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ABSTRACT spectral-based features used in [3]. However, this was done in
matched conditions

Personal audio |Ogs are often recorded in multlple environments. This paper is motivated by the fact that real-life persona| audio
This poses challenges for robust front-end processing, includingygs often contain audio recorded in various environments. Conse-
speech/nonspeech detection (SND). Motivated by this, we investguently, we propose to evaluate the robustness of these four features
gate the robustness of four different privacy-sensitive featuwes f (S,E,Z and K) inmismatched conditionsWe also benchmark the
SND, namely energy, zero crossing rate, spectral flatness, and kiierformance of other authors’ privacy-sensitive [4, 5] and ao§et
tosis. We study early and late fusion of these features in conjunctiogtate-of-the-art features [3] in mismatched conditions. An important
with modeling temporal context. These combinations are evaluatefandicap for this evaluation is the lack of standard datasets in the per-
in mismatched conditions on a dataset of nearly 450 hours. Whl'gona| audio |Og domain’ due to privacy concerns. To overcome this
both combinations yield improvements over individual featureschallenge, we use the scenario constructed in our earlier study [6].
generally feature combinations perform better. Comparisons with @  Qur study shows that explicitly modeling the temporal context
state-of-the-art spectral based and a privacy-sensitive featie@es  js useful for SND in mismatched conditions as well. Furthermore,
also provided. we show that combining features (referred to as “early integration”)

Index Terms— Privacy Sensitive Features, Speech/nonspeecR’ combi_ning cle_tssifier_s bu_ilt on the individual features (_refgrred to
detection as “late integration”) yield improvements. Lastly, combinations of
the four features with context modeling, or of the features described
in [4, 5] can yield, in certain cases, performance comparable to the
state-of-the-art spectral based SND features [3] in mismatched con-

ditions. We emphasize that our goal here is not to design the best

Rec_ordlng spontaneous conversations, als_o referr_ed to as der_sogzND system, but to evaluate the robustness of the privacy-sensitive
audio logs, to analyze face-to-face human interaction patterns is a0

emerging field [1, 2]. However, one of the biggest obstacles fac_eatures in mismatched conditions, in order to assess such a design.
. ging o ! ggest : The rest of the paper is organized as follows. The definition of
ing this field concerns privacy. For example, recording and storlnq e dataset and the annotations is provided in Section 2. Section 3
raw audio could breach the privacy of people whose consent has n i‘{ :

been explicitly obtained. A possible solution to this problem is to Iscusses the SND system in terms of features, classifier, combina-
plicitly ) P P -tion techniques, reference features and the evaluation measure. The

store task-specific featu_res instead of raw audio, such that neither IH’escription of the results and the discussion is provided in Sections
telligible speech nor lexical content can be reconstructed [2]. Thesg Finally, we draw some conclusions in Section 5

features are referred to as privacy-sensitive (or privacygovasy)
features [2]. 2. DEFINITION OF DATA AND ANNOTATIONS

A key pre-processing step in conversational analysis is to per-
form speech/nonspeech detection (SND). State-of-the-art SND sy®ve use the scenario that was constructed in our previous study [6]. In
tems such as [3] utilize short-term spectral envelope based featurehat study, personal audio logs collected by subjects wearing portable
However, with such features both speech and lexical content caaudio recorders was likened to a meeting room scenario captured
be reconstructed. Previous studies on privacy-sensitive features fusing lapel microphones. It was remarked that the placement of the
modeling conversations have used short-term autocorrelation andcorder is similar to that of a lapel microphone used in recording
spectral entropy [4, 5]. Long-term spectral averages have ao be meeting room conversations [2]. In the contrast to the traditional
used as features for speech segmentation in personal audio recordeeting room applications where, given the lapel microphone signal,
ings [1]. the interest generally lies in the speech segments of the wearer [3, 7],

In an earlier paper [6], we investigated the use of four differ-in conversation analysis, speech segments that are spoken by other
ent, privacy-sensitive features, obtained by temporal proces$ing @peakers are also of interest.
the audio signal, for speech detection in a multiparty conversation The dataset and annotations were used from our setup [6]. It
scenario. These features are the classical features, energef&), zconsists of “individual” lapel microphone recordings used in con-
crossing rate (2), spectral flatness (S), and kurtosis (K). We sthowejunction with the ground truths obtained by merging speech seg-
that modeling the temporal context explicitly yields improvementsments from individual lapel ground truths that are closer than a fixed
for all privacy-sensitive features, including the features from [4, 5 time interval (100ms). Our experiments were performed on lapel mi-
We also showed that the performance of all the privacy-sensitiverophone recordings from NIST [8], AMI [9], and ICSI [10] meet-
features modeled with context is close to that of state-of-the-aring room data. To summarize, the total data add up to 100 hours

1. INTRODUCTION
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of meeting speech spanned over 120 meetings. The actual amouoftthe MLP. All the features were augmented with delta and acceler-
of individual lapel recordings add upto nearly 450 hours with NIST,ation features. Further details can be obtained in [6].

AMI and ICSI contributing 52, 50 and 350 hours respectively. The

training data from NIST, AMI and ICSI amounted to 9, 15 and 48 i o

hours respectively. Finally, using the ground truth defined above, tha-4- Classifier combination

overall ratio of nonspeech to speech was 1:4.2. To test the perfo
mance on mismatched conditions, the features were trained in tu
on each of the 3 datasets and tested on the other two.

Bne of the objectives of classifier combination ( [11, 12]) is to ex-
r[5|oit the complementary information between the classifiers. Com-
bination techniques typically combine either the decisions made
by the individual classifiers or assign a weight to each classifier's
evidence. These weights can be either estimated statically (on cross-
ré}‘Ilgalidation data) or dynamically. In this paper, we consider two

3. SND SYSTEM

The features are extracted by first pre-emphasizing the signal a
then by using a rectangular analysis window of length and shift 2
ms and 10 ms, respectively. In addition, we augment these basic e Dynamic weighting using inverse entropy.
features with their first and second derivatives.

eight allocation strategies:

e Static weighting using equal weights/averaging.

3.1. Privacy-sensitive features

) . ) 3.4.1. Inverse entropy
The proposed and the reference privacy-sensitive featuresiefly b

discussed. Inverse entropy based classifier combination has been shown to be
useful in automatic speech recognition studies [12]. In the discus-
sion that follows, let: € {s, n} denote the speech/nonspeech classes
and letz¥ denote a feature vector at a tirhéor k € {S, E, Z, K }.
We evaluate the robustness of the four features investigated in od?(c|z}; 6x) denotes the posterior probability estimate obtained from
earlier study [6]. These four short-term features are: energy (Efhe MLP classifier trained on a featukee {S, E, Z, K'}, andoy,
zero crossing rate (Z), spectral flatness measure (S), and kurtoglenotes the MLP model for a featute Inverse entropy based com-
(K) as privacy-sensitive features for SND. To simplify notations, letbination assigns larger weights to classifiers that are more confident
us defineF(SEZK) as the system with the combination of all four and smaller weights to classifiers that are less confident [12]. The
features at “feature-level” anfl( £ Z K) as the system with the com- confidence of thé:™ classifier is measured in terms of the entropy
bination of energy, zero-crossing rate and kurtosis at “featuré:leve (i) of its posterior probabilities. The weights for th& classifier

are then estimated as:

3.1.1. Proposed features

hi

1
Zj h;

3.1.2. Reference privacy-sensitive features (AH) 1

wy = Vk € {S,E, Z, K} 1)

Features proposed in [5, 4] for privacy-sensitive speech detection
are the non-initial maximum of the normalized autocorrelation, the
number of autocorrelation peaks and the relative spectral entrop

Let AH denote the system using these features. fhe combined evidence using all the featurgl

Plc=1i|X[) = Z wy - P(c=ilz}y;0,) Vi€ {s,n}
ke{S,E,Z,K}

The reference spectral-based features (that is, non privasjtiseh @

are taken from a state-of-the-art SND system [3]. The features con-

sist of 12 mel-frequency PLP coefficients (computed using HTK)3 4 o Averaging

and first cepstral coefficiemt, with their delta and acceleration co-

efficients, in addition to energy and kurtosis. In [3], these were augh this technique [11], all the classifiers are assigned equal weights,

mented with a set of cross-channel based features. Since we bise eae., wx, = +. The output evidence is combined using equation 2.

microphone channel independently, we drop the cross-chanres basAs part of notation, we Us€,can(SEZK) andCen(SEZK) to

features, while we retain all the other features. M&F' — PLP de-  denote the systems with combinations of classifiers built on individ-

note the system using these features. ual features S, E, Z and K using equal weights and inverse entropy

techniques.

3.2. Reference spectral-based features (MF-PLP)

3.3. Classifier

In this paper, we used off-the-shelf trained multi-layer perceptrors->- Evaluation measure

(MLP) nets for individual (S, E, Z, and K) and the joint features gq o\ ajuation, we use the area under the receiver operating char-
(F(SEZK)andF(EZK)) from our earlier setup [6]. Inthat study, ceristics (ROC) curve as a metric to evaluate speech detection,

these were the best combination of joint features. The MLP wagg i, [6, 7] . The ROC curve is plotted by varying the detection-
trained for speech/nonspeech classes based on the ground truth ggfeshold on the posterior probability estimates provided by the
inition described in Section 2, using two output units, 200 hiddery; p A value of 50% for the area under ROC indicates a ran-
units and by minimizing the cross-entropy criterion. The referencey,m nerformance and value 0% indicates a perfect classifica-
features were analyzed with a trained MLP using 31 frame contexj,, -y rthermore, this measure was selected so that the evaluation

(310 ms) as the input layer and 50 units in the hidden layer. The,eagure is not biased towards a prior distribution of speech and
features are normalized to zero-mean and unit variance at the 'ananpeech.



Table 1. Effect of context on SEZK and EZK using feature combination (in pemgermtbarea under ROC). N, A, and | refer to NIST, AMI,
and ICSI datasetsA — B refers to the system being trained on a dataset A and being tested on atdatadé(x) refers to the reference
privacy-sensitive features with a temporal context of x ms.

| H N [ A [ I H N—A [ N—I H A—N [ A=l H I—N [ I—A |
Context (ms)]| Matched conditions] Mismatched conditions
SEZK
10 776|807 | 73.1| 770 | 67.1 76.3 | 741 | 701 | 76.9
250 84.0| 896 | 809 838 | 71.7 855 | 785 || 83.1 | 87.0
510 84.0| 915|815 79.7 | 715 86.7 | 80.6 || 83.6 | 87.2
1010 83.8|91.1| 806 827 | 72.9 86.3 | 79.4 || 82.7 | 86.2
EZK
10 778 80.1| 73.8| 785 | 72.0 756 | 740 || 729 | 78.2
250 83.5| 88.8| 80.5| 823 74.4 84.1 | 78.7 || 81.3 | 85.8
510 84.1 | 90.8 | 81.8 82.0 | 755 86.0 | 80.3 825 | 86.7
1010 83.5| 906 | 81.3| 80.9 | 73.8 86.5 79.7 || 81.7 | 85.6
Reference features
Features N A [ | [ N—A [ N—I H A—N [ A—l H |—N [ |—A
Matched conditions Mismatched conditions
AH(10) 749 798| 727 | 77.4 | 68.7 75.4 | 681 || 729 | 75.0
AH(510) 83.3] 90.3| 85.7| 86.0 | 75.7 85.3 | 789 || 83.6 | 88.1
MF-PLP 83.0 91.3| 90.3 || 84.9 | 735 86.5 | 84.8 || 84.3 | 88.4

Table 2. Effect of context on SEZK using classifier combinations (in percenfage@under ROC). N, A, and | refer to NIST, AMI, and ICSI
datasets.A — B refers to the system being trained on a dataset A and being tested on atdatase

| I NTA T T [NSAIN=SI[TASNTA-II-NTI-A]
Context (ms)]| Matched conditions]| Mismatched conditions
Averaging the posteriors
10 7771 79.1| 716 76.4 | 685 781 | 715 | 76.6 | 785
250 84.8| 876 | 781 838 | 74.3 85.2 | 75.6 || 83.0 | 84.7
510 85.7 | 89.2| 80.1| 84.6 | 75.0 86.4 | 76.4 || 83.8 | 85.7
1010 85.9(90.1| 804 850 | 75.6 86.9 | 77.7 || 835 | 84.4
Weighting the posteriors using inverse entropy
10 749 | 785 | 719 76.7 | 68.7 747 | 704 || 735 | 78.3
250 82.7| 875| 784 | 838 | 744 82.7 | 75.7 || 80.9 | 84.4
510 83.5| 89.3| 80.1 84.6 | 75.1 83.8 | 76.9 || 821 | 854
1010 838 | 90.1 | 79.8| 850 | 756 840 | 781 || 818 | 84.7
4. RESULTS AND DISCUSSION Also, tables 1, 2 show that a context of 500 ms provides a reason-

able tradeoff between accuracy and latency for feature and classi-

The results for the privacy-sensitive features and the spectrattbaséier combinations. Among the individual features (Table 3), when a
feature in mismatched conditions are reported in Tables 1, 2, andt&mporal context of at least 500 ms is provided, kurtosis is the best
for NIST, AMI, and ICSI meeting data. In the discussion that fol- single feature in mismatched conditions as it was in matched condi-
lows, N, A, and | refer to NIST, AMI and ICSI datasetsl. — B tions. Similarly, energy is the second best feature. As in matched
refers to the system being trained on a dataset A and being tested oondition studies, zero crossing rate fares worst on mismatched con-
a dataset B. We also report the restitsmatched conditions. ditions as well. Furthermore, we note that when temporal context is

In general, we observe a drop in performance for all featuresnodeled, all four features gain in performance. It can also be seen
in mismatched conditions (Tables 1 and 2). The exception beingrom Table 1 that modeling temporal context also improves the per-
when the dataset used for training is NIST. A detailed analysis of théormance of AH features.
findings from the study are given below.

4.2. Feature and classifier combinations
4.1. Effect of temporal context

In [6], we reported that when temporal context was used in matcheé‘ltholjgh not reported here, pairwise and th_ree-way comblr_1at|o_ns
of features generally led to an improvement in performance in mis-

conditions, the performance of the individual and the feature combl-_ atched conditions as well. Among the three-way feature combi-

nations improve. Tables 1 and 2 demonstrate that this is true for fe ations, F(EZK) was again consistently the best on mismatched
ture and classifier combinations in mismatched conditions as well! o 9 . Y " .
conditions. As was observed in matched conditions, it can also

1The performance figures reported here differ from [6] due torsected b€ seen that there is no consistent improvement ffl Z K) to
implementation of kurtosis. F(SEZK). From Table 1, it can be observed that while testing on




Table 3. Performance of individual features (in percentage of area under R@@) a context of 500 ms, in matched and mismatched
conditions. N, A, and | refer to NIST, AMI, and ICSI datasets— B refers to the system being trained on a dataset A and being tested on a
dataset B. [

I

l Features“ N [ A H N—A [ N—lI H A—N [ A—l H I—N [ I—A ‘

Matched conditions Mismatched conditions
S 80.5| 84.7| 75.1 82.7 70.8 80.0 71.9 756 | 775
E 80.1| 87.2| 770 819 | 759 82.3 | 75.6 || 80.6 | 83.8
Z 78.8 | 81.5| 69.5 72.8 55.4 79.3 64.4 64.0 | 65.0
K 82.8| 87.9| 77.7 83.3 76.2 81.4 75.6 82.2 | 85.0

AMI (by training on either NIST or ICSI) yielded better performance 5. CONCLUSIONS
for F(SEZK), testing on ICSI or NIST yielded better performance
for F(EZK). In this paper, we evaluated the robustness of the four privacy-
Table 2 reports the comparison between the two classifier confiensitive features, namely, energy, zero crossing rate, speatral fl
bination methodsCimean(SEZK) and Ceni(SEZK). It can be ~ Ness measure, and kurtosis in mismatched conditions. We believe
observed that the two methods are very similar on matched condibat to be a necessary step, as in real-life, mismatched conditions
tions. On mismatched conditions, the two methods show an impoMight be pervasive. For SND, we showed that explicitly modeling
tant difference: training on NIST mean (SEZK) is better while  the temporal context is useful in mismatched conditions as well.
testing on NISTC....(SEZK) is better. This may be due to the Feature and classifier combinations for the proposed features on
fact that when the classifiers are trained on more2datal there- Matched and mismatched conditions were explored. Furthermore,
fore yield more robust estimates of posteriors, the confidence-bas# Showed that combining features or combining classifiers built
“inverse-entropy” method performs better. Otherwise, averaging i€ the individual features yield improvements. In addition, we
better when the estimates are not so robust (when the training data3§owed that in certain cases, the combinations of the four features

less). with context modeling can yield performance comparable to the

Between feature and classifier combinations, it can be seen tha}ate-of-the-art spectral based features in mismatched conditions.

on matched conditions, training on NIST shows classifier combina-
tion technigques to be better for SEZK, while feature combination
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On mismatched conditions, when NIST is used as training data,
classifier combination is better while when AMI or ICSI datasets are

- S 1
used for training, feature combinations are better. M

[2
4.3. Comparison betweerF'(SEZK) and AH -
Table 1 shows that the comparison with tdgf features shows
mixed results. For example, training on NIST datag&tSEZ K)
is better while testing on NIST, AH is better. Also, training on AMI,
F(EZK)is better than AH, while testing on ICSI, AH is better than (5
F(EZK).

However, theAH features are not significantly different from
the F(SEZK) features, except for the way the spectral entropy is
estimated. INAH, it is estimated explicitly in the spectral domain 7
while in the proposed features, it is done through the residual ob-
tained from linear prediction. This could be the reason for the mixed
results.

4

el

8l

9
4.4, ComparisonwithM F — PLP el

We now compare how the privacy-sensitive features perform againgio
the reference spectral-based features (MF-PLP). In matched-cond
tions, F(SEZK) and AH perform similar to the reference features

on NIST and AMI datasets. In mismatched conditions, we observé*
that MF-PLP features are better than both the privacy sensitive fea-
tures in certain cases. 2]

2NIST dataset has less training data than AMI and ICSI
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