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Abstract

Biometric authentication performance is often depicted bya DET curve. We show that this curve is dependent

on the choice of samples available, the demographic composition and the number of users specific to a database.

We propose a two-step bootstrap procedure to take into account of the three mentioned sources of variability.

This is an extension to the Bolleet al.’s bootstrap subset technique. Preliminary experiments onthe NIST2005

and XM2VTS benchmark databases is encouraging, e.g., the average result across all 24 systems evaluated on

NIST2005 indicates that one can predict, with more than 75% of DET coverage, an unseen DET curve with 8

times more users. Furthermore, our finding suggests that with more data available, the confidence intervals become

smaller and hence more useful.

Index Terms

Biometric authentication assessment, DET, ROC, bootstrapsubset

I. I NTRODUCTION

Biometric authentication is a process of verifying an identity claim using a person’s behavioral and

physiological characteristics. There are several factorsthat can affect a biometric system’s performance.

Some of these factors are the deformable nature of biometrictraits, corruption by environmental noise,

variability of biometric traits over time, the state of users (especially behavioral biometrics) and occlusion

by the user’s accessories. As a consequence, even if two biometric samples are acquired from the same user,

the system cannot produceexactlythe same output score. Therefore, when assessing the performance, the

uncertainty introduced by these numerous and often uncontrolled distortions has to be taken into account.
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bengio}@idiap.ch. A. Martin is with NIST, 100 Bureau Drive, Gaithersburg, MD 20899 USA. E-mail: alvin.martin@nist.gov.
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A biometric authentication system can make two types of error, i.e., falsely rejecting a genuine user

(client) or falsely accepting an impostor. The respective error rates are called False Acceptance Rate

(FAR) and False Rejection Rate (FRR)1. These two measures are fundamental building blocks to many

visualizing tools. The most commonly used ones are Receivers’ Operating Cost (ROC) and Decision Error

Trade-off (DET) curves [2].

The goal of this paper is to establish a confidence interval around a DET curve by explicitly considering

the correlation structureof match scores, i.e., the fact that match scores resulting from multiple attempts

of a person making the same identity claim are correlated, regardless of whether the person is a client

or an impostor. Confidence interval estimation techniques developed in the medical field, e..g, [3] and

in machine learning, e.g., [4], [5], cannot be used in biometric authentication because the correlation

structure is person-dependent. In [6], a bootstrap algorithm that exploits this person-dependent correlation

structure was proposed to estimate the confidence of FAR given an FRR of interest, or the confidence of

FRR given an FAR of interest. This algorithm was called “bootstrap subset” because it considers only

a subset of scores associated to a claimed identity. For clarity, we also refer to this bootstrap as auser-

specificbootstrap to distinguish it from the conventionalsamplebootstrap which does not take the claimed

identity associated to each score into consideration. The bootstrap subset algorithm is better because it

does not systematicallyunderestimatethe confidence interval as would any conventional parametric or

non-parametric algorithm.

In this paper, we propose another bootstrap-based algorithm that can be seen as an improvement of the

bootstrap subset in the following way:

• Joint FAR-FRR estimate of confidence interval:Instead of thepoint-wiseestimation of confidence

interval, i.e., fix FAR and then estimate the confidence interval of FRR, and vice-versa, we jointly

estimate the FAR-FRR confidence interval of thewholeDET curve.

• Consideration of the effect of sample variability: While the person-dependent variability was

considered in [6], the sample variability, i.e., the choiceof samples (given that the population of

users are fixed), was not considered.

1In the fingerprint and face communities, FAR is known asFalse Match Ratewhereas FRR isFalse Non-Match Rate[1, Chap. 6 pg.

50]. Furthermore, client accesses are consideredmatch (or mated-pair) accesses and impostor accesses arenon-match(or non-mated pair)

accesses. In the speaker verification community (most represented inthe NIST evaluation), FAR is known asFalse Alarm Rateand FRR is

miss detection rate[1, Chap. 8 pg. 259]. Furthermore, clients are calledtarget whereas impostors are sometimes referred to asnon-targets.

There exists two other error types where a system fails to give any output.They are Failure To Capture (FTC) and Failure To Enroll (FTE).

These errors are not considered in this paper because we are concerned with algorithmic evaluation and notoperationalevaluation. Our

choice is not a weakness because it is possible to modify FRR to take into account of FTC and FTE.
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Our goal of estimating the confidence of the whole DET curve isso that one can predict a future DET

curve that is different from the one available in the following ways:

1) A different sample set

2) A larger population size

3) A completely differentpopulation of users

Ideally, this future DET curve should be completelycoveredby the estimated confidence bound and the

confidence bound should be asnarrow as possible to be useful. It is conventional to measure the quality of

prediction using “coverage”, e.g., [5]. Coverage is the proportion of a future DET curve that is completely

covered by the confidence bound estimated from a present DET curve with variation due to one or more of

the three factors just mentioned above. Note that in [6], thequality of confidence bound as a performance

predictor was not the principal subject of investigation while it is our focus here. In [7], a semi-parametric

approach that considers only the first two factors was proposed. The third factor is extremely important

following the study in [8], which shows that users in a database exhibit very different behavior with

respect to a biometric system. For instance, adding a vulnerable user, also known as a lamb [8], will

quickly increase the error rate of a system. Similarly, adding a strong impostor (a wolf) will degrade the

system performance. This issue is not the utmost concern when comparing two systems evaluated on the

same sets of users, i.e., from thesamedatabase. It becomes a concern when different users are involved.

The latter subject is our focus.

The original contribution of this paper is to propose a two-level bootstrap: a user-specific bootstrap

followed by a user-constrained sample bootstrap. We show that the proposed algorithm can predict a

future DET with reasonable accuracy, i.e., two thirds of coverage in the worst case scenario.

This paper is organized as follows: Section II presents the score data set to be used. Section III describes

four available choices of bootstrap algorithm for generating a pool of DET curves. Section IV addresses the

issue of defining a confidence region given a pool of DET curves. Section V presents some experimental

results. Finally, Section VI contains some conclusions andfuture works.

II. DATASETS

The NIST2005 data set [9] contains 24 verification systems which are all evaluated on a common

database with a common protocol. This database contains mismatched training and test conditions. In this

study, we only have access to the match scores, the true identity, the claimed identity, the hypothesized

type of handset and the hypothesized gender information2. Since the current study does not take account

2The last two pieces of information are not available in the database so they are estimated using a gender and handset classifier.
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of such mismatched conditions, a subset of this data sets wasused such that it contains only females

using land line handsets. This results in a subset of 124 usermodels, 11992 impostor accesses and 1172

genuine accesses. Therefore, on average, there are 96 impostor attempts and 9 genuine attempts per user

in the evaluation. The 24 verification systems are based on Gaussian Mixture Models (GMMs), Neural

Network-based classifiers and Support Vector Machines. A few systems are actually combined systems

using different levels of speech information. Some systemscombine different types of classifier but each

classifier use the same feature sets. In accordance with the NIST evaluation plan, the 24 systems are

enumerated from 1 to 24 instead of using the actual system name.

III. T OWARDS ESTABLISHING CONFIDENCEBOUND VIA BOOTSTRAP

In most biometric authentication systems, decisions are made by comparing a scorey against a threshold

∆. The decision function is defined as:

decision∆(y) =







accept ify > ∆

reject otherwise.
(1)

A useful notation is to introduce the scorey given the true class labelk to which the biometric feature

vector belongs, i.e.,yk ≡ y|k. Hence, a false acceptance is characterized by “accept= decision∆(yI)”

whereas a false rejection is characterized by “reject= decision∆(yC)”.

Let Y k
j,m be the variable of the match scorey due to them-th access claim of identityj ∈ {1, . . . , J} ≡ J

given that the match is due to the class labelk (client or impostor) andm ∈ {1, . . . ,Mk
j } ≡ Mk

j , i.e.,

there areMk
j accesses in the setMk

j .

We also introduce another variable,Y k,′
m wherem ∈ {1, . . . ,Mk}. While bothY k

j,m andY k,′
m are two ways

of specifying the same score data, the difference between them is that the former takes into consideration

of the user index whereas the latter does not. Therefore,Mk ≫ Mk
j . For example, in the NIST database

that we are using, the average values ofMC
j and M I

j (across allj) are respectivelyEj[M
C
j ] = 9 and

Ej[M
I
j ] = 96 and the number of users,J , is 124. Furthermore,M I = 11992 andMC = 1172.

The FAR and FRR given ana priori chosen threshold∆, are defined as follow:

FAR(∆) = 1 − ΨI(∆) (2)

FRR(∆) = ΨC(∆) (3)

where

Ψk = P (Y k,′
·

< ∆),
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andY k,′
·

≡ Y k,′
m |m ∈ Mk is a class-conditional variable (dependent onk) that does not consider the user

index j. Note that, in theory, the class-conditional cumulative density function (cdf) is a smooth function.

In practice, however, it may be a stair-case like function ifthere are too few score samples. A DET

curve [2] is plotted by tracing∆ ∈ [−∞,∞] across the following coordinate:

v ≡ (vFAR(∆), vFRR(∆)) ≡ (Ψ−1(FAR(∆)), Φ−1(FRR(∆))),

whereΨ−1 is the inverse of a normalcdf.

We will describe below four variants of bootstrap to generate a pool ofcdfs that captures different

sources of variability.

1) Conventional Bootstrap:In order to generate a confidence bound using the conventional sample

bootstrap approach, one drawsMk sampleswith replacementfrom the sample index setMk to create

the s-th bootstrap,Mk
s . The cdf due to the bootstrapMk

s is:

Ψk,′
s = P (Y k,′

m < ∆|m ∈ Mk
s). (4)

2) Bootstrap Subset:The bootstrap subset approach [6] uses a user-specific subset which, written in

the form of Eqn. (4), is

Ψk
u = P (Y k

j,· < ∆|j ∈ Ju), (5)

whereJu is the u-th bootstrap of users drawnJ times with replacement from the pool of all possible

usersJ . In this way, all the samples according to the selected usersare drawn at the same time.

3) User-Constrained Sample Bootstrap:Similarly, one can also consider the sample variability of a

class-conditionalcdf by using the following definition:

Ψk
s = P (Y k

j,m < ∆|j ∈ J ,m ∈ Mk
j (s)), (6)

where, the setJ is fixed but only their corresponding sample varies. Note that Mk
j (s) deontes thes-th

bootstrap with replacement of the original user-specific index setMk
j . The DET curves due toΨC

s and

ΨI
s for different s bootstraps will reflect how the sample varies given the population.

4) Joint/Two-Level Bootstrap:Combining both the variability due to Eqn. (5) and Eqn. (6), one obtains

the following class conditionalcdf:

Ψk
u,s = P (Y k

j,m < ∆|j ∈ Ju,m ∈ Mk
j (s)). (7)

Note that in this case, the user-specific bootstrap has to be performed before the sample bootstrap, i.e.,

an algorithm to do so will perform the following two loops:

For u ∈ {1, . . . , U} For s ∈ {1, . . . , S},
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CalculateΨk
s,u for both k = {C, I}

End, End

The complexity in this case isO(U × S). In Eqn. (4) or Eqn. (6), the complexity isO(S) whereas in

Eqn. (5), the complexity isO(U). Therefore, Eqn. (7) has a slightly added overhead. However, we expect

its confidence bound to have the highest coverage, which is a more important goal.

IV. ESTABLISHING CONFIDENCE REGION

This section deals with an algorithm to estimate a confidenceregion on atwo-dimensionalDET plan

(spanned by FAR and FRR) given a set of class-conditionalcdfs generated by any of the four bootstrap

methods mentioned in Section III, i.e., Eqn. (4)–Eqn. (7). According to [5], there are several ways to

construct a confidence region, called “sweeping methods”, given a set of class-conditionalcdfs. These

sweeping methods, in our context, are:

• Vertical Averaging: It works by fixing FAR and calculating the intervals of the corresponding FRR.

A variant of this procedure is to fix FRR and calculate the corresponding FAR confidence bounds. A

connected DETregion can be constructed by joining all the neighboring vertical confidence bounds.

A similar approach, termedhorizontal averaging, fixes FRR instead FAR in order to estimate the

corresponding FAR confidence bounds.

• Threshold Averaging: It works by averaging FAR and FRR values of different DET curves based

on acommonthreshold. Bolle’s technique [6] that uses Eqn. (5) falls into this category.

• Simultaneous Joint Confidence Regions:This technique does not fix any threshold nor any axes

on the DET plan but instead estimates a confidence region based on a set of paired (FAR,FRR) data

points directly. Two variants were reported in [6], i.e., fixed-width band [10] and working-hotelling

band [11]. The fixed-width band method, in our context, obtains a confidence region that is defined

by two parallel DETs3 with a fixed width distance such that the original observed DET is fully

contained inside the region. The working-hotelling band fits the best regression line in the DET plan.

Therefore, it assumes that the class-conditional scores follow a Gaussian distribution.

We propose here another method that also belongs to the thirdcategory. This method directly estimates the

two-dimensional density of the bootstrapped DET curves spanned by all possible pairs of FAR and FRR

values. In comparison to [10], the upper and lower DET curvesdo not have to be parallel or of fixed width

because in our case, the bounded region is completely definedby the observed bootstrapped DET curves.

3The original method applies to the ROC plan.
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In comparison to [11], our method is advantageous because one does not make the class-conditional

Gaussian assumption.

The two-level bootstrap as in Eqn. (7) will be used since it generalizes Eqn. (5) and Eqn. (6). The gen-

eralization of the implementation to the conventional sample bootstrap, as in Eqn. (4), is straightforward.

Our task here is to estimatep(v), the likelihood of an arbitrary location in a DET plan – denoted byv

– from theU × S bootstrapped DET curves. While several density estimation methods can be used, e.g.,

a mixture of Gaussian components and Parzen windows [12], one requirement ofp(v) is that the density

must be defined everywhere in the DET plan and sum to one. Two approaches are proposed here:

• Direct estimation using GMM:

p(v) =
C

∑

c=1

wcN (µ,Σc) (8)

whereN is a bivariate Gaussian with meanµc and covarianceΣc for the c-th component, each

weighted bywc such that
∑

c wc = 1. These parameters can be optimized using the Expectation

Maximization algorithm and the number of componentsC can be optimized using cross-validation

or some other criteria [13] (e.g., minimum description length). Unfortunately, very soon, we found

that this method is not appropriate due to the GMM assumptionthat everyv is independently and

identically sampled. This assumption is violated since thev values that belong to the same curve (of

a particulars-th andu-th bootstrap) arenot independenton each other. Despite this weakness, the

estimatedp(v) is still useful for characterizing the flatness of the distribution in terms of entropy (to

be described further).

• Estimation via a DET angle: One way to overcome the mentioned weakness is to work on polar

coordinates. By takingv in Cartesian coordinates, we define its corresponding polar coordinate to

be (θ, r) where

θ = tan−1

(

vFRR(∆) − vFRR(−∞)

vFAR(∆) − vFAR(−∞)

)

,

and

r =
√

(vFRR(∆) − vFRR(−∞))2 + (vFAR(∆) − vFAR(−∞))2,

for θ ∈ [0, π/2], r ∈ [−∞,∞] and (vFAR(−∞), vFRR(−∞)) is the origin4. To obtainα × 100%

confidence given the set of bootstrapped DET curves in polar coordinates, we estimate the upper and

4SinceΨ−1(−∞) = −∞, in practice, we replace the origin with the point (Ψ−1(1/N), Ψ−1(1/N)) whereN is the total number of

impostor attempts rounded to the nearest (and larger) power of 10. Forexample, if the number of impostor attempts is 3,800, then 10,000

can be used.
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lower bounds:
1 − α

2
≤ Ψθ(r) ≤

1 + α

2
,

whereΨθ(r) is the empiricalcdf of the radiusr observed from theU × S bootstrapped curves for

a givenθ since each bootstrapped curve cuts throughθ exactly once. The lower and upperr will

be given byrlower = Ψ−1

θ (1−α
2

) and rupper = Ψ−1

θ (1+α
2

), respectively. Note that the inverse ofΨθ,

i.e., Ψ−1

θ , requires linear interpolation5. The corresponding lower (more optimistic) DET curve is

given by(rlower cos(θ), rlower sin(θ)) across allθ ∈ [0, π/2]. The upper (less optimistic) DET curve is

defined similarly. By convention, the significance thresholdα is set to0.05 so that one obtains a 95%

level of confidence. Note that DET angle was reported in [14] to combine several DET curves into

a single one. Although DET angle seems to be an uncommon choice, threeθ values are extremely

commonly used:{0, π
4
, π

2
}. They correspond respectively to the estimates of confidence interval of

FAR at FRR=0, EER and that of FRR at FAR=0. Therefore, the procedure described here can be

seen as a generalization to this practice.

In this paper, we mainly use the DET angle approach to derive aconfidence region from a set of

bootstrapped DET curves. The GMM approach is used merely to quantify the flatness of the distribution

since it is not directly obvious how this can be done with the DET angle approach. Note that deriving

a confidence region around a DET curve is still an open question. Our experiments show that both

approaches lead to very similar results in terms of coverage(to be reported in Section V) and conclusions

(Section VI).

Two examples of the 95% confidence of a DET curve generated using the conventional and Bolle’s

bootstrap subset technique are shown in Figure 1. Note that like any density estimation algorithm, too

few DET curves (due to too small a number of sample bootstrapsS or user-specificU bootstraps,) will

result in poor estimation of DET confidence.

Since we have an estimate ofp(v), we can characterize the flatness of the distributionp(v) using

entropy, i.e.,

entropy(p) =

∫

v

−p(v) log p(v).

We expect the following property to hold for biometric authentication tasks:

entropy(p|Ψk
s,1, s ∈ S,∀k) ≤ entropy(p|Ψk

1,u, u ∈ U ,∀k) ≤ entropy(p|Ψk
s,u, u ∈ U , s ∈ S,∀k), (9)

5In our implementation, we verified that by projecting a DET curve into polar coordinates and then reversing the process, one obtains

exactlythe same DET curve. Therefore, there is no loss of generality by working on polar coordinate as long as thesameorigin (according

to footnote 4) is used.



9

0 20 40 60 80

4.5

5

5.5

6

angle

ra
di

us

  0.1   0.2   0.5    1     2     5    10    20    40    60    80  

   0.1
   0.2
   0.5
     1
     2
     5
    10
    20

    40

    60

    80

FA [%]
F

R
 [%

]

(a) sample bootstrap
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(b) user-specific bootstrap

Fig. 1. The 95% confidence of (a) conventional bootstrap (U = 1, S = 400) and (b) user-specific bootstrap (U = 400, S = 1), of one
of the 24 systems in NIST2005, calculated from 80 users, are shown here in the(θ, r) polar coordinate (left) as well as its corresponding
Cartesian coordinate or DET plan (right). The actual DET, plotted with a dark line, is always included in the upper and lower DET bounds.

for some fixedS andU . The first term is the entropy of the user-constrained samplebootstrap, the second

term is the entropy of the bootstrap subset technique and thethird term is entropy of our proposed two-

level bootstrap. Smaller entropy implies a shaper distribution. The rationale of the above relationship is

that the sample variability is lower than the user-induced variability and that the joint effect of the two

sources of variability is larger than using either one. Eqn.(9) will be experimentally verified in Section V

in terms of coverage. In [6], it was shown that the conventional sample bootstrap underestimates the

confidence bounds compared to the bootstrap subset technique. This indicates that the entropy of the

sample bootstrap is lower than that of the bootstrap subset technique. We verify this finding using an

example already shown in Figure 1.

V. EMPIRICAL EVALUATIONS

A. Effects ofS and U Parameters

The goal of this section is two-fold: to empirically verify Eqn. (9) in terms of coverage and to determine

the number of sample and user-specific bootstraps,S andU , that are needed in practice. Three variants

of the same algorithm can be obtained by settingS andU

1) Sample bootstrap whenS varies andU = 1

2) User-specific bootstrap whenS = 1 andU varies

3) Joint user-specific and sample bootstraps when bothS andU vary

An experiment is carried out for each of the 24 systems in the following ways: Two data sets are obtained

such that the development set contains the (client and impostor) scores of 20 users, the evaluation set

contains the scores 80 users and the development set is a subset of the evaluation set. In this way,
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we estimate a confidence region based on the 20-user data set and evaluate the prediction performance

of the future DET, in terms of coverage, based on the 80-user data set. We then apply all the four

bootstrap algorithms whose confidence region is estimated using the density-based approach as described

in Section IV. Figure 2 shows the effects of varying one of thetwo free parametersS andU . The Y-axis

is the average coverage over the 24 systems. A coverage is calculated as the proportion of the 80-user

DET curve that is included in the confidence region obtained from the 20-user DET curve.

We can make the following observations

1) The user-constrained sample bootstrap technique has thelowest coverage.

2) The coverage of the joint bootstrap technique is never lower than that of the bootstrap subset

technique in terms of coverage.

3) The conventional sample bootstrap technique has coverage lower than the user-specific bootstrap

given asymptotically large number of bootstraps.

4) S, U > 30 are suitable.

5) The joint bootstrap technique and the user-specific bootstrap technique converge for largeU .

Observations one and two confirm our conjecture in Eqn. (9). Observation three confirms the finding

in [6]. Observation four implies thatS andU above 30 is sufficient. The last observation implies that for

biometric authentication tasks, the influence ofU is more important than that ofS. In other words, as

long asU is large (30 or more), the joint bootstrap procedure is insensitive to differentS values.

B. Assessment w.r.t. Larger Population

This section evaluates the quality of DET prediction with respect to the population size. We expect that

a larger population of users should give a more accurate prediction – hence producing higher coverage and

lower entropy (sharper distribution). We design aprogressive predictionexperiment described as follows.

First, we divide the original data set (of 124 users) into 10,20, 40 and 80 users such that the smaller data

set is always a subset of the larger one. Then, we apply the joint bootstrap technique on 10-user data set

and measure the coverage of the 20-, 40- and 80-user DETs. Theexperiment is repeated but this time we

apply the joint bootstrap procedure on the 20-user data set and test it on the 40- and 80-user data sets.

Finally, the experiment is repeated with training on the 40-user data set and testing on the 80-user data

set. The above procedure is tested using all the 24 systems available in NIST2005. A graphical output of

this procedure for one of the 24 systems is shown in Figure 3.

The average entropy and coverage over all the 24 systems are shown in Table I and Table II, respectively.

As can be observed and expected, the entropy of the bootstrapped DET mass decreases as more data
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Fig. 2. Average coverage (in %) over 24 experiments using differentvariants of bootstraps. Each bootstrap is trained on a DET derived from
20 users and is tested on a DET derived on 80 users. Higher coverageimplies better generalization.S is the number of sample bootstraps
andU is the number of user-specific bootstraps. The X-axis reflects the change due to varying one of these two parameters. The user-specific
bootstrap attained a maximum coverage of 81.7% while the joint-bootstrap attained 82.2%. The joint-bootstrap procedure almost always has
higher coverage for any givenS values.

TABLE I

ENTROPY OFDET MASS ESTIMATED USING DATA SETS OF DIFFERENT USER SIZE, AVERAGED OVER 24 SYSTEMS INNIST2005.

User size Entropy

10 7.094

20 6.975

40 6.841

80 6.658

Lower entropy implies sharper distribution.

is available. This trend can graphically be observed in Figure 3 as well. Coverage generally increases as

more and more data is available.

C. Assessment w.r.t. User Composition Variation

This section assesses the robustness of the joint bootstraptechnique to user composition. Using the

subset of NIST2005 which contains 124 users, we randomly divided the data into four equal partitions,

each containing 31 users. Data set 1 is used to estimate the confidence region while the rest of the data
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(c) 40
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(d) 80

Fig. 3. 95% DET mass of one of the 24 systems calculated using the DET angle approach for 10, 20, 40 and 80 users. Their corresponding
entropies are 7.2116, 7.1109, 6.8357 and 6.7438, respectively (calculated using the GMM approach). For each figure, the DET confidence
region is bounded by an upper and a lower DET plotted in dashed lines. Themedian of the region is also plotted by a dashed line. The
actual observed DET from which the confidence region is derived is plotted in a bold continuous line.

sets are usedseparatelyto evaluate the goodness of prediction in terms of coverage.The same procedure

is repeated with data set 2, 3 and 4. The results are shown in Table III. Another experiment is repeated

but with only two partitions where each partition contains 62 users. The resultant matrix is similar to

Table III except that it is 2-by-2 in dimension. Its values are:




∗1.000 0.872

0.893 ∗1.000



 ,

where the same conclusion as in Table III applies. The overall average coverage is evaluated to be0.883

instead of0.825. The increased coverage is due to the fact that the DET curvesare estimated from an
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TABLE II

AVERAGE COVERAGE OVER24 SYSTEMS INNIST2005WITH 95% OF CONFIDENCE.

Actual Coverage for predicted user size

user size 10 20 40 80

10 ∗ 1.000 0.879 0.773 0.781

20 – ∗ 1.000 0.891 0.859

40 – – ∗ 1.000 0.886

80 – – – ∗ 1.000
Note: Numbers marked with “*” do not involve prediction.

TABLE III

AVERAGE COVERAGE OVER24 SYSTEMS INNIST2005

Data Coverage due to data sets

sets 1 2 3 4

1 1.000 0.802 0.859 0.874

2 0.794 1.000 0.798 0.862

3 0.866 0.743 1.000 0.846

4 0.846 0.794 0.819 1.000

Note: The diagonal of the table is one because the DET is tested on the data set from which it is derived. The average coverage across the

non-diagonal elements is0.8252.

increased number of users.

D. Validation on the XM2VTS Database

In order to verify the repeatability of experimental results on other databases, we used the XM2VTS

score-level fusion benchmark database [15]6. The first Lausanne protocols was chosen and eight verification

systems – three speech and five face systems – are available. This database contains 200 users and each

user has two genuine samples and 600 impostor samples. We repeated a similar experimental setting as

in Section V-C using two configurations:

1) Four partitions – hence 50 users per partition; test on same impostor set

2) Four partitions – hence 50 users per partition; test ondifferent impostor set

Note that the most important difference between XM2VTS and NIST2005 is that in XM2VTS, the impostor

population can be the same (using the fusion development set) or different (using the fusion evaluation

set). By usingS = 5 andU = 100, the coverage averaged over the eight systems is 70.5% for the first

6Available at http://www.idiap.ch/∼norman/fusion
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configuration and 67.2% for the second configuration. Therefore, by using adifferent impostor population

set, the coverage is reduced. This indicates that byre-using the same impostors to generate impostor

scores, one will obtain an overly optimistic bias of coverage.

VI. CONCLUSIONS

Generalizing performance of a system from a particular database to another is an important task. The

current visualization tool via a DET curve does not guarantee such performance generalization. On the

contrary, it is very sensitive the following three factors:the number of users, the choice of users and the

choice of samples. Using a two-level bootstrap and a post-processing on the density of resultant DETs,

we propose to establish a contour capturing(1−α)× 100% of probability mass. The proposed two-level

bootstrap approach generalizes the bootstrap subset technique as proposed by Bolleet al. [6] because

our proposal takes into consideration the sample variability in addition to the user-induced variability.

Both theoretical and empirical findings suggest that the two-level bootstrap approach has a systematically

higher coverage than Bolleet al.’s bootstrap subset. Although the experimental settings can be different,

the established confidence region from a small database of users can cover more than 75% of an actual

unseen DET with 8 times the number of users. Ideally, a good indicator should score 95% of the actual

DET. While a DET is inherently sensitive to the three aspects of variability mentioned, the proposed

bootstrap procedure can mitigate such sensitivity to some extent but cannot totally remove it.

The following are some possible extensions to the current study:

• Confidence interval estimation for threshold-dependent analysis: A DET curve is a threshold-

independent analysis. However, by using a DET curve, one assumes that the FAR and FRR dis-

tributions of the test data set are completely known. An recently proposed alternative is to use a

threshold-dependent assessment whereby the system performance is calculated with thresholds fixed

a priori [16] on a development set.

• Mismatch between training and test sets:The current study does not handle the case of mismatch

between training and test sets. Research in this direction will require that some representative test

samples to be available so that the confidence region of a DET derived from some training conditions

can be transformed into that of the target test conditions.
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