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Résumé. This report describes additional experiments with LP-TRAPs – speech features deri-

ved from autoregressive model applied to approximate temporal evolution of speech spectra in

critical band-sized frequency sub-bands. The importance of free parameters, such as order model,

length of the approximated temporal pattern, compression factor, or number of resulting cepstral

coefficients, is investigated and evaluated using TANDEM-ASR approach.
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1 Introduction

Traditional speech feature extraction segments input signal into short-term (∼ 20 ms long) frames.
The resulting spectrogram which represents temporal evolution of spectral parameters of the short-
term frames is therefore largely downsampled (∼100 Hz) in contrast to the speech signal. Similarly
long-term speech feature extraction techniques, such as TempoRAl Patterns (TRAPs) [1] as well as
recently developed M-RASTA [2] technique, derive speech parameters from the short-term spectral
samples. Therefore, these techniques cannot imply any finer temporal details. In other words, ex-
tracted sub-band speech features capture information from long temporal context with low temporal
resolution.

Furthermore, TRAPs represent long-term energies of the sub-band signal, thus directly parameters
of the signal. It would be desirable to work rather with parameters of a model, modeling these temporal
vectors. This is a case in e.g., short-term frame based PLP feature extraction technique, where power
spectra of the short-term speech frames are approximated by AR model [3]. In addition, order of
the model can be used as a parameter to control smoothness, i.e., how well the model approximates
original trajectory [4].

One of the speech parameterization which is able to capture finer temporal details of the speech
signal can be based on Hilbert envelope estimated in each frequency sub-band. Although, Hilbert
envelope represents an energy trajectory with full temporal resolution, it needs to be smoothed to
suppress undesirable information from ASR point of view, such as the one captured by glottal pulses.
In principle, this is a case of Linear Predictive TRAP (LP-TRAP) feature extraction technique, where
smoothing is done using Auto-Regressive (AR) model. LP-TRAPs, first proposed in [5, 6], apply AR
model in a dual way to PLP technique, to model the sub-band temporal trajectory while preserving
full temporal resolution. In other words, parameters of AR model describe smoothed version of the
sub-band trajectory (temporal envelope). Profound theoretical background can be found in [7].

The goal of this report is to evaluate LP-TRAP technique according to its sensitivity to free
parameters. Unlike [6], we also take into account length of temporal segments and number of cepstral
coefficients together with model order and compression factor.

2 Estimation of temporal envelopes in frequency sub-band

Traditionally, AR modeling has been used in speech feature extraction to parameterize spectral
envelopes of short-term frames (referred to as Temporal Domain Linear Prediction (TDLP) approach).
Resulting LP coefficients are estimated in such a way that error between signal power spectrum P (ωk)
(sampled at discrete frequencies ωk = 2π

N
k ; k = 1, . . . , N ; in PLP technique obtained using critical

sub-band decomposition and the compression) and model power spectrum P̂ (ωk) is minimized [8] :

ETDLP ≈
1

N

N∑

k=1

P (ωk)

P̂ (ωk)
, (1)

where N denotes length of the input time-segment corresponding to P .

LP-TRAPs use AR model to approximate temporal envelope of the sub-band signals (referred
to as Frequency Domain Linear Prediction (FDLP) approach). In order to obtain a model approxi-
mating temporal envelope of the sub-band signal, coefficients of AR model need to be estimated in
frequency domain. This can be done by performing DCT on full-band time-domain signal followed by
segmentation of DCT sequence into frequency sub-bands. In particular, the segmentation is perfor-
med by applying set of Gaussian windows of variable temporal resolution, spaced following the Bark
scale (depicted in Figure 1). This results in DCT sequences where each sequence represents critically
band-sized frequency sub-band. These DCT sequences can then be used to estimate sub-band AR
models. It can be shown (e.g. [9]) that prediction error is then proportional to the integrated ratio of
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Fig. 1 – Set of Gaussian windows employed to perform frequency decomposition into critically band-
sized frequency sub-bands.

the squared Hilbert envelope |φ(m)|2 and its AR model approximation A(m)2 :

EFDLP ≈
1

2N

2N∑

m=1

|φ(m)|2

A2(m)
. (2)

φ(m) is an analytic signal obtained from sub-band signal (the magnitude of φ(m) represents Hilbert
envelope in a given frequency sub-band). Eq. 2 can be interpreted in such a way that the FDLP AR
model fits squared Hilbert envelope of the symmetrically extended time-domain signal. FDLP models
the time-domain envelope in the same way as TDLP models the spectral envelope.

In addition, the squared Hilbert envelope |φ(m)|2 is available and can be modified. Thus, e.g.,

compressing |φ(m)|2 by a root function [.]
1

r turns Eq. 2 into :

EFDLP ≈
1

2N

2N∑

m=1

|φ(m)|
2

r

A
2

r (m)
. (3)

As a consequence, by modifying r we can control the fit of peaks as well as dips of the original Hilbert
envelope. This technique has been proposed for speech feature extraction based on TDLP and can be
also successfully applied in LP-TRAPs.

3 Experiments

3.1 Experimental setup

The front-end algorithm for speech recognition is evaluated using TANDEM-ASR approach [10].
Derived LP-TRAPs are first fed to MLP which is discriminatively trained to classify phonemes. In
particular, set of MLPs is trained in each frequency sub-band independently (denoted as Band-MLPs)
and their outputs are then merged using another MLP (Merger-MLP). Input features transformed
by 2-layer MLP architecture are then fed into a conventional GMM-HMM recognizer. The speech
databases (DBs) OGI Stories [11] and OGI Numbers95 [12] were used, which consist of 8 kHz speech
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recorded over a telephone channel. OGI Stories DB contains spontaneous continuous speech, while
OGI Numbers95 DB contains recordings of strings of digits and numbers.

Band-MLPs were trained on 2.8 hours of OGI Stories (208 files). Merger-MLP was trained on 1.7
hours of OGI Numbers95 (3590 files). All MLP classifiers were discriminatively trained to classify 29
phonemes. 90% of the data was used for training, 10% for cross-validation.

GMM-HMM recognizer was trained on 1.3 hours (2547 files - subset of the set for Merger-MLP),
and tested on 1.7 hours (2169 files) of OGI Numebrs95 (strings of 11 digits with word transcriptions).
We used 22 phoneme HMMs (out of 29 from MLPs), 5 emitting states, 32 Gaussian mixtures, 11
target words in 28 pronunciation variants.

3.2 MLP setup

Set of LP-TRAP features was extracted for each critically band-sized frequency sub-band. Band-
MLP classifier has three layers : N × 100× 29 (N features at the input, 100 hidden units, 29 phoneme
outputs). Each Band-MLP was trained using approximately 1000k input vectors (approximately 1/10
was used for MLP cross-validation to determine the end of training). Phoneme posteriors from all
critical sub-bands are merged by Merger-MLP : 435×300×29 (15 Band-MLP×29 features, 300 hidden
units, 29 phoneme outputs). Approximately 600k input vectors were used to train Merger-MLP.

3.3 Evaluation criteria

Word Error Rate (WER) measure obtained on the test set of OGI Numbers95 (strings of 11 digits)
is used to evaluate LP-TRAPs and to compare them with other (state-of-the-art) feature extraction
techniques. Evaluation of free parameters in LP-TRAPs technique is done using relative WER with
respect to the “baseline” LP-TRAP parameter (experimental) setting :

rel. WER =
WBAS − W

WBAS

, (4)

where WBAS denotes absolute WER of baseline setting and W denotes WER of the evaluated setting.

3.4 LP-TRAPs – free parameters

LP-TRAPs have various free parameters, which play an important role and need to be experimen-
tally estimated to acquire good ASR performances. Some experimental work has already been done
and is presented in [5, 6]. Among the most important parameters belong : (a) length of the tempo-
ral window, (b) order of AR model, (c) compression factor, and (d) number of cepstral coefficients
recursively computed from obtained AR model.

Furthermore, we consider two types of LP-TRAP features that can be extracted from AR po-
lynomials. In the first approach, referred to as ENV, temporal envelope is extracted by sampling
frequency response of the resulting AR model. In the second approach, referred to as CEPS, the
cepstral recursion is performed which allows for converting AR model of the temporal trajectory into
modulation spectra with arbitrary number of cepstral coefficients.

LP-TRAP parameters in details :
(a) Length of temporal window : This parameter determines the length of temporal trajectory ap-

plied on the input signal to compute DCT coefficients and in consequence to estimate AR model.
Temporal window is applied with 10ms shift so that we obtain set of LP-TRAP features with
sampling frequency 100 Hz (it does not mean that resulting temporal envelopes are extracted in
down-sampled domain). We analyzed two window lengths, 1000 and 500 ms. Pilot experiments
were done with 1000 ms long temporal windows.

(b) Order of AR model - Nb : Nb varied from very low to relatively high values. However, estimated
LP coefficients were not directly used as input features for TANDEM-ASR. In case of ENV
approach, magnitude frequency response sampled with (101 or 51 points, depending on the
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Fig. 2 – Plot of relative WER as a function of : (a) order of AR model, (b) compression factor
applied to derive AR model. Length of temporal trajectories is 1000 ms. Compression ratio equal to
0 is obviously excluded, since such AR model would lead to the flat magnitude frequency response.
Absolute WER (WBAS) for ENV is equal to 4.9%. Absolute WER for CEP is equal to 4.6%.

length of temporal window) provides output features. In case of CEP approach, 51 cepstral
coefficients are derived to be used as speech features for TANDEM-ASR. Experimental results
are given in Tables 2 and 4.

(c) Compression factor - Cmpr : This parameter, denoted as r in Eq. 3, determines the ratio
between approximating peaks and dips of the temporal envelope by the model. AR model for
Cmpr = 0 is not defined since it would lead to the model with constant magnitude frequency
response. Experimental results are given in Tables 3 and 5.

(d) Number of cepstral coefficients - Cps : In case of 500 ms LP-TRAPs, we also experimented
with number of cepstral coefficients (thus only related to CEP approach) to be estimated from
AR model. The energy term c0 is always excluded. Experimental results are given in Table 6.

3.5 Experimental results

With regards to the experimental setup, the best absolute WER score obtained with LP-TRAP
speech features is 4.1%. This performance is compared to state-of-the-art speech feature extraction
systems processing long temporal context - TRAPs (101 points), M-RASTA (∆f + ∆2f) and PLP-
TANDEM, with experimental results given in Table 1. We also added performances of traditional
short-term frame based PLP features. LP-TRAPs (the best system) are also combined with M-RASTA
technique (frequency response of AR model is used as the input to estimate M-RASTA features).

Experiments with fixed compression factor and varying order of AR model show that continuous
increase of the order results in an increased performances until the saturation point. When 1000 ms long
temporal segments are considered, the recognition improvement starts saturating for Nb ∼ (50− 70),
as seen in Figure 2(a). Similar behavior can be found for 500 ms long temporal segments for Nb ∼ 30



6 IDIAP–RR 07-66

system WER [%]
TRAPs 4.7a

M-RASTA 3.6
PLP 5.2b

PLP-TANDEM 4.8c

LP-TRAPs 4.1
LP-TRAPs + M-RASTA 3.8

a1000 ms long temporal patterns, 101 inputs for 15 Band-MLPs.
bAR model order= 15, 12 cepstral coefficients + c0 + ∆ + ∆∆, no feature transform by MLP.
c9 consecutive frames of the PLP features (351 dimensions), one MLP trained.

Tab. 1 – The best performances (absolute WER) achieved with LP-TRAPs compared to the state-
of-the-art systems. Baseline experimental results for TRAPs, PLP and PLP-TANDEM are obtained
from the PhD thesis of Petr Fousek, Czech Technical University of Prague, 2007.

(refer to Table 4).
Following experimental results with fixed order of AR model and varying compression factor,

depicted in Figure 2(b), indicate that better performances can be achieved with Cmpr ∼ (0, 1〉. This
means that LP-TRAPs prefer more accurate modeling not only peaks but also dips of the sub-band
temporal envelopes.

In case of 500 ms LP-TRAPs, number of cepstral parameters derived from estimated AR model
varied. For these experiments, we also modified number of hidden units in Band-MLPs (lesser for
smaller number of inputs). Less cepstral coefficients derived from AR model did not have any large
impact on the achieved performaces, as can be seen from Table 6.

4 Discussion and Conclusions

By using AR model for modeling sub-band temporal envelopes, we can extract temporal structure
of the speech without need for short-term frame processing. Resulting LP-TRAP speech parameters
expressed in terms of smoothed temporal patterns or cepstral features derived from AR model were
evaluated using TANDEM-ASR approach. The best achieved WERs outperform traditional TRAP and
PLP based features and perform slightly worse than recently proposed M-RASTA feature extraction.

The main goal of this report was to present performances of LP-TRAPs for various parameter
setting. In general, the best performances were obtained for 500 ms long LP-TRAPs (cepstral repre-
sentation) approximated by AR model Nb = 50, Cmpr = 0.1.
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Nb : 10 15 20 30 40 50 60 70 80 90 100 200
ENV : Rel. WER : -4.2 -1.4 -0.4 0.1 0.1 0 (4.9) 0.4 0.6 0.3 0.3 0.2 0.1
CEP : Rel. WER : -5.7 -1.9 -0.7 -0.3 -0.4 0 (4.6) -0.1 0 0 -0.1 -0.3 -0.3

Tab. 2 – Relative WERs of LP-TRAPs for different order model Nb (for fixed Cmpr = 0.1). Relative
error rates are associated with absolute WER (WBAS) for Nb = 50, shown as bold text. Length of
temporal trajectories is 1000 ms. ENV refers to temporal envelope (of length 101) based features.
CEPS refers to 51 cepstral features derived from LP-TRAP.

Cmpr : -1.0 -0.5 -0.33 -0.1 0.1 0.33 0.5 1.0 1.5
ENV : Rel. WER : -2.2 -0.4 0.1 0.3 0 (4.9) 0.2 0.1 0.4 0
CEP : Rel. WER : -2.8 -1.1 -0.3 -0.5 0 (4.6) -0.4 -0.3 -0.5 -0.4

Tab. 3 – Relative WERs of LP-TRAPs for different compression factor Cmpr (for fixed Nb = 50).
Relative error rates are associated with absolute WER (WBAS) for Cmpr = 0.1, shown as bold text.
Length of temporal trajectories is 1000 ms. ENV refers to temporal envelope (of length 101) based
features. CEPS refers to 51 cepstral features derived from LP-TRAP.
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Nb : 5 10 20 30 40 50
ENV : Rel. WER : -4.7 -0.5 -0.1 0 -0.2 0 (4.9)
CEP : Rel. WER : -6.3 -1.7 -0.3 -0.5 -0.2 0 (4.4)

Tab. 4 – Relative WERs of LP-TRAPs for different order model Nb (for fixed Cmpr = 0.1). Relative
error rates are associated with absolute WER (WBAS) for Nb = 50, shown as bold text. Length of
temporal trajectories is 500 ms. ENV refers to temporal envelope (of length 51) based features. CEPS
refers to 51 cepstral features derived from LP-TRAP.

Cmpr : 0.1 0.5 1.0
ENV : Rel. WER : 0 (4.9) -0.2 0.1
CEP : Rel. WER : 0 (4.4) -0.3 0

Tab. 5 – Relative WERs of LP-TRAPs for different compression factor Cmpr (for fixed Nb = 50).
Relative error rates are associated with absolute WER (WBAS) for Cmpr = 0.1, shown as bold text.
Length of temporal trajectories is 500 ms. ENV refers to temporal envelope (of length 51) based
features. CEPS refers to 51 cepstral features derived from LP-TRAP.

Cps : 16 26 51 76 101
CEP : Rel. WER : -0.1 -0.2 0 (4.4) 0 0.3

Tab. 6 – Relative WERs of LP-TRAPs for different number of cepstral coefficients Cps derived from
LP model. Relative error rates are associated with absolute WER (WBAS) for Cps = 51, shown as
bold text. Length of temporal trajectories is 500 ms.


