone w.r.t. their corre-
sponding output labels. This is of no concern normally as FST composition tends to push labels out
of synchronisation. However, it can cause difficulties with context free phones such as the short pause
used in HTK systems.

IDIAP–Com 08-03 7

sil

<eps>:sil

sil:sil

sil-x

sil:x
sil:<eps>

sil-y

sil:y

sil-x+sil:sil

x-xsil-x+x:x

x-y

sil-x+y:y

sil-y+sil:sil

y-x
sil-y+x:x

y-y

sil-y+y:y

x-x+x:x

x-x+y:y

y-y+x:x

y-y+y:y

Figure 6: Skeleton of a context dependency FST. Note that many transitions from the outer states
are not drawn.

4 Weighted Finite State Transducers

4.1 Introduction

FSTs as described so far are capable of representing the structural aspects of ASR grammars. The
probabilistic aspects are now addressed.

Probability in general is represented rather trivially by associating a weight with each FST tran-
sition, the resulting FST being known as a Weighted FST or WFST. The general theory of WFSTs
does not specify the meaning of the weights. Rather, it specifies an abstract mathematical concept
known as a semi-ring that in turn specifies how weights can be combined during WFST operations,
notably composition and determinisation. From the point of view of ASR, the weights are always
(natural) logarithms of probabilities, and this confines the discussion to two possible semi-rings:

1. The log semi-ring, where weights are negative log probabilities (i.e., positive numbers) and
combine as is usual in ASR software. Weights in series add, corresponding to multiplication
of probabilities, and weights in parallel are subject to log-addition (exponential followed by
addition and logarithm).

2. The tropical semi-ring, which is identical to the log semi-ring except that parallel weights com-
bine using a ‘max’ operation. This is based on the assumption that log(a + b) is approximated
by the larger of log(a) and log(b). This is related to the score used in Viterbi decoding. The
word ‘tropical’ refers to the fact that its original proponent was Brazilian.

4.2 Weight pushing

The addition of weights to a FST introduces difficulties in minimisation. Simply put, if two paths have
identical labels but different weights, then they cannot be combined. The solution is to recognise that
WFSTs are defined such that the alignment of the weights and labels is not important, just the total

8 IDIAP–Com 08-03

weight over a path. Weights can be shifted along a path arbitrarily without changing the function of
the WFST.

Weight pushing is the name given to this shifting of weight. It is typically applied in such a way
as to make parallel paths identical so they can be combined. Minimisation of WFSTs is hence reliant
upon weight pushing.

4.3 A probabilistic interpretation

The Weighted FST representation has a very useful probabilistic interpretation, aside from that of
simply representing probability. In the derivation of equation 2, the lexicon, context and HMM
sequences are effectively nuisance variables that are summed over. Although the WFST composition
process does not do a complete summation (it only sums over identical labels), it compresses the
required summations into a single summation, as shown in equation 6,

∑

l∈L

∑

c∈C

∑

h∈H

f (a | h) f (h | c) f (c | l) f (l | g) f (g) =
∑

h∈H′

f (a | h) f (h | g) f (g) , (6)

i.e., the annihilation of labels in composition is entirely analogous to the summation over nuisance
parameters.

The meanings of the individual transducers are illustrated in table 1. Notice that the top level G

WFST Represents
G f (g) (or f (g, g))
L f (l | g)
C f (c | l)
H f (h | c)

L ◦ G f (l, g) or f (l | g) f (g)
C ◦ L ◦ G f (c, g) or f (c | g) f (g)

H ◦ C ◦ L ◦ G f (h, g) or f (h | g) f (g)

Table 1: Various WFSTs and the probabilities they represent.

WFST represents an unconditional probability, whereas the other WFSTs are conditional densities.
Compositions yield joint densities. The joint and conditional densities are particularly appealing in
the context of WFSTs as there is a clear relationship with the input and output labels. In this sense,
we can think of the WFST G as representing the joint density f (g, g).

5 Stochastic optimisation

5.1 Stochasticity

The above probabilistic interpretation of WFSTs suggests how to normalise the probabilities for each
of the WFSTs in the composition:

• G represents all possible values of the unconditional probability f (g). The sum of the proba-
bilities of all distinct paths should be unity.

• L represents all possible values of the conditional probability f (l | g), with the input and output
labels representing l and g respectively. The weights of all distinct paths corresponding to
any particular word sequence g should add to unity. This mandates the use of pronunciation
probabilities.

• The probabilities represented by C and H are unity as there is a direct mapping from phones to
context dependent phones and then to HMM states. In fact, those transducers represent label
transductions rather than probabilistic ones.

IDIAP–Com 08-03 9

Generally speaking, in order for the above sum to unity conditions to remain true, the sum of
the probabilities of all transitions leaving a particular state should add to unity. This is clear when
the FSM is thought of as a generator. At each state a decision is taken about which path to follow,
and the sum of the probabilities of each decision should be unity. This is the stochasticity constraint.
In case of L, the stochasticity constraint applies to paths with the same output label, reflecting the
conditional probability f (l | g).

The above also follows trivially for the context dependency transducer, C. In this case all proba-
bilities are unity as there is only one possible conditional phone sequence for a given lexical sequence.
The HMM transducer, H, is trained as a FSM in the first place; all the transition probabilities are
normalised naturally.

5.2 Stochastic weight pushing

As described above, G and L can certainly be constructed stochastically. However, determinisation,
composition and related algorithms do not follow stochasticity constraints. Rather, they make sure
that the probability of any particular path is maintained. In this sense, the composition result is
not necessarily stochastic. This can be illustrated with reference to figure 5. As drawn, the FST
is not weighted. Correct stochastic weighting requires that the transitions 2 → 3 and 2 → 4 have
probabilities adding to unity. Notice, however, that WFST theory also allows such weights to be on
transitions 3 → 6 or 4 → 5 whilst still maintaining the weight of each path.

The solution to the above is the weight pushing described by Mohri and Riley [8] (also described
in their journal articles). Note that weight pushing is integral to optimisation of WFSTs, but this
‘stochastic’ pushing is distinct. It pushes weights back towards the beginning of the WFST such that
stochasticity holds at each state. In this sense, it corrects for the other algorithms being non-stochastic.

Mohri and Riley strongly suggest that stochasticity has important implications for pruning in ASR
decoders. It is directly analogous to the language model look-ahead used in conventional decoders
[9]. However, in the context of Juicer, on the language models considered so far, we find no speed
improvements over conventional weight pushing.

5.3 Fudge factors

ASR decoders tend to make use of two so called fudge factors: a language model match factor and an
insertion penalty. Together, they define a linear transform that scales and shifts the language model
probabilities.

These fudge factors are normally applied to the language model directly, and it is tempting to
apply them to the G FST. However, this breaks stochasticity. To maintain stochasticity, they should
be applied after composition and weight pushing. The multiplicative language model match factor
can be applied to all weights. The insertion penalty must be applied to only those transitions with
word output labels.

That said, the same comment as for weight pushing applies: In the context of Juicer, on the
language models considered so far, we find no speed improvements over applying the fudge factors to
the grammar transducer itself.

6 Composition walk-through

6.1 Introduction

This section presents a walk-through of the construction of a toy stochastic n-gram transducer. The
aim is to make explicit some of the techniques summarised earlier, to introduce other techniques that
are more explicit by example, and to warn of potential pitfalls.

10 IDIAP–Com 08-03

6.2 Grammar

In this example, almost the same ‘YES’ ‘NO’ lexicon as before is used, but this time with a completely
hypothetical n-gram grammar:

\data\

ngram 1=5

ngram 2=6

\1-grams:

-1.3780 </s> 0.0000

-99.999 <s> -2.2370

-3.0641 NO -1.0749

-4.6249 YEAH -0.6928

-3.6249 YES -0.6928

\2-grams:

-2.7028 <s> NO

-3.7233 <s> YES

-2.1809 NO </s>

-2.0000 NO NO

-0.7300 YES </s>

-2.3000 YES YES

Note that this was generated by taking a real n-gram grammar and removing most of the words. No
attempt has been made to normalise the probabilities. The transducer representation of this grammar
is shown in figure 7. Note also the slight obfuscation because the ARPA format probabilities are base
10 logarithms whereas the transducer uses negative natural logarithms.

0 2
<s>:<s>/0

1
#phi:<eps>/5.151

3

NO:NO/6.223

5

YES:YES/8.572

6/0

</s>:</s>/3.173

NO:NO/7.054

4YEAH:YEAH/10.64

YES:YES/8.347

#phi:<eps>/2.474 </s>:</s>/5.021

NO:NO/4.605

#phi:<eps>/1.595

#phi:<eps>/1.595

</s>:</s>/1.680

YES:YES/5.296

Figure 7: N-gram grammar transducer.

Clearly, the transducer contains as many transitions as there are probabilities in the ARPA format
language model. It also contains auxiliary labels; these are to determinise the transducer.

Each back-off transition is associated with an ǫ output label and a φ input label.

The function of the φ labels is illustrated by the following example: In, say, even the simple sequence
‘<s> yes </s>’, the word ‘YES’ could be generated by either of two transitions in the FST in figure
7: 1 → 5 or 2 → 5. The first is a bigram and the second is a back-off (2 → 1) followed by a unigram.

IDIAP–Com 08-03 11

The φ label on the back-off transition distinguishes the two alternatives and hence renders the FST
deterministic.

6.3 Lexicon

A suitable lexicon FST is shown in figure 8. It is essentially like the one in figure 4, except that:

0

#phi:#phi/0

1i:YES/0.693

4y:YES/0.693

7
y:YEAH/0

9
n:NO/0

11

sil:<s>/0

12sil:</s>/0

2eh:<eps>/0

5eh:<eps>/0

8eh:<eps>/0

10
ow:<eps>/0

13/0

#0:<eps>/0

#1:<eps>/0

3
s:<eps>/0

#0:<eps>/0

6
s:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

Figure 8: Lexicon transducer with alternative pronunciation.

• There is an extra hypothetical pronunciation of the word ‘YES’. This is to illustrate that the
weights in such a case should be distributed among the two pronunciations such that the inferred
probabilities add to unity (− log 0.5 = 0.693).

• Each pronunciation has a numerical auxiliary symbol. Pronunciations that are otherwise the
same are distinguished by different auxiliary symbols. In this case, it is only the input and
output tokens, which both have ‘silence’ pronunciations.

• There is loop on the initial state mapping the auxiliary symbol φ to itself. This is both to match
the φ transitions in the grammar, G, and to propagate them to the composition L ◦ G.

Note that adding the numerical auxiliary symbols is not as trivial as it may appear. The input
dictionary must be indexed by pronunciation rather than just by word in order to count homophones.

In order to be used in the composition, the lexicon must be closed. Figure 9 shows the result of
doing this automatically.

Other than closure, no other processing is required. To ease the composition L ◦ G it would be
helpful if L were deterministic w.r.t. its output labels. However, the existence of multiple pronuncia-
tions per word, and the fact that many of the output labels are ǫ make this impossible. In practise,
the non-optimised lexicon is nearly deterministic, and the auxiliary labels are enough to make L ◦ G

determinisable.
Certainly L should not be determinised w.r.t. its input labels. Although this can drastically

reduce its size, the output labels tend to be shifted from their initial positions forcing the composition
algorithm to follow many dead-end paths.

6.4 Lexicon-Grammar composition

The result of the L ◦ G composition is shown in figure 10. This composition includes the steps of

1. Epsilon normalisation. This attempts to remove epsilon transitions, and to group sequences of
epsilons together in order to assist later stages.

12 IDIAP–Com 08-03

0

#phi:#phi/0

12sil:</s>/0

11
sil:<s>/0

9n:NO/0

7
y:YEAH/0

4

y:YES/0.693

1

i:YES/0.693

13/0

#1:<eps>/0

#0:<eps>/0

10ow:<eps>/0

8
eh:<eps>/0

5
eh:<eps>/0

2
eh:<eps>/0

3
s:<eps>/0

#0:<eps>/0

<eps>:<eps>/0

6
s:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

14/0
<eps>:<eps>/0

Figure 9: Lexicon transducer with closure transition.

0 1
sil:<s>/0

2
#0:<eps>/0

5

#phi:<eps>/0

3n:NO/2.920

4y:YES/2.623

i:YES/2.623

n:NO/8.904

i:YES/7.547

8
sil:</s>/0

10

y:<eps>/7.547

6
ow:<eps>/0

15

eh:<eps>/0

7
#0:<eps>/0

12
s:<eps>/0

9/8.324
#1:<eps>/0

11
eh:<eps>/0

#phi:<eps>/0.625

n:NO/4.605

sil:</s>/0

13
#0:YEAH/4.696

s:YES/0

#phi:<eps>/0

14

#0:<eps>/0

#phi:<eps>/3.086

y:YES/5.989

i:YES/5.989

sil:</s>/0

Figure 10: L ◦ G with auxiliary symbols.

2. Determinisation.

3. Minimisation. In the case of the AT&T FSM toolkit, this minimisation is applied by first
encoding the transducer as an acceptor.

Notice that all the auxiliary labels are still present. At this point they can be removed as described
Mohri et al. [5]. The reason for this is that the composition

C ◦ (L ◦ G) (7)

that follows does not need to result in a deterministic FST. If, however, that FST will be used in the
composition

H ◦ (C ◦ (L ◦ G)) (8)

then the auxiliary labels must be left in place. The result of removing the auxiliary labels is shown in
figure 11.

6.5 Context dependency

The context dependency FST, C, is too complicated to plot in full. Rather, it is almost identical
to the one described in figure 6. All weights are set to zero (probability unity) as there is only one
possible path for any given phone sequence.

IDIAP–Com 08-03 13

0 1
sil:<s>/0

2
<eps>:<eps>/0

5

<eps>:<eps>/0

3n:NO/2.920

4y:YES/2.623

i:YES/2.623

n:NO/8.904

i:YES/7.547

8
sil:</s>/0

10

y:<eps>/7.547

6
ow:<eps>/0

15

eh:<eps>/0

7
<eps>:<eps>/0

12
s:<eps>/0

9/8.324
<eps>:<eps>/0

11
eh:<eps>/0

<eps>:<eps>/0.625

n:NO/4.605

sil:</s>/0

13
<eps>:YEAH/4.696

s:YES/0

<eps>:<eps>/0

14

<eps>:<eps>/0

<eps>:<eps>/3.086

y:YES/5.989

i:YES/5.989

sil:</s>/0

Figure 11: L ◦ G with auxiliary symbols replaced by ǫ.

The only difference from the ideal case is, if the auxiliary labels are left in L ◦G, then C must also
contain transitions to at least match these labels. The easiest way to do this is to put auxiliary label
loops on all states in C, as illustrated in figure 12.

#1:#1
#2:#2
#3:#3

Figure 12: Auxiliary labels on each context dependency FST state.

If it is constructed in the manner described in section 3 then there is no need to determinise the
inverse of C. It is already deterministic w.r.t. its output labels. However, if the HTK short pause
phone is incorporated into C then it may benefit from such determinisation, followed by minimisation
as an acceptor.

6.6 Context dependency composition

The two input FSTs for the C ◦(L◦G) composition are now ready and determinised. The composition
process depends upon the next stage, and if the auxiliary symbols are still present.

If auxiliary symbols are still present, C ◦(L◦G) can be determinised and minimised as an acceptor.
If, however, the auxiliary symbols were removed at an earlier stage, then the resulting C ◦ (L ◦ G) is
not determinisable.

If this C ◦ (L ◦ G) is the final FST in the composition process then the weights should also be
pushed to re-normalise the FST such that it is once again stochastic.

The resulting FST is shown in figure 13.

7 Silence modelling

In an HTK system, as described by Young et al. [10], it is normal to have two silence models:

1. A silence model, sil, with the same structure as the other phonetic models, and contextually a
monophone. i.e., silence acts as a context, but is not itself context dependent.

2. A short pause model, sp, that is essentially tied to the silence model, but is context free, and
has a ‘tee’ transition that omits any emitting states.3

3HTK phonetic models are Moore machines rather than Mealy machines.

14
I
D

I
A

P
–
C

o
m

0
8
-
0
3

0 1
<eps>:<s>/8.176

2
<eps>:<eps>/0

3
<eps>:<eps>/0.148

7

sil:NO/2.630

22

sil:YES/2.723

sil:NO/8.465 4

sil:</s>/0

21

sil:<eps>/7.500

8sil-n+ow:<eps>/0

20

sil-y+eh:<eps>/0

5
sil:<eps>/0

13
sil-y+eh:<eps>/0

6/0
<eps>:<eps>/0

9<eps>:<eps>/0

n-ow+sil:</s>/0.438

10<eps>:<eps>/1.064
11

n-ow+n:NO/4.605

n-ow+sil:</s>/0

n-ow+n:NO/8.465

12
n-ow+y:<eps>/7.500

ow-n+ow:<eps>/0

ow-y+eh:<eps>/0

14
y-eh+s:YES/0

15

<eps>:<eps>/0

eh-s+sil:</s>/0.047

16
<eps>:<eps>/3.134

19eh-s+y:YES/5.989

eh-s+sil:</s>/0 17

eh-s+n:NO/8.465

18eh-s+y:<eps>/7.500

s-y+eh:<eps>/0

s-n+ow:<eps>/0

s-y+eh:<eps>/0

y-eh+s:<eps>/0

F
igu

re
13:

F
in

al
C

◦
(L

◦
G

)
F
S
T

IDIAP–Com 08-03 15

In general, the silence model is used at the beginning and end of an utterance, or when prescribed in
the grammar by a specific token. The short pause model is used in the lexicon at the end of every
word to allow optional silence states that do not break context.

The use of the short pause model at the end of each word was revised by Hain et al. [11] to
advocate the use of both short pause and silence at the word ends. This gives the option of either
breaking context between words or not at decode time. In fact, Hain et al. distinguish the (third)
case where neither silence nor short pause are used, although this is included in the short pause ‘tee’
structure.

The AT&T team do not mention silence modelling in detail in their WFST publications. However,
it is discussed briefly by Allauzen et al. [12]; the conclusions can be summarised as:

• Any silence must be associated with a probability, otherwise stochasticity tends to break; notably
if silence is included as a free cost loop in the grammar.

• A weighted silence loop can be included after every word using another FST.

The silence class transducer, figure 4 in Allauzen et al [12], bears a close similarity to the short pause
phone of the HTK system. Both allow zero or more instances of a silence state after each word, where
the transition probabilities are learned from data.

It follows from the above that

• Including silence in the grammar is not possible as the grammar does not generally contain
probability information for silence.

• Including a short pause model after each word in the lexicon implements both the HTK short
pause model as described, and has the same effect as the AT&T silence transducer.

• A silence model can be trivially included after each word in the lexicon in the same manner as
the short pause model.

One further issue is the implementation of the ‘tee’ model. The skip transition can be included
either as a transition in the WFST or at the model level in the decoder. In the latter case, the decoder
may have to be modified to deal with such transitions.4

Three distinct cases are illustrated in figure 14 for just the word ‘NO’ in the lexicon FST L.

0

31n:NO/5.955

34
n:NO/0.693

37

n:NO/0.698

32
ow:<eps>/0

35
ow:<eps>/0

38
ow:<eps>/0

33
sp:<eps>/0

41/0

#0:<eps>/0

36
sil:<eps>/0 #0:<eps>/0

#0:<eps>/0

Figure 14: Three pronunciation options accommodating silence for a single word in the lexicon.

7.1 Short pause in context dependency

Insertion of the short pause phone in the C is not trivial since the inputs and outputs are not syn-
chronised. The solution is to insert a specific path for each triphone that also delays the short pause.
This is illustrated5 in figure 15.

4In Juicer, it’s a special case.
5Juicer (actually cdgen) actually generates the larger of these two representations, so the FST C can be optimised

by determinisation of its inverse, contrary to what is written in section 3.

16 IDIAP–Com 08-03

x-y+z:z

<eps>:sp
x-y+z:z

sp:<eps>

x-y+z:z

x-y+z:sp sp:z

Figure 15: Above: Insertion of sp into context dependent transition in C. Below: slightly more
compact form.

7.2 Experimental evaluation

Experiments were done to test the effects of various silence model strategies. The experimental setup
was identical to the WSJ 20K task used by Moore et al. [13]. The language model, G, is bigram with
1,473,622 transitions.

Table 2 shows the effect of the silence model strategy on the FST size. In particular, the first line
shows the size with no silence at all in L. The silence overhead is then a percentage measure in excess
of this baseline.

Table 2: WFST sizes for various silence model configurations.
L L ◦ G C ◦ L ◦ G Silence overhead

No silence 146,244 2,434,076 2,565,305 0%
Short pause + FST skip 312,854 2,693,252 3,437,116 34.0%
Silence + FST skip 312,854 2,693,242 3,868,745 50.8%
Short pause 166,617 2,465,654 2,800,908 9.2%
Short pause + silence 333,327 2,676,759 4,105,237 60.0%
Short pause + silence + FST skip 479,464 2,904,369 4,762,140 85.6%
Short pause + silence at start 333,227 2,753,511 3,809,777 48.5%
Short pause at start 166,617 2,453,962 2,814,999 9.7%

Mohri et al. [5] state that C ◦L ◦G should be just over twice the size of G in terms of transitions
for this kind of composition. The results above show some variation around that figure.

Notice that short pause and silence follow different paths in the context dependency transducer,
C, so their effects in the size of C ◦ L ◦ G are additive.

Some of the above situations are evaluated in figure 16. To explain the plots in more detail:

1. HDecode was evaluated with 32 tokens per state, a number simply recommended by colleagues,
and with acoustic model caching disabled. Acoustic model caching further speeds up HDecode,
but is not implemented in Juicer yet. The curve was generated by varying the main beam
pruning.

2. Juicer 0.5.0 is the unmodified 0.5.0 decoder with the supplied WFST generation script. Again,
the curve is generated by varying main beam pruning. This and the HDecode curves attempt
to duplicate those of Moore et al. [13].

3. The third plot is the result of various decoder and FST modifications. However, the main beam
is optimised at 200 and the phone end beam-width is varied between 75 and 200 to generate the
curve. Each pronunciation contains the same 3 silence variants as in the 0.5.0 decoder.

4. The fourth curve is the result of moving the tee model skip into the decoder whilst retaining the
silence and short pause pronunciation variants. The phone end beam is varied between 50 and
175.

IDIAP–Com 08-03 17

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7

W
or

d
E

rr
or

 R
at

e
(%

)

Real Time (RT) factor

HDecode 32 tokens, 1 frame block
Juicer 0.5.0

sil, sp and skip in FST
sp tee in decoder

sp tee in decoder, sil/sp at start
Single sp at end

Figure 16: Runtime vs. error rate for various configurations of Juicer, and compared with HDecode.

5. The fifth curve is identical to the fourth except that the silence phones are at the front of each
word in the lexicon instead of at the end.

6. The final curve is the performance of the smallest FST in table 2, that is, with just a single
short pause at the end of each word. Notice that the performance asymptote is worse as there
is now a mismatch between the models and data, but with this taken into account the speed is
not significantly different.

7.3 Asymptotic performance

Notice that in figure 16 the Juicer 0.5.0 and HDecode curves asymptote below the others (18.59 for
HDecode and 18.50 for Juicer 0.5.0). There are three main reasons for this:

1. The language model is changed by adding pronunciation probabilities via the lexicon normali-
sation.

2. Moving the fudge factors from the grammar FST to the composed FST effectively applies them
on top of the pronunciation probabilities.

3. The widest beamwidth is a little tighter (200 instead of 250) for the later Juicer experiments.

In testing Juicer, the 20,000 word open vocabulary language model supplied with the WSJ1 data
was used. This language model contains the unknown word token, plus just 2 other out of vocabulary
words:

<UNK>

’EM

’N

18 IDIAP–Com 08-03

The above words were removed, and the language model renormalised, using the HTK LNorm utility.
Basically, the experiments were performed using the normalised model. However, it is possible to
build a WFST for Juicer using the unnormalised model. In this case, the out of vocabulary words are
just omitted by the composition process resulting in a non-stochastic WFST. This was the way the
0.5.0 curve was (perhaps erroneously) generated.

8 Conclusions and recommendations

8.1 Summary

This report has presented a summary of WFST construction techniques. Most techniques are already
available in the literature, but the probabilistic interpretation may appear novel to some readers
(obvious to others).

Experiments have shown that silence modelling can account for a large part of the WFST size,
but does not have a large effect on recognition speed.

Various optimisations have increased the speed of the Juicer WFST based recogniser.

8.2 Future work

Future work could take any of several directions:

1. The decoder speed is probably limited by the search space being the whole transducer. HDecode,
on the other hand, works by having only one lexicon sized search space and using multiple tokens
per state. The multiple tokens allow paths with different histories to exist at the same state.
This implicitly performs a type of phone-dependent pruning, limiting the number of hypotheses
that can exist for a partucular acoustic state regardless of its position in the grammar.

2. So far, the ‘On The Fly’ technique of Cheng et al. [14] has not been considered. This technique
uses multiple tokens per state and could be harmonised with the speed-up suggestion above.

3. Juicer is not an online decoder, i.e., it cannot read directly from an audio card or produce partial
hypotheses. It would form a much better basis for demonstration if it could work online.

4. So far, Juicer does not use the H transducer. If experiments showed that composing H ◦C ◦L◦G

rather than C ◦ L ◦ G were promising, then the decoder could be altered to deal with a state
level grammar.

References

[1] G. Riccardi, R. Pieraccini, and E. Bocchieri. Stochastic automata for language modelling. Com-

puter Speech and Language, 10:265–293, 1996.

[2] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted finite-state transducers in
speech recognition. Computer Speech and Language, 16(1):69–88, 2002.

[3] Reinhold Haeb-Umbach and Hermann Ney. Improvements in beam search for 10000-word
continuous-speech recognition. IEEE Transactions on Speech and Audio Processing, 2(2):353–
356, April 1994.

[4] Stephan Kanthak, Hermann Ney, Michael Riley, and Mehryar Mohri. A comparison of two
LVR search optimization techniques. In Proceedings of the International Conference on Spoken

Language Processing, 2002.

IDIAP–Com 08-03 19

[5] Mehryar Mohri, Michael Riley, Don Hindle, Andrej Ljolje, and Fernando Pereira. Full expansion
of context dependent networks in large vocabulary speech recognition. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, 1998.

[6] Mehryar Mohri. Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2), 1997.

[7] Michael Riley, Fernando Pereira, and Mehryar Mohri. Transducer composition for context-
dependent network expansion. In Proceedings of EUROSPEECH, 1997. Rhodes, Greece.

[8] Mehryar Mohri and Michael Riley. A weight pushing algorithm for large vocabulary speech
recognition. In Proceedings of EUROSPEECH, 2001. Aalborg, Denmark.

[9] S. Ortmanns, H. Ney, and A. Eiden. Language-model look-ahead for large vocabulary speech
recogntiion. In Proceedings of the International Conference on Spoken Language Processing,
pages 2095–2098, 1996. Philadelphia.

[10] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw, Xunying (Andrew)
Lui, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and Phil Woodland.
The HTK Book. Cambridge University Engineering Department, version 3.4 edition, December
2006.

[11] T. Hain, P. C. Woodland, G. Evermann, and D. Povey. The CU-HTK March 2000 hub5e tran-
scription system. In Proceedings of the Speech Transcription Workshop, 2000. College Park.

[12] Cyril Allauzen, Mehryar Mohri, Michael Riley, and Brian Roark. A generalized construction of
integrated speech recognition transducers. In Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing, 2004.

[13] Darren Moore, John Dines, Mathew Magimai Doss, Jithendra Vepa, Octavian Cheng, and
Thomas Hain. Juicer: A weighted finite-state transducer speech decoder. In Proceedings of

the 3rd Joint Workshop on Multimodal Interaction and Related Machine Learning Algorithms,
2006.

[14] Octavian Cheng, John Dines, and Mathew Magimai-Doss. A generalized dynamic composition
algorithm of weighted finite state transducers for large vocabulary speech recognition. In Pro-

ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1997.
Honolulu.

A Improvements to Juicer

A.1 Introduction

This tutorial was written after spending some time evaluating Juicer version 0.5.0. It details some
pitfalls that were not completely obvious from reading the literature from AT&T, or at least not
reading all of it. This process led to improvements in the speed of Juicer. Most of these improvements
(i.e., other than the silence modelling) are not really novel; they fix mistakes and oversights. They
are summarised here in the three different categories in which they were addressed.

A.2 FST structural changes

• Auxiliary φ labels enabled in the grammar.

• Auxiliary φ loops enabled in the lexicon.

• Lexicon determinisation and optimisation removed.

20 IDIAP–Com 08-03

• Auxiliary φ loops enabled in the context dependency transducer.

• Auxiliary labels removed after L ◦ G composition.

• Short pause skip removed from lexicon.

A.3 FST probabilistic changes

• Language model match factor and insertion penalty removed from grammar.

• Lexicon alternative pronunciations normalised.

• Weight pushing explicitly included after composition.

A.4 Decoder changes

Decoder optimisation focussed on reducing memory usage and avoiding data cache misses. Aside, the
0.5.0 decoder threw errors if word end tokens were not encountered. As the composition phase was
altered to remove these, the requirement was also removed from Juicer.

• Avoid reseting hypotheses on pruning.

• Reduce size of buffer for words without end tokens (and this could be completely removed).

• Localise allocation for new tokens in emitting states.

• Add code to follow tee models to next model (basically to handle short pause in the decoder).

B Drawing the graphs

Graphs are generated using GraphViz, http://www.graphviz.org. The basic tool is dot -Tps run
on the output of fsmdraw.

Back-off language models and context dependencies can be drawn using twopi, which lays out the
nodes in concentric circles. The root node is the context node to which the monophones back off. In
practice it’s tricky to lay out the graph well, but these runes help:

overlap = scale;

nodesep = "0.5"

ranksep = "2.0"

