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Abstract— This paper presents a novel concept of semi- :
autonomous navigation where a mobile robot evolves au- Monitoring I _ Senson
tonomously under the monitoring of a human user. The user [ signals } ! { information \
provides corrective commands to the robot whenever he disages
with the robot’s navigational choices. These commands are not

related to navigational values like directions or goals, but to the it o) /
relevance of the robot’s actions to the overall task. N S/ /Aﬂh \

A binary error signal is used to correct the robot’s decisions ) 4
and to bring it to the desired goal location. This simple interface Human Bayesian controller Robot

could easily be adapted to input systems designed for disabled \ ) : \ ]
people, offering them a convenient alternative to existing assis Enhanced | Motor
systems. After a description of the whole concept, a special fosu feedback ! commands

is given to the decisional process, which takes into account in a ] o
Bayesian way the environment perceived by the robot and the Fig. 1. Scheme of the proposed semi-autonomous navigatiorepbnc
user generated signals in order to propose a navigational stratgg

to the human user. The strength and advantages of the propode

i- illustrated with two experiments. . .
semi-autonomous concept are illus P We define our semi-autonomous framework based on

Inde>.<. Terms—ngi-autonomous . na\./igation., error signal, monitoring signals as follows:
probabilistic reasoning, human-machine interaction. A semi-autonomous system is a robotic device,
endowed with autonomous capabilities, interacting
|. INTRODUCTION with a human user who emits corrective monitoring
Despite substantial advances in the field of robotics, alsmal ~signals whenever necessary to achieve the goal.
category of end-users could benefit more from intelligent This definition implies to have a fully autonomous agent
assistive systems designed for them, namely elderly or dable to execute navigational movements, as depicted on the
abled persons. Today, most of these systems are focusedight part of figure 1. Depending on the local perceived
people able to manipulate joysticks, which cannot be pitgpeenvironment, the system chooses what action to executs. Thi
controlled for paralysed or may present difficulties forezlg controller's decision will be communicated to the human
people. user by the mean of visual, audio or tactile cues. Based on
Shared-control, collaborative control and semi-autonasnothis information, the user will have the possibility to erait
control are available strategies in order for a human usewrrective signal in case of disapproval, which will preven
to operate a robotic device (see section Il). Together withe execution of the proposed action and trigger a new choice
an appropriate protocol for action selection, these céntrfoom the controller. The human-machine interaction is sthow
architectures and the user input system could be optimised the left part of figure 1.
for elderly or disabled persons. A binary error-related signal will be first provided through
But the simpler the interface in terms of information flova keyboard interface. In future research, we plan to use
from the human to the machine, the more steps are requidd equivalent BCI signal. This paper describes our semi-
to select the desired command. In this paper, we proposewonomous navigation system and the related controller ab
novel system for an efficient asynchronous human-machitedrive the user to the desired location in a efficient wayebas
interaction designed for simple interfaces like singletdng, solely on error signals. In order to face incomplete knogted
sip and puff systems and even the promising non-invasiged anticipate the uncertainty inherent with the futureirbra
brain-computer interfaces (BCIs). We want to rely mainly ooomputer interface, the whole system and especially the con
the machine and give instructions only at key-points duririgoller are probabilistic and designed within a formal Bsiga
the execution of a task. Instead of providing navigation&rogramming framework.
commands, like in current semi-autonomous systems wherdn section Il, we will present related work. We will then
the robot is autonomous on a relative short path but théescribe our semi-autonomous concept and the Bayesian con-
requires a user input for the next movement to execute, weller in section Ill. After showing some preliminary rdsu
will provide monitoring signals about the robot’s performsa in section 1V, we will conclude by a summary and an outlook
at solving the wished navigational task. about the future work.
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Il. RELATED WORK

A. Humans controlling robotic devices

v

Monitorin Sensor!
o EEG/Buttons Sensory Layer = -
signals information
monitorin features
. signals
\ \

Decision Layer

Interaction Layer

of a-priori or learned behaviorsfor dealing with most
navigational issues such as "corridor following”, "door
traversal” or "approaching a specific place”.

There are numerous applications sifared-control strate- \
and powered wheelchairs (review in [17]), which are widely = > -
used robotic platforms for researches in this field. scleced
a) Motion decision: A widely used technique is to take
mands usingBayes’ rules[5], [19]. Some systems [2], [23] semi-autonomous navigation concept.
use asemi-autonomoudramework, yet different from our
next movement at each relevant position in the environment. | ,car'g signals) and between the machine and the human
The TAO wheelchair [10] has subsumptive reasonirgystem (providing a feedback of the system’s status).
'b) Motion generation: Besides the purelyeactive be- multisensory information in order to extract the relevant
haviors of the TAO wheelchair, the are two main methods.  features for the control of the system.
to motor commands [13], [20]. Thelanner-basedne takes
into account the vehicle’s kinematics and the sensory st
goal [5]. o « Decision Layer. This layer is responsible of selecting
In general, the user has significant control over the the next best behavior to adopt, given the perceived
danger of collision is detected, thus forbidding the whieaic coming from the user.
to approach an obstacle even if wanted. In the Sensory Layer, information coming from the robot’s
dialog-based coordination strategy, Wher(_a the robot e‘m"’providing an estimation of the obstacle poses [4]. Out of
autonomously and asks the human for assistance when neeged. |5cal map of the environment, some basic features are
B. Human-machine interaction and the associated distances of the closest obstacles loe of t
middle of the free traversable space in three regions arthend
; . robot: in front, on the left and on the right. We assume that th

range from keyboards, joysticks and touch screens up to de
\élcee_‘:’rgl?(zﬁ agflztiedatnoddliifblseitgrenr:o[zg,] |I[k263]\/ oice COmmaﬂayer and the feedback modalities are given in section IV.

y 9 P P y ' ' F?r a description on how the features are associated to motor

gies for telemanipulated robots [8], surgical operations [16]
Robots and robotic wheelchairs can be distinguished by two
a decision given the sensory information and the user's COEE. 2. Scheme of the different layers and their relationsiwithe proposed
definition: the user provides to the robot a direction for the
that allows the most appropriate reactive behavior to emerg Sensory Layer This layer fuses in a probabilistic way
Thebehavior-basednotion generation matches sensory inputs , Behavioral Layer. This layer implements a collection
generate the best trajectory leading to a provided or ieerr
wheelchair, but the user's commands are overridden when a enyironment, the present used behavior and the signals
On the contrarycollaborative controlsystems [9] use @ gengors are fused together into a Bayesian occupancy grid
extracted. As shown in figure 7b, they represent the dinestio
Common input systems for human-machine interaction
r%bot cannot go backwards. Some details about the Interacti
In recent years, a novel technology has been studied, name

. ; . . i B i ithin the Behavioral L
brain-computer interfaces (BCIs). The non-invasive, teten- €ommands in a ayesian way within the Behavioral Layer,

. lease refer to [12].
cephalography (EEG) based BCls rely on the decoding of tHe A . . i
brain activity in order to manipulate robotic devices, wat After a presentation of the Bayesian programming frame

keyboards or more general computer application [15], [22] work, we will describe in more detail the Decision Layer,
’ ‘starting with the implementation of an autonomous corgroll
The work done by Ferrez and Malh [7] about the er- g P

L o . and then enhancing it with semi-autonomous capabilities.
ror potential is a recent addition to the available decoded g P

brain-commands for human robot interaction. This potdanti% Bayesian programming

indicates the human’'s awareness of an erroneous response : )
made by the system when classifying the user intent. We' "€ Bayesian programming framework (BP) [6], [12] has

will incorporate it into our system in the course of our ftur P€€N developed for designing robust robotic systems facing
research. uncertain or incomplete knowledge. This framework proside

both formal and computational tools for designing appli-
cations in a systematic way, as robot [4], [12] and game
programming [11] or CAD modeling [14]. Sensor fusion
A. Concept overview with Bayesian occupancy grids, object tracking under phrti

Our semi-autonomous system is divided into different intePCClusion and danger estimation have also been done [4]. A
acting layers, as depicted in figure 2. Bayesian program, as represented in figure 3, is made up of

. . . . two parts: a description and a question.
« Interaction Layer. This layer is in charge of the interac- P P g
tion between the human and the machine (decoding théA behavior is a learned sensory-motor association [12].

IIl. NOVEL SEMI-AUTONOMOUS CONCEPT



B'Ff1 7 Bl Stop Right Forward Left

Relevant variables Stop 025 0.10 0.10 0.10
Spec(w) ¢ Decomposition Right 025 036 025 024
Pro Desc Forms Forward ~ 0.25  0.30 0.40 0.30
g o\ Left 025 024 025  0.36
Identification based on Dat@)
Question:P(S|K)? TABLE |
P(B'+1|BY).

Fig. 3. Structure of a Bayesian Program.

Front distance B*FT  Stop Right Forward Left

Description. In the description part, we define all the known

. . i . Cow 02 0.35 0.06 035
information about the problem given a set of experimental Mid low 02 032 015 032
data 6 and preliminary knowledger. It represents a joint Mgdri]ur?] 02 011 020 011
ity distributi i ; . Mid hig 02 011 029 011
probability distribution specified by the following compants: High 02 041 0.20 o1l
- A set of relevant variables (sensory, motor or internal
state variables) on which the joint distribution is defined. TABLE I
- A decomposition of the joint distribution as a product of P(Distance in front|B'T1).

simpler terms, respecting the Bayesian rules.

- The parametric forms assigned to each of the terms

appearing in the decomposition.

Question Given a distribution, it is possible to ask prob- i .
abilistic questions by partitioning the set of variablesoin probabilities to the system about how a parugular feature
"Search” (S), "Known” (K) and "Free” (F) variables. sho'uld look like, mdependently from the .others., if we chz)os

a given next behavior. Powerful and easily maintainablis, th
selection method only adds one probability table for eaat ne
C. Autonomous Controller feature, which reduces the computational complexity [11].

Inspired from the work of Le Hy [11], we will describe

our autonomous controller by the following model in the BR

framework: ) tribution over all the behaviors. This is because we have
a) Relevant variables: no a priori information about this value when building the
F} . discretized distance features at timecomputed in model. The content of the tables is set a priori by the
thei € [1, Ny] regions around the robot; programmer for the simple example shown in section IV and
B'and B! : the set of different behaviors\y, behaviors g identification phase took place. We want the robot to drive
like Forward, turning Left, turning Right and Stop-  towards the most free space until it cannot go further. More
ping) available at timet and¢ + 1. complex applications may require learning techniques ieor
The general task the robot has to accomplish for the presémtcapture probability distributions that reflects the debi
study is to go where there is the most free space until ritbot's general behaviour [11].

cannot go further. That is the reason why we care only aboutrape | shows the transition probabilities between the beha
the distances inside of the three regions and not about {gg; (P(B'!|B)). One can see that the probability of staying
directions. Note that the discretized distances, allatatdive in the same behavior is the highest and that when turninge the

classes, are no_t measured metrically bu_t are relative t €%a higher probability to return tBorward than turning in the

other by taking into account the surrounding traversabesp other direction. Note that each column of the tables sums up
b) Decomposition of the joint distributionfhe resulting to 1, as needed by the Bayes' rules.

joint distribution is decomposed into probability distrttons ’ . o .

according to the Bayes rules and some conditional indepen:rable Il'is an example of a probabilistic table describing th

¢) Forms and identificationAll probability distributions
re given as tables, except(B?) which is a uniform dis-

dence assumptions explained later: influence of a distance measur®(¢/|5**)). The column
R corresponding to thd-orward behavior should be read as

P(F} B** %) = follows: given that the chosen behavior Berward, there is
P(B') P(B"|B") T[;Z, P(F}|B") a high probability that the distance in front of the robot is

P(B) represents the prior knowledge about the behavig?§tWeen medium and high. Similarly, if the robot chose to go
at the present timeP(B!*+!|Bt) represents the probability Left (or Righ), there is a high probability that an obstacle is
of keeping the same behavior or switching to another. Thglatively close in front.

P(F!|B**!) terms link the features to the choice of the The question we ask to the Bayesian program is
next behavior. These distributions allow us to simplify thé>(B'™!|F! B!), i.e. what is the next behavior given the
dependencies between features. This so-called "inverse poresent behavior and features. The Bayesian program for
gramming” method works in the opposite way as Finite Statke autonomous controller is summarized in figure 4. This
Machine, where the selection of a behavior would depend oantroller is able to drive the robot towards the most fregcep
the combination of all features. Here, it consists in givingithout taking into account the user’s destination.



Relevant variables:
F!: discretized distance features
Bt B*t!: the set of current and
next behaviors
Decomposition:
P(F}! Bt BY) =
P(B') P(B!|BY) T2, P(F{|B™)
Forms:
P(B") : uniform distribution
others : probability tables
No identification (tables given)
Question;
P(B"|Ff, BY)

Description
Specification

Program

Fig. 4. Autonomous controller described in the BP formalism.

Authorisation Forward B*FT  Stop Right Forward Left
0 0.5 0.5 0.0 0.5
1 0.5 0.5 1.0 0.5

TABLE Il

P(Authorisation Forward|B't1).

D. Semi-Autonomous Controller

P(Bose™)  Stop Right  Forward  Left

Alg=1 0.02443 0.2043€ 0.76636 0.00485

Abg=0 0.10458 0.87468 0.00000 0.02074
Fig. 5. Comparison between two controller's output when ragki

P(Bosemy — p(BUHLE!, Bt Al = {1}), k € {Stop, Right, Lef},
using a set of features coming from experimental data. Whgn, = 1, all
behaviors are authorised; the selected behaviBoiward. When AL . =0,
the Forward behavior has been forbidden; the selected behaviéﬁvght

Relevant variables:
F!: discretized distance features
B, B! . the set of current and
next behaviors
A§. : authorization for each behavior
Decomposition:
P(F! B B* A%) =
P(B") P(B*!(BY) [[Y, P(F{|B'*")
[1;2, P(AS[B)
Forms:
P(B?) : uniform distribution
others : probability tables
No identification (tables given)
Question:
P(B"|F}, B, A%)

Description
Specification

Program

We will now present the modifications made to the previoufég- 6. Semi-autonomous controller described in the BP fosmali

controller for converting it into a semi-autonomous coém
where the human can interact with the robot.

The human user generates monitoring signals wheneginals is described in figure 6.
the autonomy of the robot needs to be restricted. As the
monitoring signal is related to an error signal, we can add
the notion of behavior's authorisation to the autonomous
controller. The recognition of an error signal would preven

the execution of the corresponding selected behavioretber ~ The semi-autonomous navigation (SAN) system was imple-
reducing the set of available behaviors. Given this adutitio mented and tested on an real robotic platform. The Smartease

IV. PRELIMINARY RESULTS

information, the Bayesian controller will be asked for a nefgobot, depicted on figure 7a, is a differential-drive mobile

solution, corresponding to the next best behavior.

platform designed for educational purposes [3]. A Hokuyo

In other terms, the user has to authorise the behavidBS-03JN infrared range-finder was used as unique input

proposed by the controller. In our probabilistic formubati
this notion of behavior authorisation corresponds to alukt
A§ boolean variables, one for each possible beha\A(j)r.: 1
means that thg’" behavior is authorised at timg A} = 0
meaning the contrary. The influence of thé terms on the
choice of the behavior will be described in probabilistiblés

sensor (99 values covering a field of view of 2&hd ranging

up to 3 meters [1]). The robot is covered with several LEDs,
three of them, placed in front and on the two sides, giving a
feedback of the controller’s choice to the human user. Onee t
human user disagrees with this choice, he presses a keydo sen
an error signal. An example of the robot sensory information

of the form P(AL|B'*1), as the example given in table |1.and the extracted features is presented in figure 7b.

One can see that the authorisation for #eward behavior

We designed three experiments in order to show progres-

has no influence on the other behaviors (probability of 0vely the capabilities of our SAN system. We recorded 50

in both cases) but that it strictly allows (probability of &)
prohibits to go forward.

trials for each experimental condition and then compared th
duration of each trial and the number and nature of the user

Figure 5 shows a comparison between two controller odfiterventions. The translational and rotational speedtdim
puts, the first one without any restriction regarding the atiere the same for all conditions.
thorised behaviors and the second one after the procesking dl) Experiment A:A maze-like environment (figure 8a) is
a user-generated error signal. The authorisation is theet reused for experiment A in order to show the resulting general
to 1 after a fixed time or after the execution of the alloweblehavior of the SAN system when driving alone with no user
behavior. intervention (similar as in figure 4).

The resulting version of the Bayesian controller for our-pro The result corresponds to our expectations: the robot goes
posed semi-autonomous navigation system using monitoriailgvays where there is the most free space (figure 8b).
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Fig. 7. (a) The Smartease Robot equipped with the Hokuyo seasd Fig. 9. (a) Experimental environment for experiment C: two fiesvays

feedback capabilities. (b) Example of Bayesian occupanicywith features for going to a same goal location. (b) Graphical represemiatif the paths.
superimposed (dark grey: occupied, light grey: unknown tevlempty). The squared indicates where the user provided an error signal.

L Time [s User interventions
A M A Condition mean s[td] dev. mean std. dev.
. . Original SAN 46.4 14 6 0
SAN with error signals| 49.5 3.0 4.0 0.9
B N @
. " Time [s Percentage
@ 0 Condition mean s[td] dev. ’
SAN driving alone, path | 46.0 2.9 56
. SAN driving alone, path Il 37.4 3.4 44
D P SAN with error signals, path | - - 0
SAN with error signals, path Il| 36.9 2.0 100
(a) (b) (©) ®)
Fig. 8. (a) Maze-like environment for experiments A and B. Giegl TABLE IV

representation of the paths for Exp. A (b) and B (c). A squarendicates
where the user provided an error signal to the system and & sthere he
provided a direction.

NUMERICAL RESULTS FOR EXPERIMENTS (a) AND C (b); 50TRIALS
WERE RECORDED FOR EACH EXPERIMENTAL CONDITION

2) Experiment B:Within the same environment as for Expsame path, thus explaining the difference of time to coreplet
A, the second experiment (Exp. B) compares our SAN witle task and the number of user interventions. Using a short-
user interventions (figure 6) to an original SAN (i.e. a diimz term memory for saving the local environment together with
is given at each place of interest) when solving a simpige corresponding decision should overcome these problems
navigational task, represented here as a sequence of placé Experiment C:In this experiment, the robot has to go
to visit: B-N-O-C-D-P. from a start position (S) to a goal position (G) through two

As represented in figure 8c, the task is solved by our SARPssible paths, the second one (Il) being shorter (figure 9a)
system in a similar amount of time (table IVa, Student's tthe robot evolves first autonomously using our SAN system
test for independent samplesy = —0.9364, p > 0.05) as and finds its way from S to G; then, in a second experimental
with an original SAN method, an important characteristic focondition, the user can provide monitoring signals (figusg 9
validating a new concept. As can be seen in table IVb, there is a probability of about

A particular advantage of the proposed system lies in t89% that it takes the longer path | if the user does not
amount and nature of commands required from the usklervene (actually, the robot went three times more thhoug
While the original SAN requires six interventions (six times Path | than Il over the fifty trials). This shows that there & n
minimum of two bits), the new approach requires an averagéedefined preferred direction when facing a left/righticko
of four binary error signals. The equivalent of a three-fol#ith equivalent corresponding features. If the user presid
decrease of the information requirement may be of impogtan@n error signal when the robot is willing to take the path I,
when dealing with simple interfaces (e.g. sip and puff sysje the path Il is selected as only alternative for completing th
or low throughput interfaces (e.g. BCIs). Note that at dartatask. It is to mention that for this particular environment a
intersections, the user may have to provide several egopts MOSt one error signal per trial is needed. The human-machine
(e.g. location O). This is explained as follows: when theotob interaction allows to optimise the task because of the htsnan
is in situation O, facing P, and receives an error signalyrits knowledge included in the decisional process, letting tais
right. But as it turns, the feature corresponding to the lefitonomous robot choose the optimal trajectory as shown in
side of the robot increases and becomes dominant, becaudahte IVb.
started to see a wall followed by the free space in direction
of P, thus making the robot suddenly turn left. In order to go V. CONCLUSIONS AND OUTLOOK
towards C, the user has to provide an additional error signalIn this paper, we presented a novel concept for semi-
Due to the imprecisions of the sensor and the Bayesian natatgonomous navigation and illustrated the strength of the
of the controller, the robot doesn't take twice the absolutgpproach using preliminary experimental results. Withia t



proposed concept, the robot evolves autonomously and the
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