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ABSTRACT

Audio codec based on Frequency Domain Linear Prediction (FDLP)
exploits auto-regressive modeling to approximate instantaneous en-
ergy in critical frequency sub-bands of relatively long input seg-
ments. Current version of the FDLP codec operating at66 kbps has
shown to provide comparable subjective listening quality results to
the state-of-the-art codecs on similar bit-rates even without employ-
ing strategic blocks, such as entropy coding or simultaneous mask-
ing. This paper describes an experimental work to increase compres-
sion efficiency of the FDLP codec provided by employing entropy
coding. Unlike traditionally used Huffman coding in current audio
coding systems, we describe an efficient way to exploit Arithmetic
coding to entropy compress quantized magnitude spectral compo-
nents of the sub-band FDLP residuals. Such approach outperforms
Huffman coding algorithm and provides more than3 kbps bit-rate
reduction.

Index Terms— Audio Coding, Frequency Domain Linear Pre-
diction (FDLP), Entropy Coding, Arithmetic Coding, Huffman Cod-
ing

1. INTRODUCTION

Traditionally, two-step process is carried out to perform source cod-
ing of analog audio/visual input signals. First, a lossy transformation
of the analog input data into set of discrete symbols is performed.
Second, lossless compression, often referred to as noiseless/entropy
coding, is employed to further improve compression efficiencies. In
many current audio/video codecs, such distinction does notexist or
only one step is applied [1].

Traditionally, lossless coding is carried out by Huffman coding
(e.g. [2]). Either the source symbols are compressed individually, or
they are grouped to create symbol strings which are then processed
by vector based entropy coder. Since the entropy of the combined
symbols is never higher than the entropy of the elementary symbols
(usually it is significantly lower), high compression ratios can be
achieved [3]. However, a considerable lookahead is required. There-
fore, vector based entropy coding is usually exploited for high qual-
ity audio coding where an algorithmic delay is available. Moreover,
symbol grouping increases complexity which often grows exponen-
tially with the vector size. Real-time coders therefore useper-symbol
entropy coding for speed, simplicity, low delay and efficiency.

Recently, a new speech/audio coding technique based on ap-
proximating temporal evolution of the spectral dynamics was pro-
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posed [4, 5]. More particularly, this technique performs decompo-
sition into Amplitude Modulation (AM) and Frequency Modulation
(FM) components. Obtained AM/FM components are referred to
as Hilbert envelope and Hilbert carrier estimates, respectively. The
compression strategy is based on predictability of slowly varying
amplitude modulations to encode audio/speech signals. On the en-
coder side, an input signal is split into frequency sub-bands roughly
following critical sub-band decomposition provided by non-uniform
Quadrature Mirror Filter (QMF) bank. In each sub-band, Hilbert
envelope is estimated using Frequency Domain Linear Prediction
(FDLP), which is an efficient technique for Auto-Regressive(AR)
modeling of temporal envelopes of a signal [6]. Sub-band FDLP
residuals are processed using Discrete Fourier Transform (DFT).
Magnitude and phase spectral components are vector and scalar
quantized, respectively. The process of quantization is controlled by
perceptual model simulating temporal masking. The decoderinverts
the steps from encoder to reconstruct the signal back.

This paper describes the flexible Arithmetic coding algorithm
used in the FDLP audio codec to encode selected codebook indices
obtained using Vector Quantization (VQ). VQ is employed to quan-
tize magnitude spectral components of the sub-band FDLP residu-
als. More particularly, sufficiently low quantization noise as well
as acceptable computational load is achieved by split VQ [7]. On
the other hand, the distribution of phase spectral components was
found to be close to uniform. Their correlation across time is minor.
Therefore a uniform Scalar Quantization (SQ) is performed without
applying additional entropy coding. Since Arithmetic coding has
advantageous properties for small alphabets [8], VQ codebooks are
first pruned down (without the significant increase of quantization
noise). Created input sequences provided by successive VQ indices
are then split into two sub-streams (with reduced alphabets) which
are then independently entropy compressed. Finally, achieved com-
pression efficiencies of Arithmetic coder are compared withtradi-
tional Huffman coding algorithm on challenging audio/speech data.

This paper is organized as follows. Section 2 describes the ba-
sic structure of the FDLP audio codec operating at medium bit-rates.
In Section 3, Arithmetic coding algorithm is briefly described with
concentration on the FDLP audio compression needs. Here, wealso
mention an experimental setup proposed for the entropy coding ex-
periments. Experimental results are given in Section 4, followed by
discussions and conclusions.

2. STRUCTURE OF THE FDLP CODEC

FDLP codec is based on processing long (hundreds of ms) tempo-
ral segments. As described in [5], the full-band input signal is de-
composed into non-uniform frequency sub-bands. In each sub-band,
FDLP is applied and Line Spectral Frequencies (LSFs) approxi-
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Fig. 1. Scheme of the FDLP encoder with block of entropy coding.

mating the sub-band temporal envelopes are quantized. The resid-
uals (sub-band carriers) are obtained by filtering sub-bandsignals
through corresponding AR model reconstructed from the quantized
LSF parameters (quantization noise is introduced using analysis-by-
synthesis approach). Then these sub-band residuals are segmented
into 200ms long segments and processed in DFT domain. Magni-
tude and phase spectral components are quantized using VQ and
SQ, respectively. Graphical scheme of the FDLP encoder is given
in Fig. 1.

In the decoder, shown in Fig. 2, quantized spectral compo-
nents of the sub-band carriers are reconstructed and transformed into
time-domain using inverse DFT. The reconstructed FDLP envelopes
(from LSF parameters) are used to modulate the corresponding sub-
band carriers. Finally, sub-band synthesis is applied to reconstruct
the full-band signal. The final version of the FDLP codec operates
at66 kbps.

Among important blocks of the FDLP codec belong:

• Non-uniform QMF decomposition: A perfect reconstruction
filter-bank is used to decompose a full-band signal into32
(roughly critically band-sized) frequency sub-bands.

• Temporal masking: First order forward masking model of the
human hear is implemented. This model is employed in en-
coding the sub-band FDLP residuals.

• Dynamic Phase Quantization (DPQ): DQP enables non-
uniform scalar quantization of spectral phase components to
reduce their bit-rate consumption.

• Noise substitution: FDLP filters in frequency sub-bands
above12 kHz (last3 sub-bands) are excited by white noise
in the decoder. This has shown to have a minimum impact on
the quality of reconstructed signal.

2.1. Quantization of spectral magnitudes in the FDLP codec

Spectral magnitudes together with corresponding phases represent
200 ms long segments of the sub-band FDLP residuals. At the en-
coder side, spectral magnitudes are quantized using VQ (correspond-
ing codebooks generated using LBG algorithm).

VQ is well known technique which provides the best quantiza-
tion scheme for a given bit-rate. However, a full-search VQ expo-
nentially increases computational and memory requirements of vec-
tor quantizers with the bit-rate. Moreover, usually large amount of
training data is required. Therefore, a sub-optimal (split) VQ is em-
ployed in the FDLP codec. Each vector of spectral magnitudesis
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Fig. 2. Scheme of the FDLP decoder with block of entropy decoding.

split into a number of sub-vectors and these sub-vectors arequan-
tized separately (using separate VQ). Due to unequal width of fre-
quency sub-bands introduced by non-uniform QMF decomposition,
vector lengths of spectral magnitudes differ in each sub-band. There-
fore, number of splits differs, as well. In addition, more precise VQ
(more splits) is performed in lower frequency sub-bands where the
quantization noise has shown to be more perceptible than in higher
sub-bands.

Finally, codebook pruning is performed in lower frequency sub-
bands (bands1−26) in order to reduce their size and to speed up VQ
search. Objective quality listening tests proved that25% codebook
reduction (i.e. the least used centroids are removed based on statis-
tical distribution estimated on training data) has a minimum impact
on resulting quality.

3. ARITHMETIC CODING

Arithmetic Coding (AC) has been selected to perform additional
(lossless) compression applied in the FDLP audio codec. Main ad-
vantage of AC is that it can operate with symbols (to be encoded) by
a fractional number of bits [9], as opposed to well-known Huffman
coding. In general, AC can be proven to reach the best compression
ratio possible introduced by the entropy of the data being encoded.
AC is superior to the Huffman method and its performance is opti-
mal without the need for grouping of input data. AC is also simpler
to implement since it does not require to build a tree structure. Sim-
ple probability distribution of input symbols needs to be stored at
encoder and decoder sides, which possibly allows for dynamic mod-
ifications based on input data to increase compression efficiency.

AC processes the whole sequence of input symbols in one time
by encoding symbols using fragments of bits. In other words,AC
represents an input sequence by an interval of real numbers between
0 and1. As a sequence becomes longer, the interval needed to rep-
resent this sequence becomes smaller. Therefore, the number of bits
to specify given interval grows.

Nowadays, AC is being used in many applications especially
with small alphabets (or with an unevenly distributed probabilities)
such as compression standards G3 and G4 used for fax transmission.
In these cases, AC is maximally efficient compared to well-known
Huffman coding algorithm. It can be shown that Huffman coding
never overcomes a compression ratio of(0.086+Pmax)HM(S) for
an arbitrary input sequenceS with Pmax being the largest of all oc-
curring symbol probabilities [10].HM (S) denotes the entropy of
the sequenceS for a modelM . It is obvious that for large alpha-
bets, wherePmax reaches relatively small values, Huffman algo-
rithm achieves better compression efficiencies. Therefore, this gives
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Fig. 3. Mean entropy of VQ indices of the first 10 sub-bands esti-
mated: (a) for each VQ codebook (codebook dependent sequences),
(b) for each sub-band (sub-band dependent sequences).

a good justification for such a technique on large alphabets.How-
ever, for small alphabet applications, which lead to biggersymbol
occurrence probabilities, AC is more efficient.

3.1. Experimental data

Entropy coding experiments are performed on audio/speech data
sampled at48 kHz. In all experiments, fixed model based entropy
coding algorithms are used. Unlike Huffman algorithm whichre-
quires to generate a tree structure to be shared by the encoder and
the decoder, AC requires only probabilities of input symbols to be
estimated from training data.

In our experiments, training data consists of47 audio recordings
(19.5 minutes), mainly downloaded from several internet databases.
The content is distributed among speech, music and radio record-
ings. Test data consists of28 recordings (7.25 minutes) with mixed
signal content from MPEG database for “explorations in speech and
audio coding” [11].

3.2. Experimental setup

Entropy coding is applied on spectral magnitudes of the sub-band
FDLP residuals in all32 sub-bands. Size of VQ codebooks em-
ployed in the FDLP codec differs for lower and higher frequency
bands. Codebooks in bands1-26 and27-32 contain3096 and512
centroids, respectively. This corresponds to11.5962 bits/symbol
and9 bits/symbol, respectively.

Several experiments are conducted to optimize performances of
AC. In order to reduce time complexity of these experiments,VQ
indices (symbols) only from the first10 sub-bands (0 ∼ 4 kHz) are
used to form the input sequences for AC. Sub-bands1 − 10 utilize
26 (band independent) VQ codebooks to quantize magnitude spec-
tral components. Since AC operates over sequences of symbols, it
matters how these symbol sequences are generated. We experiment
with two ways:

• Input sequences comprise symbols generated by the same VQ
codebook (codebook dependent sequences): Fixed probabil-
ity model for each VQ codebookis estimated from training
data. Mean entropy estimated from training data is shown in
Fig. 3 (a). Different lengths of input test sequences are cre-
ated from test data to be then encoded by AC. Achieved com-
pression ratios for different test sequence lengths are shown
in Fig. 4.
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Fig. 4. Compression ratio of Arithmetic coder for different lengths
of input sequences. Input sequences are generated: (a) for each
codebook (codebook dependent sequences), (b) for each sub-band
(sub-band dependent sequences).

• Input sequences comprise symbols belonging to the same
sub-band (sub-band dependent sequences): Fixed probabil-
ity model for each sub-bandis generated from training data.
Mean entropy estimated from training data is shown in Fig. 3
(b). Achieved compression ratios for different test sequence
lengths created from test data are given in Fig. 4.

Compression ratios given in Fig. 4 clearly show that AC is more
efficient in the second mode, i.e. when applied independently in
each frequency sub-band. This means that applied entropy coding
can better exploit similarities in input data distributiongenerated by
identical frequency sub-band.

With respect to the theoretical insights of AC mentioned in
Sec. 3, we further perform alphabet reduction. It is achieved by
simple splitting each input sequence comprising12-bit symbols into
two independent6-bit symbol sub-sequences. Training data is used
to estimate two independent probability models from6-bit symbol
distributions. During encoding, each input test sequence of 12-bit
symbols is split into two6-bit symbol sub-sequences which are then
encoded independently by two ACs employing two different proba-
bility models. Finally, obtained compressed bit-streams are merged
to create one bit-stream to be transmitted over the channel.Achieved
compression ratios (for the first10 sub-bands) are given in Fig. 5.
This figure compares performances for the case when AC employs
the reduced and the full alphabet. As can be seen, proposed alpha-
bet reduction provided by splitting of12-bit symbol sequences into
two 6-bit symbol sub-sequences significantly increases compression
efficiency.

4. EXPERIMENTAL RESULTS

In previous section, we described the experimental procedure to ex-
ploit AC in the FDLP audio codec. In order to reduce computational
complexities and to be able to quickly summarize achieved results,
the experiments were performed with data (VQ indices) coming
from the first10 frequency sub-bands. The best performances were
obtained for the case when AC was applied independently in each
frequency sub-band (regardless to VQ codebook assignment). Fur-
thermore, reduced alphabet provided better compression efficiency
in all frequency sub-bands compared to the original (full) alphabet.
Next, this configuration is used to test the efficiency of AC applied to
encode VQ indices from all32 frequency sub-bands (although AC is
eventually not employed in the last3 sub-bands in the FDLP codec).
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Fig. 5. Compression ratio of Arithmetic coder operating on the full
and the reduced alphabet.

Resulting compression ratios are given in Fig. 6. In these final ex-
periments, test sequence lengths are chosen to equal50 (number of
successive VQ indices forming input sequences for AC).

Lastly, AC performances are compared with performances of
Huffman coding, traditionally applied in the state-of-the-art audio
systems. The same training data is used to generate a fixed model
provided by a tree structure shared by the Huffman encoder and the
decoder. Since better performances of Huffman coding are obtained
for large alphabets [10], original12-bit alphabet is used. Similarly
to AC, Huffman coding is also applied independently in each fre-
quency sub-band (Huffman tree structure is generated for each fre-
quency sub-band). Performances of Huffman based entropy coder
for different frequency sub-bands are also given in Fig. 6.

5. DISCUSSIONS AND CONCLUSIONS

In this paper the entropy coder based on Arithmetic Coding (AC) al-
gorithm was proposed to be implemented in the FDLP audio codec
initially operating at66 kbps. Only VQ codebook indices of magni-
tude spectral components of the sub-band FDLP residuals from 0 to
12 kHz were entropy encoded. Overall bit-rate reduction achieved
by AC is 3 kbps. This corresponds to11% bit-rate reduction to
compress VQ indices of spectral magnitudes of the sub-band FDLP
residuals. Substantially larger entropy compression efficiencies can-
not probably be achieved since a significant reduction is already cap-
tured by split VQ. However, VQ indices of spectral magnitudes con-
sume only∼ 30% of the total bit-rate (compared to∼ 60% assigned
to entropy uncompressed spectral phase components). Therefore,
different transform to replace DFT may be of interest to avoid phase
coefficients inapplicable for entropy compression. AC outperforms
traditionally used Huffman coding (only∼ 1 kbps bit-rate reduc-
tion). Although AC requires at the input a sequence of symbols to
be encoded, it does not increase computational delay of the whole
system. The entropy decoding can start immediately with thefirst
bits transmitted over the channel. In our work, AC did not exploit
adaptive probability model, which could significantly increase per-
formances. In this case, AC would be a powerful technique, which
does not require complex changes of the structure, as opposed to
Huffman coding.

Objective and subjective listening tests were performed and de-
scribed in [5] to compare FDLP codec with LAME-MP3 (MPEG 1
Layer 3) [12] and MPEG-4 HE-AAC v1 [13], both operating at64
kbps. Since AC is a lossless technique, previously achievedaudio
quality results are valid. In overall, the FDLP audio codec achieves
similar subjective qualities as the state-of-the-art codecs on medium
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Fig. 6. Compression ratio of Arithmetic and Huffman coding for dif-
ferent frequency sub-bands.

bit-rates. Additional improvements can potentially be obtained by
employing simultaneous masking module.
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