
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Av. des Prés−Beudin 20

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

Predictive Models for Music

Jean-Francois Paiement a

Yves Grandvalet a b Samy Bengio c

IDIAP–RR 08-51

June 2008

submitted for publication

a Idiap Research Institute, Rue Marconi 19, C.P 592, CH-1920, Martigny, Switzer-
land.
b CNRS, France.
c Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA.





IDIAP Research Report 08-51

Predictive Models for Music

Jean-Francois Paiement Yves Grandvalet Samy Bengio

June 2008

submitted for publication

Abstract. Modeling long-term dependencies in time series has proved very difficult to achieve
with traditional machine learning methods. This problem occurs when considering music data.
In this paper, we introduce generative models for melodies. We decompose melodic modeling
into two subtasks. We first propose a rhythm model based on the distributions of distances
between subsequences. Then, we define a generative model for melodies given chords and rhythms
based on modeling sequences of Narmour features. The rhythm model consistently outperforms
a standard Hidden Markov Model in terms of conditional prediction accuracy on two different
music databases. Using a similar evaluation procedure, the proposed melodic model consistently
outperforms an Input/Output Hidden Markov Model. Furthermore, sampling these models given
appropriate musical contexts generates realistic melodies.
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1 Introduction

Generative models for music would be useful in a broad range of applications, from contextual music
generation to on-line music recommendation and retrieval. However, modeling music involves captur-
ing long-term dependencies in time series, which has proved very difficult to achieve with traditional
statistical methods. Note that the problem of long-term dependencies is not limited to music, nor to
one particular probabilistic model [3].

In this paper we present graphical models that capture melodic structures in a given musical style
using as evidence a limited amount of symbolic MIDI1 data. A few generative models have already
been proposed for music in general [7, 18]. While these models generate impressive musical results,
we are not aware of proper quantitative comparisons between generative models of music, that is for
instance in terms of out-of-sample prediction accuracy, as it is done in Sections 3 and 5.

In the first part of this paper, we focus on modeling rhythmic sequences, ignoring for the moment
other aspects of music such as pitch, timbre and dynamics. Many algorithms have been proposed for
audio beat tracking [23, 6]. Here, we consider rhythm modeling as a first step towards full melodic
modeling. Our main contribution in this respect is to propose a generative model for distance patterns,
specifically designed for capturing long-term dependencies in rhythms. In this work, distance patterns
refer to distances between subsequences of equal length in particular positions. In Section 2, we
describe the model, detail its implementation and present an algorithm using this model for rhythm
prediction. The algorithm solves a constrained optimization problem, where the distance model is used
to filter out rhythms that do not comply with the inferred structure. The proposed model is evaluated
in terms of conditional prediction error on two distinct databases in Section 3 and a discussion follows.

With a reliable rhythm model available, we can turn our attention towards probabilistic modeling
of melodies given rhythms and chord progressions. A chord is a group of three or more notes. A chord
progression is simply a sequence of chords. In probabilistic terms, the current chord in a song can be
seen as a latent variable (local in time) that conditions the probabilities of choosing particular notes
in other music components, such as melodies or accompaniments. Chord changes occur at fixed time
intervals in most of the musical genres, which makes them much simpler to detect [14] than beginnings
and endings of musical notes, which can happen almost everywhere in music signal. Thus, knowing
the relations between such chords and actual notes would certainly help to discover long-term musical
structures in tonal music.

It is fairly easy to generate interesting chord progressions given melodies in a particular musical
genre [1, 19]. However, the dual problem that we address in this paper is much more difficult. In
Section 4.2, we describe melodic features derived from [15] that put useful constraints on melodies
based on musicological substantiation. We then introduce in Section 4.3 a probabilistic model of
melodies given chords and rhythms that leads to significantly higher prediction rates than a simpler
Markovian model. The combination of the rhythm model presented in Section 2 and the melodic
model given chords of Section 4.3 leads to a generative model of music that could be interesting
in many applications. For instance, a good music model could help improve the poor performance
of state-of-the-art transcription systems; it could as well be included in genre classifiers, automatic
composition systems [9], or algorithms for music information retrieval [10].

2 Rhythm Model

We want to model rhythms in a dataset X consisting of rhythms of the same musical genre. We first
quantize the database by segmenting each song in m time steps and associate each note to the nearest
time step, such that all melodies have the same length m.2 It is then possible to represent rhythms

1MIDI stands for Musical Instrument Digital Interface, an industry-standard interface used on electronic musical
keyboards and PCs for computer control of musical instruments and devices. In our work, we only consider note onsets
and offsets in the MIDI signal.

2This hypothesis is not fundamental in the proposed model and could easily be avoided if one would have to deal
with more general datasets.
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by sequences containing potentially three different symbols: 1) Note onset, 2) Note continuation, and
3) Silence. When using quantization, there is a one to one mapping between this representation and
the set of all possible rhythms. Using this representation, symbol 2 can never follow symbol 3. Let
A = {1, 2, 3}; in the remaining of this paper, we assume that x

l ∈ Am for all x
l ∈ X .

Hidden Markov Models (HMMs) are commonly used to model temporal data [21]. In principle,
an HMM as described in Section 2.2 is able to capture complex regularities in patterns between
subsequences of data, provided its number of hidden states is large enough. Thus, the HMM could
be seen as a valid candidate for rhythm prediction. However, when dealing with music, such a model
would lead to a learning process requiring a prohibitive amount of data: in order to learn long range
interactions, the training set should be representative of the joint distribution of subsequences. To
overcome this problem, we propose in Section 2.3 to summarize the joint distribution of subsequences
by the distribution of their pairwise distances. This summary is clearly not a sufficient statistic
for the distribution of subsequences, but its distribution can be learned from a limited number of
examples. The resulting model, which generates distances, is then used to constrain the generation
of subsequences. Moreover, empirical results obtained in Section 3 shows that constraining the HMM
with distributions over distance between subsequences significantly improve prediction accuracy.

2.1 Graphical Models and EM

The probabilistic models used in this paper are described using the graphical model framework. Graph-
ical models [13] are useful to define probability distributions where graphs are used as representations
for a particular factorization of joint probabilities. Vertices are associated with random variables. A
directed edge going from the vertex associated with variable A to the one corresponding to variable
B accounts for the presence of the term P (B|A) in the factorization of the joint distribution of all
the variables in the model. The process of estimating probability distributions for a subset of the
variables of the model given the joint distribution of all the variables is called marginalization (e.g.
deriving P (A,B) from P (A,B,C)). The graphical model framework provides efficient algorithms for
marginalization and various learning algorithms can be used to learn the parameters of a model, given
an appropriate dataset.

The Expectation-Maximization (EM) algorithm [5] can be used to estimate the conditional prob-
abilities of the hidden variables in a graphical model. Hidden variables are variables that are neither
observed during training nor during evaluation of the models. These variables represent underlying
phenomena that have an impact on the actual observations, but that cannot be observed directly.
The EM algorithm proceeds in two steps applied iteratively over a dataset until convergence of the
parameters. Firstly, the E step computes the expectation of the hidden variables, given the current
parameters of the model and the observations of the dataset. Secondly, the M step updates the values
of the parameters in order to maximize the joint likelihood of the observations, given the expected
values of the hidden variables.

2.2 HMMs

The HMM model [21] is a well known probabilistic model for time series. Let X = {x1, . . . ,xn}
be a dataset of rhythm sequences, where all the sequences contain m elements: x

l = (xl
1, . . . , x

l
m),

l = 1, . . . , n. Furthermore, let h
l = (hl

1, . . . , h
l
m) be the corresponding sequence of states for a discrete

hidden variable synchronized with x
l.The joint probability of the rhythm sequence x

l and hidden
states h

l estimated by an HMM is given by

pHMM(xl,hl) = pπ(hl
1)po(x

l
1|h

l
1)

m
∏

t=2

pō(h
l
t|h

l
t−1)po(x

l
t|h

l
t) , (1)

where the pō(.|.) terms are called transition probabilities, the po(.|.) terms are called emission prob-
abilities, and the pπ(.) is the initial probability of the first state of the hidden variable. This model
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Figure 1: Hidden Markov Model. Each node is associated to a random variable and arrows denote
conditional dependencies. When learning the parameters of the model, white nodes are hidden whereas
grey nodes are observed.

is presented in Figure 1, following standard graphical model formalism. Each node is associated to
a random variable and arrows denote conditional dependencies. The probability distributions pπ, pō,
and po are multinomials, whose parameters can be learned by the EM algorithm

2.3 Distance Model

Music is characterized by strong hierarchical dependencies determined in large part by meter, the
sense of strong and weak beats that arises from the interaction among hierarchical levels of sequences
having nested periodic components. Such a hierarchy is implied in western music notation, where
different levels are indicated by kinds of notes (whole notes, half notes, quarter notes, etc.) and
where bars establish measures of an equal number of beats. Meter and rhythm provide a framework
for developing musical melody. For example, a long melody is often composed by repeating with
variation shorter sequences that fit into the metrical hierarchy (e.g. sequences of 4, 8 or 16 measures).
It is well know in music theory that distance patterns are more important than the actual choice of
notes in order to create coherent music [11]. For instance, measure 1 may always be similar to measure
5 in a particular musical genre. In fact, even random music can sound structured and melodic if it is
built by repeating random subsequences with slight variation.

Traditionally, musicologists refer to repetition patterns in music with sequences of letters (e.g.
AABA). Let us consider the simple pattern “AB”. This notation does not tell to what extent the
second part differs from the first. Instead of just stating if the second part is similar or not to the
first one, we want to quantify the distances between the two parts in a corpus of music data. We
can even go further and repeat this process hierarchically with various partition lengths. To do so,
we introduce in this section a generative model for distance patterns and its application to rhythm
sequences. Such a model is appropriate for most music data, where distances between subsequences
of data exhibit strong regularities.

Suppose that we construct a partition of each sequence x
l by dividing it into ρ parts defined by

yl
i = (xl

1+(i−1)m/ρ, . . . , x
l
im/ρ) with i ∈ {1, . . . , ρ}. We are interested in modeling the distances between

these subsequences, given a suitable metric d(yi, yj) : R
m/ρ × R

m/ρ → R. As was pointed out in the
beginning of Section 2, the distribution of d(yi, yj) for each specific choice of i and j may be more
important when modeling rhythms (and music in general) than the actual choice of subsequences yi.

Let D(xl) = (dl
i,j)1≤i≤ρ,1≤j≤ρ be the distance matrix associated with each sequence x

l, where

dl
i,j = d(yl

i, y
l
j). Since D(xl) is symmetric and contains only zeros on the diagonal, it is completely

characterized by the upper triangular matrix of distances without the diagonal. Hence,

p(D(xl)) =

ρ−1
∏

i=1

ρ
∏

j=i+1

p(dl
i,j |Sl,i,j) (2)
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Figure 2: Each circle represents the random variable associated with the corresponding factor in
Eq. (2), when ρ = 4. For instance, the conditional distribution for dl

2,4 possibly depends on the
variables associated to the grey circles.

where
Sl,i,j = {dl

r,s|(1 < s < j and 1 ≤ r < s) or (s = j and 1 ≤ r < i)} . (3)

In words, we order the elements column-wise and do a standard factorization, where each random
variable depends on the previous elements in the ordering. Hence, we do not assume any conditional
independence between the distances.

Since d(yi, yj) is a metric, we have that d(yi, yj) ≤ d(yi, yk) + d(yk, yj) for all i, j, k ∈ {1, . . . , ρ}.
This inequality is usually referred to as the triangle inequality. Defining

αl
i,j = min

k∈{1,...,(i−1)}
(dl

k,j + dl
i,k) and

βl
i,j = max

k∈{1,...,(i−1)}
(|dl

k,j − dl
i,k|) ,

(4)

we know that given previously observed (or sampled) distances, constraints imposed by the triangle
inequality on dl

i,j are simply

βl
i,j ≤ dl

i,j ≤ αl
i,j . (5)

One may observe that the boundaries given in Eq. (4) contain a subset of the distances that are on the
conditioning side of each factor in Eq. (2) for each indexes i and j. Thus, constraints imposed by the
triangle inequality can be taken into account when modeling each factor of p(D(xl)): each dl

i,j must
lie in the interval imposed by previously observed/sampled distances given in Eq. (5). Figure 2 shows
an example where ρ = 4. Using Eq. (2), the distribution of dl

2,4 would be conditioned on dl
1,2, d

l
1,3,

dl
2,3, and dl

1,4, and Eq. (5) reads |dl
1,2 − dl

1,4| ≤ dl
2,4 ≤ dl

1,2 + dl
1,4. Then, if subsequences yl

1 and yl
2 are

close and yl
1 and yl

4 are also close, we know that yl
2 and yl

4 cannot be far. Conversely, if subsequences
yl
1 and yl

2 are far and yl
1 and yl

4 are close, we know that yl
2 and yl

4 cannot be close.

2.4 Modeling Relative Distances Between Rhythms

When using the rhythm representation introduced in the beginning of Section 2, dl
i,j can simply be

chosen to be the Hamming distance (i.e. counting the number of positions on which corresponding
symbols are different). One could think of using more general edit distance such as the Levenshtein
distance. However, this approach would not make sense psycho-acoustically: doing an insertion or
a deletion in a rhythm produces a translation that alters dramatically the nature of the sequence.
Putting it another way, rhythm perception heavily depends on the position on which rhythmic events
occur. In the remainder of this paper, dl

i,j is the Hamming distance between subsequences yi and yj .
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We now have to encode our belief that rhythms of the same musical genre have a common distance
structure. For instance, drum beats in rock music can be very repetitive, except in the endings of
every four measures, without regard to the actual beats being played. This should be accounted for
in the distributions of the corresponding dl

i,j .

With Hamming distances, the conditional distributions of dl
i,j in Eq. (2) should be modeled by

discrete distributions, whose range of possible values must obey Eq. (5). Hence, we assume that the
random variables (dl

i,j −β
l
i,j)/(α

l
i,j −β

l
i,j) should be identically distributed for l = 1, . . . , n. Empirical

inspection of data supports this assumption. As an example, suppose that measures 1 and 4 always
tend to be far away, that measures 1 and 3 are close, and that measures 3 and 4 are close; Triangle
inequality states that 1 and 4 should be close in this case, but the desired model would still favor a
solution with the greatest distance complying with the constraints imposed by triangle inequalities.

All these requirements are fulfilled if we model di,j − βi,j by a binomial distribution of parameters
(αi,j −βi,j , pi,j), where pi,j is the probability that two symbols of subsequences yi and yj differ. With
this choice, the conditional probability of getting di,j = βi,j + δ would be

B(δ, αi,j , βi,j , pi,j) =

(

αi,j − βi,j

δ

)

(pi,j)
δ(1 − pi,j)

(αi,j−βi,j−δ) , (6)

with 0 ≤ pi,j ≤ 1. If pi,j is close to zero/one, the relative distance between subsequences yi and yj

is small/large. However, the binomial distribution is not flexible enough since there is no indication
that the distribution of di,j −βi,j is unimodal. We thus model each di,j −βi,j with a binomial mixture

distribution in order to allow multiple modes. We thus use

p(di,j = βi,j + δ|Si,j) =

c
∑

k=1

w
(k)
i,j B(δ, αi,j , βi,j , p

(k)
i,j ) (7)

with w
(k)
i,j ≥ 0,

∑c
k=1 w

(k)
i,j = 1 for every indexes i and j, and Si,j defined similarly as in Eq. (3).

Parameters
θi,j = {w

(1)
i,j , . . . , w

(c−1)
i,j } ∪ {p

(1)
i,j , . . . , p

(c)
i,j }

can be learned with the EM algorithm on rhythm data for a specific music style.
In words, we model the difference between the observed distance dl

i,j between two subsequences
and the minimum possible value βi,j for such a difference by a binomial mixture.

The parameters θi,j can be initialized to arbitrary values before applying the EM algorithm.
However, as the likelihood of mixture models is not a convex function, one may get better models and
speed up the learning process by choosing sensible values for the initial parameters. In the experiments
reported in Section 3, the k-means algorithm for clustering [8] was used. More precisely, k-means was
used to partition the values (dl

i,j − βl
i,j)/(α

l
i,j − βl

i,j) into c clusters corresponding to each component

of the mixture in Eq. (7). Let {µ
(1)
i,j , . . . , µ

(c)
i,j } be the centroids and {n

(1)
i,j , . . . , n

(c)
i,j } the number of

elements in each of these clusters. We initialize the parameters θi,j with

w
(k)
i,j =

n
(k)
i,j

n
and p

(k)
i,j = µ

(k)
i,j .

We then follow a standard approach [4] to apply the EM algorithm to the binomial mixture in Eq. (7).
Let zl

i,j ∈ {1, . . . , c} be a hidden variable telling which component density generated dl
i,j . For every

iteration of the EM algorithm, we first compute

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j) =

ψk,i,j,l
∑c

t=1 ψt,i,j,l

where θ̂i,j are the parameters estimated in the previous iteration, or the parameters guessed with
k-means on the first iteration of EM, and

ψk,i,j,l = ŵ
(k)
i,j B(dl

i,j , α
l
i,j , β

l
i,j , p

(k)) .
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Then, the parameters can be updated with

p
(k)
i,j =

∑n
l=1(d

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

∑n
l=1(α

l
i,j − βl

i,j)p(z
l
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j)

and

w
(k)
i,j =

1

n

n
∑

l=1

p(zl
i,j = k|dl

i,j , α
l
i,j , β

l
i,j , θ̂i,j).

This process is repeated until convergence.

Note that using mixture models for discrete data is known to lead to identifiability problems.
Identifiability refers here to the uniqueness of the representation (up to an irrelevant permutation of
parameters) of any distribution that can be modeled by a mixture.

Estimation procedures may not be well-defined and asymptotic theory may not hold if a model
is not identifiable. However, the model defined in Eq. (7) is identifiable if αi,j − βi,j > 2c − 1 [26,
p.40]. While this is the case for most di,j , we observed that this condition is sometimes violated.
Whatever happens, there is no impact on the estimation because we only care about what happens
at the distribution level: there may be several parameters leading to the same distribution, some
components may vanish in the fitting process, but this is easily remedied, and EM behaves well.

As stated in Section 2.3, musical patterns form hierarchical structures closely related to meter
[11]. Thus, the distribution of p(D(xl)) can be computed for many numbers of partitions within each
rhythmic sequence. Let P = {ρ1, . . . ρh} be a set of numbers of partitions to be considered by our
model, where h is the number of such numbers of partitions. The choice of P depends on the domain
of application. Following meter, P may have dyadic3 tree-like structure when modeling most music
genres (e.g. P = {2, 4, 8, 16}). Let Dρr

(xl) be the distance matrix associated with sequence x
l divided

into ρr parts. Estimating the joint probability
∏h

r=1 p(Dρr
(xl)) with the EM algorithm as described

in this section leads to a model of the distance structures in rhythms datasets. Suppose we consider 16
bars songs with four beats per bar. Using P = {8, 16} would mean that we consider pairs of distances
between every group of two measures (ρ = 8), and every single measures (ρ = 16).

One may argue that our proposed model for long-term dependencies is rather unorthodox. How-
ever, simpler models like Poisson or Bernoulli process (we are working in discrete time) defined over
the whole sequence would not be flexible enough to represent the particular long-term structures in
music.

2.5 Conditional Prediction

For most music applications, it would be particularly helpful to know which sequence x̂s, . . . , x̂m

maximizes p(x̂s, . . . , x̂m|x1, . . . , xs−1). Knowing which musical events are the most likely given the
past s−1 observations would be useful both for prediction and generation. Note that in the remaining
of the paper, we refer to prediction of musical events given past observations only for notational
simplicity. All the generative models presented in this paper could be used to predict any part of a
music sequence given any other part with only minor modifications.

While the described modeling approach captures long range interactions in the music signal, it has
two shortcomings. First, it does not model local dependencies: it does not predict how the distances
in the smallest subsequences (i.e. with length smaller than m/max(P)) are distributed on the events
contained in these subsequences. Second, as the mapping from sequences to distances is many to
one, there exists several admissible sequences x

l for a given set of distances. These limitations are
addressed by using another sequence learner designed to capture short-term dependencies between
musical events. Here, we use a standard HMM [21], as described in Section 2.2.

3Even when considering non-dyadic measures (e.g. a three-beat waltz), the very large majority of the hierarchical
levels in metric structures follow dyadic patterns in most tonal music [11].
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1. Initialize x̂s, . . . , x̂m using Eq. (10);

2. Set j = s and set end = true;

3. Set x̂j = arg max
a∈A

[log pHMM(x∗|x1, . . . , xs−1) +

λ
∑h

r=1 log p(Dρr
(x1, . . . , xs−1,x

∗))]
where x

∗ = (x̂s, . . . , x̂j−1, a, x̂j+1, . . . , x̂m)

4. If x̂j has been modified in the last step, set end = false.

5. If j = m and end = false, go to 2;

6. If j < m, set j = j + 1 and go to 3;

7. Return x̂s, . . . , x̂m.

Figure 3: Simple optimization algorithm to maximize p(x̂i, . . . , x̂m|x1, . . . , xi−1)

The two models are trained separately using their respective version of the EM algorithm. For
predicting the continuation of new sequences, they are combined by choosing the sequence that is
most likely according to the local HMM model, provided it is also plausible regarding the model
of long-term dependencies. Let pHMM(xl) be the probability of observing sequence x

l estimated by
the HMM after training. The final predicted sequence is the solution of the following optimization
problem:















max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1)

subject to

h
∏

r=1

p(Dρr
(xl)) ≥ P0 ,

(8)

where P0 is a threshold. In practice, one solves a Lagrangian formulation of problem (8), where we
use log-probabilities for computational reasons:

max
x̃s,...,x̃m

[log pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) + λ

h
∑

r=1

log p(Dρr
(xl))] , (9)

where tuning λ has the same effect as choosing a threshold P0 in Eq. (8) and can be done by cross-
validation.

Multidimensional Scaling (MDS) is an algorithm that tries to embed points (here “local” subse-
quences) into a potentially lower dimensional space while trying to be faithful to the pairwise affinities
given by a “global” distance matrix. Here, we propose to consider the prediction problem as find-
ing sequences that maximize the likelihood of a “local” model of subsequences under the constraints
imposed by a “global” generative model of distances between subsequences. In other words, solving
problem (8) is similar to finding points such that their pairwise distances are as close as possible to
a given set of distances (i.e. minimizing a stress function in MDS). Naively trying all possible sub-
sequences to maximize (9) leads to O(|A|(m−s+1)) computations. Instead, we propose to search the
space of sequences using a variant of the Greedy Max Cut (GMC) method [22] that has proven to be
optimal in terms of running time and performance for binary MDS optimization.

The subsequence x̂s, . . . , x̂m can be simply initialized with

(x̂s, . . . , x̂m) = max
x̃s,...,x̃m

pHMM(x̃s, . . . , x̃m|x1, . . . , xs−1) (10)

using the local HMM model. The complete optimization algorithm is described in Figure 3. For each
position, we try every admissible symbol of the alphabet and test if a change increases the probability of
the sequence. We stop when no further change can increase the value of the utility function. Obviously,
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many other methods could have been used to search the space of possible sequences x̂s, . . . , x̂m, such
as simulated annealing [12]. Our choice is motivated by simplicity and the fact that it yields excellent
results, as reported in the following section.

3 Rhythm Prediction Experiments

Two databases from different musical genres were used to evaluate the proposed model. Firstly,
47 jazz standards melodies [25] were interpreted and recorded by the first author in MIDI format.
Appropriate rhythmic representations as described in Section 2.4 have been extracted from these files.
The complexity of the rhythm sequences found in this corpus is representative of the complexity of
common jazz and pop music. We used the last 16 bars of each song to train the models, with four
beats per bar. Two rhythmic observations were made for each beat, yielding observed sequences of
length 128. We also used a subset of the Nottingham database4 consisting of 53 traditional British
folk dance tunes called “hornpipes”. In this case, we used the first 16 bars of each song to train
the models, with four beats per bar. Three rhythmic observations were made for each beat, yielding
observed sequences of length 192. The sequences from this second database contain no silence (or
rest), leading to sequences with binary states.

The goal of the proposed model is to predict or generate rhythms given previously observed rhythm
patterns. As pointed out in Section 1, such a model could be particularly useful for music information
retrieval, transcription, or music generation applications. Let εj

i = 1 if x̂j
i = xj

i , and 0 otherwise,

with x
j = (xj

1, . . . , x
j
m) a test sequence, and x̂j

i the output of the evaluated prediction model on the

i-th position when given (xj
1, . . . , x

j
s) with s < i. Assume that the dataset is divided into K folds

T1, . . . , TK (each containing different sequences), and that the k-th fold Tk contains nk test sequences.
When using cross-validation, the accuracy Acc of an evaluated model is given by

Acc =
1

K

K
∑

k=1

1

nk

∑

j∈Tk

1

m− s

m
∑

i=s+1

εj
i . (11)

Note that, while the prediction accuracy is simple to compute and to apprehend, other performance
criteria, such as ratings provided by a panel of experts, should be more appropriate to evaluate
the relevance of music models. We plan to define such an evaluation protocol in future work. We
used 5-fold double cross-validation to estimate the accuracies. Double cross-validation is a recursive
application of cross-validation that enables to jointly optimize the hyper-parameters of the model and
evaluate its generalization performance. Standard cross-validation is applied to each subset of K − 1
folds with each hyper-parameter setting and tested with the best estimated setting on the remaining
hold-out fold. The reported accuracies are the averages of the results of each of the K applications of
simple cross-validation during this process.

For the baseline HMM model, double cross-validation optimizes the number of possible states for
the hidden variables. 2 to 20 possible states were tried in the reported experiments. In the case
of the model with distance constraints, referred to as the global model, the hyper-parameters that
were optimized are the number of possible states for hidden variables in the local HMM model (i.e.
2 to 20), the Lagrange multiplier λ, the number of components c (common to all distances) for each
binomial mixture, and the choice of P, i.e. which partitions of the sequences to consider. Values
of λ ranging between 0.1 and 4 and values of c ranging between 2 and 5 were tried during double
cross-validation. Since music data commonly shows strong dyadic structure following meter, many
subsets of P = {2, 4, 8, 16} were allowed during double cross-validation.

Note that the baseline HMM model is a poor benchmark on this task, since the predicted sequence,
when prediction consists in choosing the most probable subsequence given previous observations, only
depends on the state of the hidden variable at time s. This observation implies that the number of
possible states for the hidden variables of the HMM upper-bounds the number of different sequences

4http://www.cs.nott.ac.uk/~ef/music/database.htm.
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Table 1: Accuracy (the higher the better) for best models on the jazz standards database.
Observed Predicted HMM Global
32 96 34.5% 54.6%
64 64 34.5% 55.6%
96 32 41.6% 47.2%

Table 2: Accuracy (the higher the better) for best models on the hornpipes database.
Observed Predicted HMM Global
48 144 75.1% 83.0%
96 96 75.6% 82.1%
144 48 76.6% 80.1%

that the HMM can predict. However, this behavior of the HMM does not question the validity of
the reported experiments. The main goal of this quantitative study is to measure to what extent
distance patterns are present in music data and how well these dependencies can be captured by the
proposed model. What we really want to measure is how much gain we observe in terms of out-of-
sample prediction accuracy when using an arbitrary model if we impose additional constraints based
on distance patterns. That being said, it would be interesting to measure the effect of appending
distance constraints to more complex music prediction models [7, 18].

Results in Table 1 for the jazz standards database show that considering distance patterns signif-
icantly improves the HMM model. One can observe that the baseline HMM model performs much
better when trying to predict the last 32 symbols. This is due to the fact that this database contains
song endings. Such endings contain many silences and, in terms of accuracy, a useless model predicting
silence at any position performs already well. On the other hand, the endings are generally different
from the rest of the rhythm structures, thus harming the performance of the global model when just
trying to predict the last 32 symbols. Results in Table 2 for the hornpipes database again show
that the prediction accuracy of the global model is consistently better than the prediction accuracy
of the HMM, but the difference is less marked. This is mainly due to the fact that this dataset only
contains two symbols, associated to note onset and note continuation. Moreover, the frequency of
these symbols is quite unbalanced, making the HMM model much more accurate when almost always
predicting the most common symbol.

In Table 3, the set of partitions P is not optimized by double cross-validation. Results are shown
for different fixed sets of partitions. The best results are reached with “deeper” dyadic structure.
This is a good indication that the basic hypothesis underlying the proposed model is well-suited to
music data, namely that dyadic distance patterns exhibit strong regularities in music data. We did
not compute accuracies for ρ > 16 because it makes no sense to estimate distribution of distances
between too short subsequences.

Table 3: Accuracy over the last 64 positions for many sets of partitions P on the jazz database, given
the first 64 observations. The higher the better.

P Global
{2} 49.3%
{2, 4} 49.3%
{2, 4, 8} 51.4%
{2, 4, 8, 16} 55.6%
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Figure 4: Schematic overview of the proposed melodic model. We first model rhythms. Then, we
model Narmour features sequences given rhythms. Finally, we model actual melodies given Narmour
features and chords.

4 Melodic Model

With a reliable probabilistic model of rhythms available, we can now turn our attention to a more
difficult problem, which is to model melody notes, given rhythm and chord progressions. In order to do
so, we proceed iteratively in three steps depicted schematically in Figure 4. We first model rhythms
with the model presented in Section 2. Then, we model features that represent the plausibility of
sequences of notes. These “Narmour” features, introduced in Section 4.2, are computed for each
sequence of three consecutive notes. Their prediction is an interesting intermediate problem since the
cardinality of such features is much lower than the number of sequences of three notes. Moreover, such
features are descriptive of the perceptual expectancy of a particular group of three notes. As stated
in Section 1, chords can be seen as latent variables (local in time) that condition the probabilities of
choosing particular notes in a melody. However, chords do not describe longer term melodic structure.
This is why we propose to use Narmour features as sequences of constraints on the choices of melody
notes. In Section 4.3, we describe a probabilistic model for melody notes given Narmour features and

chord progressions.
Results reported in Section 5 show that using sequences of Narmour features as constraints leads to

much better prediction accuracy than the direct baseline approach using the IOHMM model described
in the following section.

4.1 IOHMMs

A simple probabilistic model for melodies given chords can be designed by adding input variables
to the HMM of Section 2.2. Let U = {u1, . . . ,un} be a dataset of varying length melodies, where
melody u

l has length gl, u
l = (ul

1, . . . , u
l
gl

). Each melodic line is composed of notes ul
i in the MIDI

standard, ul
i ∈ {0, . . . , 127}. The melodies in dataset U are synchronized with rhythms in the dataset

X defined as in Section 2. The length gl of melodic line u
l corresponds thus to the number of note

onsets (symbol 1) in rhythm sequence x
l. In addition, let νl = (νl

1, . . . , ν
l
gl

) be the chord progression

corresponding to the l-th melody. Here, each νl
t takes a discrete value within the number of different

chords in the dataset. The joint probability of each sequence u
l, its associated chord progression νl,

and hidden states h
l can be modeled by

pIOHMM(ul, νl,hl) = pi(ν
l
1)pπ(hl

1|ν
l
1)po(u

l
1|h

l
1)

gl
∏

t=2

pi(ν
l
t)pō(h

l
t|h

l
t−1, ν

l
t)po(u

l
t|h

l
t) . (12)

This model, shown in Figure 5, is a specific Input/Output Hidden Markov Model (IOHMM), as
introduced by [2]. Usual IOHMMs have additional links connecting directly the input variables (level 1)



12 IDIAP–RR 08-51

Figure 5: Variant of an IOHMM model for MIDI notes given chords. The variables in level 1 are
always observed and correspond to chords. Variables in level 2 are hidden, while variables in level 3
correspond to melodic notes. All variables in grey are observed during training.

to the outputs (level 3). We removed these links to decrease to number of parameters in the model,
and thus being less prone to overfit the training data.

The probability distributions pπ, pi, pō, and po are multinomials, as in Equation (1), and the model
is learned by the standard EM algorithm. Marginalization must be carried out in this model both for
learning (during the expectation step of the EM algorithm) and for evaluation. Exact marginalization
with the standard Junction Tree Algorithm [13] is usually tractable in IOHMMs because of their
limited complexity. Performance of the IOHMM in terms of melodic prediction accuracy given chords
is presented in Section 5.

4.2 Narmour Features

In this section, we introduce melodic features that will prove to be useful for melodic prediction. The
Implication-Realization (I-R) model has been developed by [15, 16] as a theory of musical expectation.
This fairly complex musicological model was then simplified and implemented by [24], who proposed
a formal analysis of each sequence of three consecutive notes, according to five perceptual items:
registral direction, intervallic difference, registral return, proximity, and closure, as described later in
this section. The model returns five scores measuring expectancy according to these five criterions,
and, according to Narmour’s theory, high perceptual expectancy incurs high cumulative scores. This
model was empirically shown to be relevant in information retrieval applications [10].

In this paper, our goal is quite different. Instead of quantifying melodic expectancy, we design a
probabilistic model of melodic sequences given chords. We propose to collectively use the Narmour
principles as discrete features to characterize each sequence of three consecutive notes. In the remain-
der of this paper, we refer to these features as Narmour features. There is much less possible Narmour
features (108 in our implementation) than possible groups of three notes (1283 if we consider all MIDI
notes). Given that observation, we expect that modeling sequences of Narmour features should be
easier than modeling actual sequences of notes. We describe in Section 4.3 how we propose to generate
actual melodies given sequences of Narmour features.

Our particular implementation of the Narmour features is mostly derived from [24]. We simply
define the interval vt between two notes ut and ut−1 to be the difference vt = ut−1 −ut between their
MIDI note numbers. Interval has to be taken here in its musicological sense, which is not related
to the usual mathematical definition: an interval is an integer that counts the number of semi-tones
between two notes. Each Narmour principle can be computed for any sequence of three consecutive
notes, corresponding to two intervals. In Narmour’s theory, the first interval is referred to as the
Implication while the second interval corresponds to the Realization of a melodic pattern of three
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notes. We define the sign function as

sgn(x) =







−1 if x < 0
0 if x = 0
1 if x > 0

.

The registral direction principle states that continuation in pitch direction is expected after small
intervals and that large intervals imply a change of direction. We define

rmt =







0 if |vt−1| > 6 and sgn(vt−1) = sgn(vt)
1 if |vt−1| ≤ 6
2 if |vt−1| > 6 and sgn(vt−1) 6= sgn(vt)

to be the Narmour feature scoring the registral direction principle computed on arbitrary MIDI notes
ut−2, ut−1, and ut.

The intervallic difference principle says that small intervals imply similar-sized realized intervals
and that large implicative intervals imply relatively smaller realized intervals. Formally,

idt =















1 if |vt−1| < 6 and sgn(vt−1) 6= sgn(vt) and ||vt−1| − |vt|| < 3
1 if |vt−1| < 6 and sgn(vt−1) = sgn(vt) and ||vt−1| − |vt|| < 4
1 if |vt−1| > 6 and |vt−1| ≥ |vt|
0 otherwise

is the Narmour feature scoring the intervallic difference principle.
The registral return principle states that the second tone of a realized interval is expected to be

very similar to the original pitch (within 2 semi-tones). Thus, we define the following scoring function

rrt =

{

1 if |vt + vt−1| ≤ 2
0 otherwise.

Then, the closure principle states that either melody changes direction, or that large intervals are
followed by a relatively smaller interval. This feature is scored by

clt =















2 if sgn(vt−1) 6= sgn(vt) and |vt−1| − |vt| > 2
1 if sgn(vt−1) 6= sgn(vt) and |vt−1| − |vt| < 3
1 if sgn(vt−1) = sgn(vt) and |vt−1| − |vt| > 3
0 otherwise.

Finally, the proximity principle favors small realized intervals. We define

prt =







0 if |vt| ≥ 6
1 if 3 ≤ |vt| ≤ 5
2 if 0 ≤ |vt| ≤ 2

.

We define this feature with less possible states than in [24] in order to limit the dimensionality of
the Narmour representation. Besides, the actual numerical values for each of the Narmour feature do
not correspond to those of [24], where the goal was to quantify numerically the subjective melodic
expectation. In the context of this paper, these values only correspond to discrete ordered values
summarizing triplets of notes.

From these definitions, the Narmour features for the note triplet (ut−2, ut−1, ut) are defined as

γt = (rmt, idt, rrt, clt,prt) .

Such features have 108 possible different discrete states.
As an example, the sequence of MIDI notes (u1, u2, u3, u4) = (71, 74, 72, 84) would lead to the

Narmour features γ3 = (1, 1, 1, 1, 2) and γ4 = (1, 0, 0, 1, 0).



14 IDIAP–RR 08-51

Figure 6: Variant of an IOHMM model for Narmour features given note lengths. The variables in
level 1 are always observed and correspond to previous note lengths. Variables in level 2 are hidden,
while variables in level 3 correspond to Narmour features. All variables in grey are observed during
training.

4.3 Melodic Model

In this section, we describe a probabilistic model for melodies given rhythms and chord progressions.
While the IOHMM in Section 4.1 was directly modeling the choice of notes given chords (and implicitly
rhythms), the model described here proceeds in two steps. We first model sequences of Narmour
features given rhythm. Then, we model the actual choice of melodic notes, given sequences of Narmour
features generated in the last step and chord progressions. These two steps correspond to steps 2.
and 3. in Figure 4.

4.3.1 IOHMM for Narmour Features

An IOHMM like the one presented in Section 4.1 can be used to model sequences of Narmour features
given rhythms. We first compress the rhythm dataset in a form that is synchronized with Narmour
features: we define a

l = (al
2, . . . , a

l
gl−1) to be the l-th sequence of note lengths in the rhythm dataset

X , ignoring the first and last note lengths al
1 and al

gl
. When considering the rhythm representation

defined in Section 2.4, each al
i is equal to one plus the number of symbols 2 following the i-th symbol 1

in the corresponding rhythm sequence x
l. For instance, the rhythm sequence x

l = (1, 1, 2, 2, 3, 1, 2, 1)
produces the note length sequence a

l = (3, 2). We denote by γl = (γl
3, . . . , γ

l
gl

) the sequence of
Narmour features associated to the l-th melody. This sequence starts with index 3 because each
Narmour feature spans three notes.

The joint probability of each sequence of Narmour feature γl, its associated sequence of note
lengths al, and hidden states h

l can be modeled by

pNIOHMM(al, γl,hl) = pi(a
l
2)pπ(hl

1|a
l
2)po(γ

l
3|h

l
1)

gl
∏

t=4

pi(a
l
t−1)pō(h

l
t−2|h

l
t−3, a

l
t−1)po(γ

l
t|h

l
t−2) . (13)

This model is shown in Figure 6. As in Equation (12), the probability distributions pπ, pi, pō, and po

are multinomials, and the model is learned by the standard EM algorithm.

As can be seen in Equation (13), we arbitrarily chose to condition the Narmour features on the
previous note length. This is due to the empirical observation that greater intervals tend to occur
after long notes while smaller intervals tend to occur after short notes. Other models of Narmour
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features given current length, a longer past context, or even no note length at all could be considered.
We let this exploration for future work.

4.3.2 Notes Model

We are now about to reach the end of our quest for a complete generative model of melodies given
chord progressions. The only piece of the puzzle that remains to be defined is a model for MIDI notes
given Narmour features and chord progressions.

A pitch class can be defined simply as the set of all notes with the same name. There is 12 different
pitch classes. For instance, all the notes named “C” are part of the same pitch class. We associate
value 0 to pitch class C, value 1 to pitch class C#, value 2 to pitch class D, and so on.

As stated in Section 1, each chord is made of three or more notes. Usually, the lowest note of the
chord is called the root of the chord. This note is so important in the chord that it gives its name
to the chord. For instance, the root of the chord CMaj7b5 is the pitch class C. Here we decompose
the chord representation defined in Section 4.1 into two parts: νl

i = (ηl
i, τ

l
i ), where ηl

i is the structure
of the chord and τ l

i is the root pitch class. Chord structures are just the chord definitions aside of
the name of the root (e.g. “m7b5” is the chord structure in the chord “Bm7b5”). Each different
chord structure is mapped to a specific state of the variables ηl

i. The sequences ηl = (ηl
1, . . . , η

l
gl

) and

τ l = (τ l
1, . . . , τ

l
gl

) are respectively the chord structure and the root progressions of the l-th song in the
dataset.

Let ũl
t be an arbitrary MIDI note played at time t. We define

φ̃l
t = ((ũl

t mod 12) − τ l
t ) mod 12

to be the representation of the pitch class associated to the MIDI note ũl
t, relative to the root of the

current chord. For instance, let ũl
t = 65 (note F) be played over the D minor chord. In that case,

we have τ l
t = 2, meaning that the pitch class of the root of the chord is D. Hence, φ̃l

t = 3 for that
particular example, meaning that the current melody note pitch class is 3 semi-tones higher than the
root of the current chord.

It is easy to estimate p(φ̃l
t|η

l
t, τ

l
t , ũ

l
t) with a multinomial distribution computed by maximum like-

lihood over a training set. For each possible chord structure η, we learn a simple distribution of
the pitch classes of the melodies relative to the root of the corresponding chord. For instance, this
distribution could learn the fact that we often observe a minor third over a minor seventh chord.

We define γ̃l
t(u

l
t−2, u

l
t−1, ũ

l
t) to be the extracted Narmour feature when notes ul

t−2 and ul
t−1 are

followed by the arbitrary note ũl
t. Let κ̃l

t be an arbitrary random variable such that

p(κ̃l
t = 1|ũl

t) =

{

1 if γl
t = γ̃l

t(u
l
t−2, u

l
t−1, ũ

l
t)

0 otherwise.

In words, κ̃l
t is equal to 1 if and only if the Narmour feature produced when playing arbitrary note ũl

t

is equal to the given Narmour feature γl
t.

We estimate the probability of playing any arbitrary MIDI note ũl
t at time t in the l-th song of the

dataset given the two previous observed notes ul
t−2 and ul

t−1, a given sequence of Narmour features
γl, and a given chord progression νl with

pMEL(ũl
t|u

l
t−1, u

l
t−2, ν

l, γl, κ̃l
t = 1) =

1

Z(ũl
t)
p(κ̃l

t = 1|ũl
t)p(ũ

l
t)p(φ̃

l
t|η

l
t, τ

l
t , ũ

l
t) (14)

where Z(ũl
t) is a normalization constant and p(ũl

t) is the prior probability of observing ũl
t. The

distribution p(ũl
t) is a multinomial that can be simply estimated by maximum likelihood on the

training set.
Figure 7 shows the graphical model representation of Equation (14). A simple strategy to find the

most likely MIDI note ũl
t given ul

t−1, u
l
t−2, ν

l, and γl is to solve

arg max
{ũl

t|κ̃
l
t=1}

p(ũl
t)p(φ̃

l
t|η

l
t, τ

l
t , ũ

l
t) .
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Figure 7: Graphical representation of the melodic prediction model defined in Eq. (14).

In other words, we search for the most likely melodic note (with respect to the current chord) among
all the possible notes given the current Narmour constraint. Despite the fact that this model only
predict one note at a time, it is able to take into account longer term melodic shapes through the
constraints imposed by the sequences of Narmour features.

Melodic prediction without observing Narmour features can be done with this model in two steps.
We first generate the most likely sequence of Narmour features given rhythms with the IOHMM model
described in Section 4.3.1. Then, we can use the melodic prediction model described in the current
section to predict MIDI notes given chord progressions. Such a model is shown in Section 5 to have
much better prediction accuracy than using a simpler IOHMM model alone.

Unsupervised probabilistic models can be sampled to generate genuine chord progressions [20].
The melodic model described here is able to generate realistic melodies given these chord progres-
sions and beginning of melodies. This system can be used as a tool to ease music composition.
Audio files generated by sampling the different models presented in this paper are available at
http://www.idiap.ch/∼paiement/connection. Even for the non musician, it should be obvious
that the sequences generated by sampling the melodic model introduced in this section are much
more realistic than sequences generated by sampling the IOHMM model described in Section 4.1.
Both models generate notes that are coherent with the current chord. However, the sequences gen-
erated by the IOHMM model do not have any coherent structure. On the other hand, melodies
generated by the melodic model presented here tend to follow the same melodic shapes than the songs
in the training sets. These melodic shapes are constrained by the conditioning sequences of Narmour
features used as inputs.

5 Melodic Prediction Experiments

To compare the melodic model described in the previous section with the IOHMM model of Section 4.1,
we propose a slightly different evaluation criterion than the prediction accuracy defined in Section 3.
This alternate criterion was chosen in this case for its computational simplicity.

The goal of the proposed models is to predict or generate melodies given chord progressions and
rhythm patterns. Let u

j = (uj
1, . . . , u

j
gj

) be a test sequence of MIDI notes and ûj
i to be the output

of the evaluated prediction model on the i-th position when given (uj
1, . . . , u

j
i−1) and the associated

rhythm sequence x
j . Assume that the dataset is divided into K folds T1, . . . , TK (each containing

different sequences), and that the k-th fold Tk contains nk test sequences. When using cross-validation,
we define the “local accuracy” LocAcc of an evaluated model to be

LocAcc =
1

K

K
∑

k=1

1

nk

∑

t∈Tk

1

m− s

gj
∑

i=ζj
s

ε̃j
i (15)

where ε̃j
i = 1 if ûj

i = uj
i , and 0 otherwise, and ζj

s is the smallest note index (in the j-th test song)
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Table 4: Local accuracy (the higher the better) for prediction models on the jazz standards database,
for various prediction starting points s.

s IOHMM Narmour
32 2.0% 11.9%
64 1.7% 12.1%
96 2.2% 14.9%

Table 5: Local accuracy (the higher the better) for prediction models on the hornpipes database, for
various prediction starting points s.

s IOHMM Narmour
48 2.5% 4.6%
96 2.6% 4.9%
144 2.6% 5.0%

such that its corresponding rhythm index is greater than s. At first sight, Equation (15) may look
identical to Equation (11). However, one must note that ε̃j

i may be different than εj
i , since prediction

models have access to all the previous notes in the present section.

2 to 20 possible hidden states were tried in the reported experiments for the baseline IOHMM
model of Section 4.1 and the “Narmour” IOHMM of Section 4.3.1. Both models try to predict out-
of-sample melody notes, given chord progressions and complete test rhythm sequences x

j . The same
chord representations are used as input for both models. 5-fold cross-validation was used to compute
prediction accuracies. We report results for the choices of parameters that provided the highest
accuracies for each model. The IOHMM model of notes given chords is a stronger contender than
would be a simpler HMM trained on melodies, because the prediction given by the IOHMM takes
advantage of the current input.

Results in Table 4 for the jazz standards database show that generating Narmour features as
an intermediate step greatly improves prediction accuracy. Since there is 128 different MIDI notes, a
completely random predictor would have a local accuracy of 0.8%. Both models take into account chord
progressions when trying to predict the next MIDI note. However, the Narmour model favors melodic
shapes similar to the ones found in the training set. The Narmour model still provides consistently
better prediction accuracy on the hornpipes database, as can be seen in Table 5. However, prediction
accuracies are lower on the hornpipes database than on the jazz database for the Narmour model.
Note onsets (symbol 1) occur on most rhythm positions in this database. This means that rhythm
sequences in this database have relatively low entropy. Hence, rhythm sequences are less informative
when used as conditioning inputs to generate sequences of Narmour features. Another observation
is that the chord structures in this database are almost always the same (i.e. simple triads). The
melodic model of Section 4.3 is directly modeling the distribution p(φ̃l

t|η
l
t, τ

l
t , ũ

l
t) of relative MIDI

notes given chord structures. This distribution was probably more helpful for melodic prediction in
the jazz database than in the hornpipes database. Despite these two drawbacks, the melodic model
of Section 4.3 has a prediction accuracy twice as good as what is obtained with the simpler IOHMM
model in the hornpipes database.

Again, while the prediction accuracy is simple to compute and to apprehend, other performance
criteria, such as ratings provided by a panel of experts, should be more appropriate to evaluate the
relevance of music models. The fact that the Narmour model accurately predict “only” about 12% of
the notes on out-of-sample sequences does not mean that it is not performing well when generating
the other “wrong” notes. Many realistic melodies can be generated on the same chord progression in
a given musical genre. Moreover, some mistakes are more harmful than others. For most applications,
a model that would have very low prediction accuracy, but that would generate realistic melodies,



18 IDIAP–RR 08-51

would be preferable to a model with 50% prediction accuracy, but that would generate unrealistic
notes the other half of the time.

6 Conclusion

The main contribution of this paper is the design and evaluation of a generative model for melodies.
While a few generative models have already been proposed for music in general [7, 18], we are not aware
of proper quantitative comparisons between generative models of music, as it is done in Sections 3
and 5.

In Section 2, we considered rhythm modeling as a first step towards full melodic modeling. For
doing so, we proposed a generative model for distance patterns in temporal data. The model is specif-
ically well-suited to music data, which exhibits strong regularities in dyadic distance patterns between
subsequences. Reported conditional prediction accuracies in Section 3 show that such regularities are
present in music data and can be effectively captured by the proposed model. Moreover, learning
distributions of distances between subsequences really helps for accurate rhythm prediction.

Besides being fundamental in music, modeling distances between subsequences should also be useful
in other application domains, such as in natural language processing. Being able to characterize and
constrain the relative distances between various parts of a sequence of bags-of-concepts could be an
efficient means to improve performance of automatic systems such as machine translation [17]. On
a more general level, learning constraints related to distances between subsequences can boost the
performance of “short term memory” models such as the HMM.

Finally, with a reliable rhythm model available, we introduced in Section 4 a model of melodies
given rhythms and chord progressions. For that purpose, we first described melodic features derived
from [15] that put useful constraints on melodies based on musicological substantiation. We then
defined in Section 4.3 a probabilistic model of melodies that provides significantly higher prediction
rates than a simpler, yet powerful, Markovian model. The combination of the rhythm model and
the melodic model given chords leads to a generative model of music that could be interesting in
many applications. Furthermore, sampling these models given appropriate musical contexts generates
realistic melodies and rhythms.

Acknowledgments

This work was supported in part by the IST Program of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778, funded in part by the Swiss Federal Office for Education
and Science (OFES) and the Swiss NSF through the NCCR on IM2.

References

[1] M. Allan, C. K. I. Williams, Harmonising chorales by probabilistic inference, in: Advances in
Neural Information Processing Systems, vol. 17, 2004.

[2] Y. Bengio, P. Frasconi, Input/output HMMs for sequence processing, IEEE Transactions on
Neural Networks 7 (5) (1996) 1231–1249.

[3] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is
difficult, IEEE Transactions on Neural Networks 5 (2) (1994) 157–166.

[4] J. Bilmes, A gentle tutorial on the em algorithm and its application to parameter estimation for
gaussian mixture and hidden markov models (1997).
URL citeseer.ist.psu.edu/bilmes98gentle.html



IDIAP–RR 08-51 19

[5] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the
EM algorithm, Journal of the Royal Statistical Society 39 (1977) 1–38.

[6] S. Dixon, Evaluation of the audio beat tracking system beatroot, Journal of New Music Research
36 (1) (2007) 39–50.

[7] S. Dubnov, G. Assayag, O. Lartillot, G. Bejerano, Using machine-learning methods for musical
style modeling, IEEE Computer 10 (38).

[8] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, Second Edition, Wiley Interscience,
2000.

[9] D. Eck, J. Schmidhuber, Finding temporal structure in music: Blues improvisation with LSTM
recurrent networks, in: H. Bourlard (ed.), Neural Networks for Signal Processing XII, Proc. 2002
IEEE Workshop, IEEE, New York, 2002.

[10] M. Grachten, J. L. Arcos, R. L. de Mantaras, Melody retrieval using the implication/realization
model, in: Proceedings of the 6th International Conference on Music Information Retrieval (IS-
MIR), 2005.

[11] S. Handel, Listening: An introduction to the perception of auditory events, MIT Press, Cam-
bridge, Mass., 1993.

[12] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, Number
4598, 13 May 1983 220, 4598 (1983) 671–680.
URL citeseer.ist.psu.edu/kirkpatrick83optimization.html

[13] S. L. Lauritzen, Graphical Models, Oxford University Press, 1996.

[14] K. Lee, M. Slaney, A unified system for chord transcription and key extraction using hidden
markov models, in: Proceedings of International Conference on Music Information Retrieval
(ISMIR), 2007.

[15] E. Narmour, The Analysis and Cognition of Basic Melodic Structures: The Implication-
Realization Model, Univeristy of Chicago Press, Chicago, 1990.

[16] E. Narmour, The Analysis and Cognition of Melodic Complexity: The Implication-Realization
Model, University of Chicago Press, 1992.

[17] F. J. Och, H. Ney, The alignment template approach to statistical machine translation, Compu-
tational Linguistics 30 (4) (2004) 417–449.

[18] F. Pachet, The continuator: Musical interaction with style, Journal of New Music Research 32 (3)
(2003) 333–341.

[19] J.-F. Paiement, D. Eck, S. Bengio, Probabilistic melodic harmonization, in: Proceedings of the
19th Canadian Conference on Artificial Intelligence, Springer, 2006.

[20] J.-F. Paiement, D. Eck, S. Bengio, D. Barber, A graphical model for chord progressions embedded
in a psychoacoustic space, in: Proceedings of the 22nd International Conference on Machine
Learning, 2005.

[21] L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recogni-
tion, Proceedings of the IEEE 77 (2) (1989) 257–285.

[22] D. L. T. Rohde, Methods for binary multidimensional scaling, Neural Comput. 14 (5) (2002)
1195–1232.



20 IDIAP–RR 08-51

[23] E. Scheirer, Tempo and beat analysis of acoustic musical signals, Journal of the Acoustical Society
of America 103 (1) (1998) 588–601.
URL http://web.media.mit.edu/ eds/beat.pdf

[24] E. Schellenberg, Simplifying the implication-realization model of musical expectancy, Music Per-
ception 14 (3) (1997) 295–318.

[25] C. Sher (ed.), The New Real Book, vol. 1-3, Sher Music Co., 1988.

[26] D. M. Titterington, A. F. M. Smith, U. E. Makov, Statistical Analysis of Finite Mixture Distri-
butions, Wiley, 1985.


