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Abstract

Biometric authentication performance is often depictedaET curve. We show that this curve is dependent
on the choice of samples available, the demographic cotiposind the number of users specific to a database.
We propose a two-step bootstrap procedure to take into atamfuthe three mentioned sources of variability.
This is an extension to the Bollet als bootstrap subset technique. Preliminary experimentshenNIST2005
and XM2VTS benchmark databases is encouraging, e.g., thege result across all 24 systems evaluated on
NIST2005 indicates that one can predict, with more than 73%BT coverage, an unseen DET curve with 8
times more users. Furthermore, our finding suggests thatmidre data available, the confidence intervals become

smaller and hence more useful.
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I. INTRODUCTION

Biometric authentication is a process of verifying an idgntlaim using a person’s behavioral and
physiological characteristics. There are several fadtwais can affect a biometric system’s performance.
Some of these factors are the deformable nature of biomie#iks, corruption by environmental noise,
variability of biometric traits over time, the state of us€especially behavioral biometrics) and occlusion
by the user’s accessories. As a consequence, even if twebiecreamples are acquired from the same user,
the system cannot produesactlythe same output score. Therefore, when assessing therparfoe, the
uncertainty introduced by these numerous and often unmitedrdistortions has to be taken into account.
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A biometric authentication system can make two types ofreire., falsely rejecting a genuine user
(client) or falsely accepting an impostor. The respectiuorerates are called False Acceptance Rate
(FAR) and False Rejection Rate (FRRYhese two measures are fundamental building blocks to many
visualizing tools. The most commonly used ones are Recé@gmrating Cost (ROC) and Decision Error
Trade-off (DET) curves [2].

The goal of this paper is to establish a confidence intenalrad a DET curve by explicitly considering
the correlation structureof match scores, i.e., the fact that match scores resultorg fultiple attempts
of a person making the same identity claim are correlateghrddess of whether the person is a client
or an impostor. Confidence interval estimation techniqueldped in the medical field, e..g, [3] and
in machine learning, e.g., [4], [5], cannot be used in bigimoeduthentication because the correlation
structure is person-dependent. In [6], a bootstrap algorithat exploits this person-dependent correlation
structure was proposed to estimate the confidence of FAR@gineFRR of interest, or the confidence of
FRR given an FAR of interest. This algorithm was called “btrafs subset” because it considers only
a subset of scores associated to a claimed identity. Fatyclare also refer to this bootstrap asuaer-
specifichbootstrap to distinguish it from the conventiosaimplebootstrap which does not take the claimed
identity associated to each score into consideration. Tduskrap subset algorithm is better because it
does not systematicallynderestimatehe confidence interval as would any conventional parameiri
non-parametric algorithm.

In this paper, we propose another bootstrap-based algothht can be seen as an improvement of the
bootstrap subset in the following way:

« Joint FAR-FRR estimate of confidence interval:Instead of thgoint-wiseestimation of confidence
interval, i.e., fix FAR and then estimate the confidence v@leof FRR, and vice-versa, we jointly
estimate the FAR-FRR confidence interval of thkole DET curve.

. Consideration of the effect of sample variability: While the person-dependent variability was
considered in [6], the sample variability, i.e., the choafesamples (given that the population of
users are fixed), was not considered.

In the fingerprint and face communities, FAR is knownFagse Match Ratevhereas FRR ifalse Non-Match Rat§l, Chap. 6 pg.
50]. Furthermore, client accesses are considematth (or mated-pair) accesses and impostor accessesaarenatch(or non-mated pair)
accesses. In the speaker verification community (most representied MIST evaluation), FAR is known dslse Alarm Rateand FRR is
miss detection rat§l, Chap. 8 pg. 259]. Furthermore, clients are calimdet whereas impostors are sometimes referred toastargets
There exists two other error types where a system fails to give any olipey. are Failure To Capture (FTC) and Failure To Enroll (FTE).
These errors are not considered in this paper because we araremheéth algorithmic evaluation and noperational evaluation. Our

choice is not a weakness because it is possible to modify FRR to take irdardaaf FTC and FTE.



Our goal of estimating the confidence of the whole DET curvedghat one can predict a future DET
curve that is different from the one available in the follogiways:

1) A different sample set

2) A larger population size

3) A completely differenpopulation of users
Ideally, this future DET curve should be completelgveredby the estimated confidence bound and the
confidence bound should be aarrow as possible to be useful. It is conventional to measure thétywf
prediction using “coverage”, e.g., [5]. Coverage is the prtipn of a future DET curve that is completely
covered by the confidence bound estimated from a present DE/E with variation due to one or more of
the three factors just mentioned above. Note that in [6] gunaity of confidence bound as a performance
predictor was not the principal subject of investigationilevit is our focus here. In [7], a semi-parametric
approach that considers only the first two factors was prghoshe third factor is extremely important
following the study in [8], which shows that users in a dassba&xhibit very different behavior with
respect to a biometric system. For instance, adding a \aliteruser, also known as a lamb [8], will
quickly increase the error rate of a system. Similarly, agch strong impostor (a wolf) will degrade the
system performance. This issue is not the utmost concerm whparing two systems evaluated on the
same sets of users, i.e., from tb@medatabase. It becomes a concern when different users areedvo
The latter subject is our focus.

The original contribution of this paper is to propose a tweel bootstrap: a user-specific bootstrap
followed by a user-constrained sample bootstrap. We shaw ttie proposed algorithm can predict a
future DET with reasonable accuracy, i.e., two thirds of coveragthe worst case scenario.

This paper is organized as follows: Section Il presents tleesdata set to be used. Section Il describes
four available choices of bootstrap algorithm for genaga pool of DET curves. Section IV addresses the
issue of defining a confidence region given a pool of DET cur8estion V presents some experimental

results. Finally, Section VI contains some conclusions fardre works.

Il. DATASETS

The NIST2005 data set [9] contains 24 verification systemghviare all evaluated on a common
database with a common protocol. This database contaimeatthed training and test conditions. In this
study, we only have access to the match scores, the trudtydehe claimed identity, the hypothesized
type of handset and the hypothesized gender informfati®imce the current study does not take account

2The last two pieces of information are not available in the database so @stmated using a gender and handset classifier.



of such mismatched conditions, a subset of this data setsused such that it contains only females
using land line handsets. This results in a subset of 124 msedels, 11992 impostor accesses and 1172
genuine accesses. Therefore, on average, there are 96tamptismpts and 9 genuine attempts per user
in the evaluation. The 24 verification systems are based arsstn Mixture Models (GMMs), Neural
Network-based classifiers and Support Vector Machines.vA dgstems are actually combined systems
using different levels of speech information. Some systeambine different types of classifier but each
classifier use the same feature sets. In accordance with KB& Blaluation plan, the 24 systems are

enumerated from 1 to 24 instead of using the actual systenenam

I1l. TOWARDSESTABLISHING CONFIDENCEBOUND VIA BOOTSTRAP

In most biometric authentication systems, decisions amenby comparing a scorgagainst a threshold

A. The decision function is defined as:
decision (y) = accept ify > A 1)
reject otherwise
A useful notation is to introduce the scogegiven the true class labél to which the biometric feature
vector belongs, i.ey* = y|k. Hence, a false acceptance is characterized by “aceegcision (y!)”
whereas a false rejection is characterized by “rejedecision (y©)".

LetY} be the variable of the match scarelue to then-th access claim of identity € {1,...,.J} = J
given that the match is due to the class labgklient or impostor) andn € {1,... ,MJ’?} = M?, ie.,
there areMJ’.“ accesses in the se.\t/l?.

We also introduce another variabl€;’ wherem € {1,..., M*}. While bothY, andY"’ are two ways
of specifying the same score data, the difference betwesn th that the former takes into consideration
of the user index whereas the latter does not. Therefaie;> Mf. For example, in the NIST database
that we are using, the average values]\mf and Mf (across allj) are respectivelyr; [Mjc] =9 and
E;[M]] = 96 and the number of userd, is 124. Furthermore)/’ = 11992 and M = 1172.

The FAR and FRR given aa priori chosen threshold\, are defined as follow:
FAR(A) = 1-9/(A) (2)
FRR(A) = TYA) (3)

where

Uk = P(YF < A),



andY* = Y*|m € M* is a class-conditional variable (dependentidrthat does not consider the user
index j. Note that, in theory, the class-conditional cumulativesiy function €df) is a smooth function.
In practice, however, it may be a stair-case like functionthiére are too few score samples. A DET

curve [2] is plotted by tracing\ € [—oo, o] across the following coordinate:
v = (vrar(A), vrrr(A)) = (PH(FAR(A)), @' (FRR(A))),

whereU~! is the inverse of a normaidf.

We will describe below four variants of bootstrap to gereratpool ofcdfs that captures different
sources of variability.

1) Conventional Bootstrapin order to generate a confidence bound using the convehtsamaple
bootstrap approach, one draws® sampleswith replacemenfrom the sample index set1* to create

the s-th bootstrap,M*. The cdf due to the bootstrap1” is:
Uk = p(YE < Alm e MF). (4)

2) Bootstrap SubsetThe bootstrap subset approach [6] uses a user-specifictaubgs, written in
the form of Eqgn. (4), is
Uk =P} <Alj € ), ()

where 7, is the u-th bootstrap of users draws times with replacement from the pool of all possible
users7. In this way, all the samples according to the selected um@rslrawn at the same time.
3) User-Constrained Sample Bootstra@imilarly, one can also consider the sample variability of a

class-conditionatdf by using the following definition:

Uk = P(Y, < Alj € T, m € Mi(s), (6)

S

where, the set7 is fixed but only their corresponding sample varies. Note M(s) deontes the-th
bootstrap with replacement of the original user-specifdeinset/\/lf. The DET curves due t@¢ and
! for different s bootstraps will reflect how the sample varies given the patn.

4) Joint/Two-Level BootstrapCombining both the variability due to Eqn. (5) and Eqn. (6)¢ obtains

the following class conditionatdf:
Uh, = P(Y), <Alj € Ju,m e Mj(s)). (7

Note that in this case, the user-specific bootstrap has toedermed before the sample bootstrap, i.e.,
an algorithm to do so will perform the following two loops:

Foruw e {1,...,U} For s € {1,...,5},



CalculateW¥? , for both k = {C, I}
End, End
The complexity in this case i©(U x S). In Eqn. (4) or Eqgn. (6), the complexity i©(S) whereas in
Eqn. (5), the complexity i$)(U). Therefore, Eqn. (7) has a slightly added overhead. Howeweexpect

its confidence bound to have the highest coverage, which isra important goal.

IV. ESTABLISHING CONFIDENCE REGION

This section deals with an algorithm to estimate a confidergen on atwo-dimensionaDET plan
(spanned by FAR and FRR) given a set of class-conditicd& generated by any of the four bootstrap
methods mentioned in Section Ill, i.e., Eqn. (4)-Eqgn. (7¢cérding to [5], there are several ways to
construct a confidence region, called “sweeping methodsgnga set of class-conditionaldfs. These

sweeping methods, in our context, are:

« Vertical Averaging: It works by fixing FAR and calculating the intervals of the msponding FRR.
A variant of this procedure is to fix FRR and calculate the gpoading FAR confidence bounds. A
connected DETregion can be constructed by joining all the neighboring vertiGaifadence bounds.
A similar approach, termetiorizontal averagingfixes FRR instead FAR in order to estimate the
corresponding FAR confidence bounds.

. Threshold Averaging: It works by averaging FAR and FRR values of different DET csrbased
on acommonthreshold. Bolle’s technique [6] that uses Eqn. (5) fall®ititis category.

. Simultaneous Joint Confidence RegionsThis technique does not fix any threshold nor any axes
on the DET plan but instead estimates a confidence regiordlmasa set of paired (FAR,FRR) data
points directly. Two variants were reported in [6], i.e. efikwidth band [10] and working-hotelling
band [11]. The fixed-width band method, in our context, aisaa confidence region that is defined
by two parallel DET3 with a fixed width distance such that the original observedT D& fully
contained inside the region. The working-hotelling bansltfie best regression line in the DET plan.
Therefore, it assumes that the class-conditional scotesvf@ Gaussian distribution.

We propose here another method that also belongs to thectittiedory. This method directly estimates the
two-dimensional density of the bootstrapped DET curvesised by all possible pairs of FAR and FRR
values. In comparison to [10], the upper and lower DET cudesot have to be parallel or of fixed width

because in our case, the bounded region is completely ddiindue observed bootstrapped DET curves.

3The original method applies to the ROC plan.



In comparison to [11], our method is advantageous becausedors not make the class-conditional
Gaussian assumption.

The two-level bootstrap as in Eqn. (7) will be used since itegalizes Eqn. (5) and Egn. (6). The gen-
eralization of the implementation to the conventional sienfqmotstrap, as in Eqn. (4), is straightforward.
Our task here is to estimaj€v), the likelihood of an arbitrary location in a DET plan — desmbtoy v
— from theU x S bootstrapped DET curves. While several density estimatiethads can be used, e.g.,
a mixture of Gaussian components and Parzen windows [12]yequirement op(v) is that the density

must be defined everywhere in the DET plan and sum to one. Tywmaphes are proposed here:

« Direct estimation using GMM:
C
p(v) =) woN(p, ) (8)
c=1

where NV is a bivariate Gaussian with mean. and covariancez, for the c-th component, each
weighted byw,. such that)  w. = 1. These parameters can be optimized using the Expectation
Maximization algorithm and the number of compone6tsan be optimized using cross-validation
or some other criteria [13] (e.g., minimum description mgUnfortunately, very soon, we found
that this method is not appropriate due to the GMM assumphan everyv is independently and
identically sampled. This assumption is violated sincetthalues that belong to the same curve (of
a particulars-th andu-th bootstrap) areot independenbn each other. Despite this weakness, the
estimatedy(v) is still useful for characterizing the flatness of the digition in terms of entropy (to
be described further).

« Estimation via a DET angle: One way to overcome the mentioned weakness is to work on polar
coordinates. By taking in Cartesian coordinates, we define its corresponding paardmate to

be (6, r) where

0 — tan—" (UFRR(A) - ’UFRR<—OO)> :

VpAR(A) — vpar(—00)

and

r =/ (Vrrr(A) — vrrR(—0))? + (VpaR(A) — vpaR(—00))?,

for 0 € [0,7/2], r € [—00,00] and (vpar(—00),vrrr(—00)) is the origirf. To obtaina x 100%
confidence given the set of bootstrapped DET curves in polardinates, we estimate the upper and

4Since W' (—o00) = —oo, in practice, we replace the origin with the poink {*(1/N), ¥~'(1/N)) where N is the total number of
impostor attempts rounded to the nearest (and larger) power of 1@&xaanple, if the number of impostor attempts is 3,800, then 10,000

can be used.



lower bounds:
1 —« 1+«
<y <

where ¥, (r) is the empiricalcdf of the radiusr observed from thé/ x S bootstrapped curves for
a givend since each bootstrapped curve cuts throdgéxactly once. The lower and upperwill
be given byr, e, = \1/;1(1*70‘) and rypper = ¥y 1(“T“), respectively. Note that the inverse &f),
i.e., U, ', requires linear interpolatién The corresponding lower (more optimistic) DET curve is
given by (71ower c08(0), riower sin(#)) across alb € [0, 7/2]. The upper (less optimistic) DET curve is
defined similarly. By convention, the significance thresheld set t00.05 so that one obtains a 95%
level of confidence. Note that DET angle was reported in [d4¢dmbine several DET curves into
a single one. Although DET angle seems to be an uncommonehthiceef values are extremely
commonly used{0, 7, 7 }. They correspond respectively to the estimates of confelemterval of
FAR at FRR=0, EER and that of FRR at FAR=0. Therefore, the proeedascribed here can be
seen as a generalization to this practice.
In this paper, we mainly use the DET angle approach to deriwordidence region from a set of
bootstrapped DET curves. The GMM approach is used merelyantdy the flathess of the distribution
since it is not directly obvious how this can be done with tHeTDangle approach. Note that deriving
a confidence region around a DET curve is still an open questur experiments show that both
approaches lead to very similar results in terms of cove(emgbe reported in Section V) and conclusions
(Section VI).

Two examples of the 95% confidence of a DET curve generatedyube conventional and Bolle’s
bootstrap subset technique are shown in Figure 1. Note it@tahy density estimation algorithm, too
few DET curves (due to too small a number of sample bootstéaps user-specifid/ bootstraps,) will
result in poor estimation of DET confidence.

Since we have an estimate pfv), we can characterize the flatness of the distribution) using

entropy, i.e.,

entropy(p) = / —p(v)log p(v).

v

We expect the following property to hold for biometric autlieation tasks:

entropy(p|¥%,,s € S,V) < entropy(p| ¥}, u € U, V) < entropyp| V% u €U, s € S,V), (9)

®In our implementation, we verified that by projecting a DET curve into potardinates and then reversing the process, one obtains
exactlythe same DET curve. Therefore, there is no loss of generality by wgdkinpolar coordinate as long as th@meorigin (according

to footnote 4) is used.
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Fig. 1. The 95% confidence of (a) conventional bootstrigp={ 1, S = 400) and (b) user-specific bootstrap’ (= 400, .S = 1), of one
of the 24 systems in NIST2005, calculated from 80 users, are showeniméhe (9, ) polar coordinate (left) as well as its corresponding
Cartesian coordinate or DET plan (right). The actual DET, plotted with k litag, is always included in the upper and lower DET bounds.

for some fixedS andU. The first term is the entropy of the user-constrained satopidstrap, the second
term is the entropy of the bootstrap subset technique anthifteterm is entropy of our proposed two-
level bootstrap. Smaller entropy implies a shaper distidbu The rationale of the above relationship is
that the sample variability is lower than the user-inducadability and that the joint effect of the two
sources of variability is larger than using either one. E@h.will be experimentally verified in Section V
in terms of coverage. In [6], it was shown that the convericsample bootstrap underestimates the
confidence bounds compared to the bootstrap subset teehnidus indicates that the entropy of the
sample bootstrap is lower than that of the bootstrap sulesinique. We verify this finding using an

example already shown in Figure 1.

V. EMPIRICAL EVALUATIONS
A. Effects ofS and U Parameters

The goal of this section is two-fold: to empirically verifygg. (9) in terms of coverage and to determine
the number of sample and user-specific bootstrapand U, that are needed in practice. Three variants
of the same algorithm can be obtained by settthgnd U

1) Sample bootstrap whet varies andl = 1

2) User-specific bootstrap wheh= 1 and U varies

3) Joint user-specific and sample bootstraps when Batimd U vary
An experiment is carried out for each of the 24 systems indHeviing ways: Two data sets are obtained
such that the development set contains the (client and togoscores of 20 users, the evaluation set

contains the scores 80 users and the development set is at safbhe evaluation set. In this way,
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we estimate a confidence region based on the 20-user datadeivaluate the prediction performance
of the future DET, in terms of coverage, based on the 80-uatx det. We then apply all the four
bootstrap algorithms whose confidence region is estimatad) uhe density-based approach as described
in Section IV. Figure 2 shows the effects of varying one oftine free parameter§s andU. The Y-axis

is the average coverage over the 24 systems. A coveragecislated as the proportion of the 80-user
DET curve that is included in the confidence region obtainmedhfthe 20-user DET curve.

We can make the following observations

1) The user-constrained sample bootstrap technique hdswiest coverage.

2) The coverage of the joint bootstrap technique is neverfothan that of the bootstrap subset

technique in terms of coverage.

3) The conventional sample bootstrap technique has cozdmager than the user-specific bootstrap

given asymptotically large number of bootstraps.

4) S, U > 30 are suitable.

5) The joint bootstrap technique and the user-specific bragtgechnique converge for largé
Observations one and two confirm our conjecture in Egn. (§)sedvation three confirms the finding
in [6]. Observation four implies that andU above 30 is sufficient. The last observation implies that for
biometric authentication tasks, the influencelbfis more important than that af. In other words, as

long asU is large (30 or more), the joint bootstrap procedure is isgie to differentS values.

B. Assessment w.r.t. Larger Population

This section evaluates the quality of DET prediction witBpect to the population size. We expect that
a larger population of users should give a more accurataqgti@d— hence producing higher coverage and
lower entropy (sharper distribution). We desigpragressive predictioexperiment described as follows.
First, we divide the original data set (of 124 users) into 2@, 40 and 80 users such that the smaller data
set is always a subset of the larger one. Then, we apply thehootstrap technique on 10-user data set
and measure the coverage of the 20-, 40- and 80-user DET®xXpegiment is repeated but this time we
apply the joint bootstrap procedure on the 20-user datarsktest it on the 40- and 80-user data sets.
Finally, the experiment is repeated with training on theué@s data set and testing on the 80-user data
set. The above procedure is tested using all the 24 systeailalde in NIST2005. A graphical output of
this procedure for one of the 24 systems is shown in Figure 3.

The average entropy and coverage over all the 24 systemb@sg $n Table | and Table Il, respectively.

As can be observed and expected, the entropy of the bogisttaPET mass decreases as more data



11

[*2) ~ (0]
S P2
k4

coverage
a1l
o

—e— User—constrained sample bootstrap (U=1, S varies)
30¢ User-specific bootstrap (S=1, U varies)

Joint bootstrap (S=10, U varies)

Joint bootstrap (S=20, U varies)

20+ —X— Joint bootstrap (S=35, U varies)
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no. of bootstraps

Fig. 2. Average coverage (in %) over 24 experiments using differamants of bootstraps. Each bootstrap is trained on a DET derived from
20 users and is tested on a DET derived on 80 users. Higher covienplies better generalizatiorf is the number of sample bootstraps
andU is the number of user-specific bootstraps. The X-axis reflects theeltdre to varying one of these two parameters. The user-specific
bootstrap attained a maximum coverage of 81.7% while the joint-bootstrapealtid2.2%. The joint-bootstrap procedure almost always has
higher coverage for any givefi values.

TABLE |

ENTROPY OFDET MASS ESTIMATED USING DATA SETS OF DIFFERENT USER SIZEAVERAGED OVER 24 SYSTEMS INNIST2005.

User size| Entropy
10 7.094
20 6.975
40 6.841
80 6.658

Lower entropy implies sharper distribution.

is available. This trend can graphically be observed in feddias well. Coverage generally increases as

more and more data is available.

C. Assessment w.r.t. User Composition Variation

This section assesses the robustness of the joint bootstcApique to user composition. Using the
subset of NIST2005 which contains 124 users, we randomligetivthe data into four equal partitions,

each containing 31 users. Data set 1 is used to estimate tfielexace region while the rest of the data
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Fig. 3. 95% DET mass of one of the 24 systems calculated using the DH& apmgroach for 10, 20, 40 and 80 users. Their corresponding
entropies are 7.2116, 7.1109, 6.8357 and 6.7438, respectiallyulated using the GMM approach). For each figure, the DET comfiden
region is bounded by an upper and a lower DET plotted in dashed linesm&dé&n of the region is also plotted by a dashed line. The
actual observed DET from which the confidence region is derived iteplan a bold continuous line.

sets are usedeparatelyto evaluate the goodness of prediction in terms of coverédge.same procedure
is repeated with data set 2, 3 and 4. The results are shownbie Tid Another experiment is repeated
but with only two partitions where each partition contairs @sers. The resultant matrix is similar to

Table Ill except that it is 2-by-2 in dimension. Its valueg:ar

x1.000 0.872
0.893 x1.000
where the same conclusion as in Table Il applies. The dvavarage coverage is evaluated to(h&s3

instead 0f0.825. The increased coverage is due to the fact that the DET cameeestimated from an
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TABLE Il

AVERAGE COVERAGE OVER24 SYSTEMS INNIST2005wWITH 95% OF CONFIDENCE

Actual Coverage for predicted user size

user size 10 20 40 80

10 * 1.000 0.879 0.773 0.781

20 — | = 1.000 0.891 0.859
40 - — | = 1.000 0.886
80 - - — | *1.000

Note: Numbers marked with ™" do not involve prediction.

TABLE 1l

AVERAGE COVERAGE OVER24 SYSTEMS INNIST2005

Data Coverage due to data sets

sets 1 2 3 4
1 1.000 | 0.802| 0.859 | 0.874
2 | 0.794| 1.000 | 0.798 | 0.862
3 | 0.866| 0.743| 1.000 | 0.846
4 0.846 | 0.794 | 0.819 | 1.000

Note: The diagonal of the table is one because the DET is tested on the datarsevhich it is derived. The average coverage across the

non-diagonal elements &8252.

increased number of users.

D. Validation on the XM2VTS Database

In order to verify the repeatability of experimental resubin other databases, we used the XM2VTS
score-level fusion benchmark database §15he first Lausanne protocols was chosen and eight verditati
systems — three speech and five face systems — are avail@lideddtabase contains 200 users and each
user has two genuine samples and 600 impostor samples. Watedpa similar experimental setting as
in Section V-C using two configurations:

1) Four partitions — hence 50 users per partition; test oresampostor set

2) Four partitions — hence 50 users per partition; testiffierentimpostor set
Note that the most important difference between XM2VTS at@mM2005 is that in XM2VTS, the impostor
population can be the same (using the fusion developmenbsaetifferent (using the fusion evaluation
set). By usingS = 5 andU = 100, the coverage averaged over the eight systems is 70.5% ddiirgh

SAvailable at http://www.idiap.chtnorman/fusion
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configuration and 67.2% for the second configuration. Tioeegtby using aifferentimpostor population
set, the coverage is reduced. This indicates thatehysingthe same impostors to generate impostor

scores, one will obtain an overly optimistic bias of coverag

VI. CONCLUSIONS

Generalizing performance of a system from a particularldega to another is an important task. The
current visualization tool via a DET curve does not guarargech performance generalization. On the
contrary, it is very sensitive the following three factotise number of users, the choice of users and the
choice of samples. Using a two-level bootstrap and a pastgssing on the density of resultant DETS,
we propose to establish a contour capturiihg- o) x 100% of probability mass. The proposed two-level
bootstrap approach generalizes the bootstrap subsetideehas proposed by Bollet al. [6] because
our proposal takes into consideration the sample vartghiti addition to the user-induced variability.
Both theoretical and empirical findings suggest that the level bootstrap approach has a systematically
higher coverage than Bollet al’s bootstrap subset. Although the experimental settingsbeadifferent,
the established confidence region from a small databaseeo$ ean cover more than 75% of an actual
unseen DET with 8 times the number of users. ldeally, a godatator should score 95% of the actual
DET. While a DET is inherently sensitive to the three aspeétsamiability mentioned, the proposed
bootstrap procedure can mitigate such sensitivity to soxtenebut cannot totally remove it.
The following are some possible extensions to the curremtyst
« Confidence interval estimation for threshold-dependent aalysis: A DET curve is a threshold-
independent analysis. However, by using a DET curve, onengss that the FAR and FRR dis-
tributions of the test data set are completely known. An mdgeproposed alternative is to use a
threshold-dependent assessment whereby the systemrpanice is calculated with thresholds fixed
a priori [16] on a development set.

« Mismatch between training and test setsThe current study does not handle the case of mismatch
between training and test sets. Research in this directiinrejuire that some representative test
samples to be available so that the confidence region of a EVed from some training conditions

can be transformed into that of the target test conditions.
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