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bstract

High-resolution electroencephalographic (HREEG) techniques allow estimation of cortical activity based on non-invasive scalp potential mea-
urements, using appropriate models of volume conduction and of neuroelectrical sources. In this study we propose an application of this body of
echnologies, originally developed to obtain functional images of the brain’s electrical activity, in the context of brain–computer interfaces (BCI).

Our working hypothesis predicted that, since HREEG pre-processing removes spatial correlation introduced by current conduction in the head
tructures, by providing the BCI with waveforms that are mostly due to the unmixed activity of a small cortical region, a more reliable classification
ould be obtained, at least when the activity to detect has a limited generator, which is the case in motor related tasks.
HREEG techniques employed in this study rely on (i) individual head models derived from anatomical magnetic resonance images, (ii) distributed

ource model, composed of a layer of current dipoles, geometrically constrained to the cortical mantle, (iii) depth-weighted minimum L2-norm
onstraint and Tikhonov regularization for linear inverse problem solution and (iv) estimation of electrical activity in cortical regions of interest
orresponding to relevant Brodmann areas.

Six subjects were trained to learn self modulation of sensorimotor EEG rhythms, related to the imagination of limb movements. Off-line EEG
ata was used to estimate waveforms of cortical activity (cortical current density, CCD) on selected regions of interest. CCD waveforms were fed
nto the BCI computational pipeline as an alternative to raw EEG signals; spectral features are evaluated through statistical tests (r2 analysis), to
uantify their reliability for BCI control. These results are compared, within subjects, to analogous results obtained without HREEG techniques.
he processing procedure was designed in such a way that computations could be split into a setup phase (which includes most of the computational
urden) and the actual EEG processing phase, which was limited to a single matrix multiplication. This separation allowed to make the procedure
uitable for on-line utilization, and a pilot experiment was performed.

Results show that lateralization of electrical activity, which is expected to be contralateral to the imagined movement, is more evident on the
stimated CCDs than in the scalp potentials. CCDs produce a pattern of relevant spectral features that is more spatially focused, and has a higher
tatistical significance (EEG: 0.20 ± 0.114 S.D.; CCD: 0.55 ± 0.16 S.D.; p = 10−5). A pilot experiment showed that a trained subject could utilize
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oluntary modulation of estimated CCDs for accurate (eight targets) on-line control of a cursor.
This study showed that it is practically feasible to utilize HREEG techniques for on-line operation of a BCI system; off-line analysis suggests

hat accuracy of BCI control is enhanced by the proposed method.
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. Introduction

.1. High-resolution EEG

Electroencephalographic (EEG) recordings have helped clin-
cians for decades to diagnose specific diseases of the central
ervous system. On the other side, its use as a neuroimaging
ool has been limited for a long time by the low technology of
he system (a few electrodes placed on the scalp of the subject
hat allow plotting traces of the electrical potentials time course),
hich did not allow a full exploitation of its potentialities.
The ultimate problem of a neuroimaging technique is the

etection of the pattern of activation of cerebral structures in
given experimental condition. In this perspective, the scalp
EG potential traces, or even the scalp potential maps, can only
e regarded as a partial result, since they do not carry direct
nformation on the cerebral processing. In the last 20 years,
he development of recording and analysis techniques has sub-
tantially increased the quality of the EEG recordings. Such
n advanced body of techniques, named high-resolution EEG
HREEG)(Babiloni et al., 2004a,b; He et al., 2006; Nunez, 1995;
rbano et al., 1998), has provided an affordable neuroimag-

ng tool with complementary features to other techniques based
n metabolic or hemodynamic processes of the brain (Babiloni
t al., 2005). The aim of HREEG is to provide standard and
ested algorithms that help the experimenter to infer the nature
f cerebral activity from the measured scalp potentials. This
oal is achieved, for instance, through spatial filtering, which
ounteracts the smearing of scalp potentials introduced when
onic currents cross low conductivity structures (i.e., the skull).

simple and typical spatial filtering algorithm is the Surface
aplacian (SL) (Nunez, 1995). The estimation of the SL may
ssume standard electrode locations (e.g. 10–20 system) and
imple geometries as a model of scalp shape, such as a plane or
sphere. Nevertheless, the use of digitized electrode locations

ogether with realistic geometries of subject’s head, such as those
erived from magnetic resonance images (MRIs), has shown to
e more accurate (Babiloni et al., 2002, 2004a,b), although more
omplex to implement.

When it is important to identify the neuroelectrical sources
f cortical activity (registered to brain anatomy), the real shape
f all structures of the head must be taken into account, together
ith their conductivity properties. Several approaches are avail-

ble, each differing from the other in the hypotheses assumed
or several key aspects of the solution: size and number of the
ources, distribution and orientation with respect to the surface
f the cerebral cortex, constraints on the energy of the solu-
ion, etc. (for a review see Michel et al., 2004). For instance

method, called ELECTRA (Grave de Peralta et al., 2000),
stimates local field potentials, i.e., providing information anal-
gous to intracranial recordings. It is worth to note that, apart
rom ELECTRA, no other existing method allows to estimate
ocal field potentials from scalp EEG. Other methods estimate
Please cite this article in press as: Cincotti F, et al., High-resolution EE
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

he punctual (equivalent current dipoles, ECD) or distributed
xtracellular currents (cortical current density, CCD) flowing
lose to the active neuronal populations. The latter methods bet-
er model those situations in which a distributed cortical network
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s supposed to be active (Babiloni et al., 2005; Dale and Sereno,
993; Dale et al., 2000). This approach also implies the use of
ealistic head models, reconstructed from MRIs, as volume con-
uctor medium. The accuracy of inverse solution depends on the
roper selection of several factors:

. Appropriate source model; it includes all brain structures
that plausibly contributed to the generation of the measured
potentials; this is accomplished by discretizing the whole
cerebral cortex with thousands of equivalent current dipoles.

. Accurate volume conductor model; it describes the elec-
trical properties of the head that influence the spread of
ionic currents from the cortex to the scalp (the so-called for-
ward problem). Using anatomic MRI of individual subjects,
a three-shell boundary element model (BEM) of the head
describing four compartments of the model (brain, skull,
scalp, and air) is derived and used to compute a lead field
matrix. It is worth to note that although finite element mod-
eling (FEM) could allow a finer grained model of the volume
conductor space, the lack of reliable information about con-
ductivity values degrades accuracy of FEM solutions, yet
requiring a higher computational effort than BEM. Hence, in
this study the forward problem will be solved using a three
shell BEM approach.

. Accurate determination of electrode positions; digitization
of actual electrode three-dimensional positions accounts for
misplacement of sensors with respect to standard positions
(e.g. the standard 10–20 configuration).

. A priori constraints. A unique solution can only be obtained
by introducing additional constraints to solve an otherwise
under-determined inverse problem. Constraints on minimum
energy of solution (Dale and Sereno, 1993; Hämäläinen and
Ilmoniemi, 1984) are usual, but more specific information on
the nature of noise or signal can be introduced using metric
matrices (see Eq. (2)).

.2. Brain–computer interfaces

Brain–computer interfaces (BCIs) can provide non-muscular
ommunication and control for people with severe motor dis-
bilities (Wolpaw and Birbaumer, 2006). This can be obtained
y extracting information about user’s will directly from sig-
als originating in the central nervous system. Current BCIs use
variety of invasive and non-invasive methods to record brain

ignals and a variety of signal processing methods (for a review,
ee Birbaumer and Cohen, 2007; Wolpaw, 2007). Interest on the
pplication of advanced EEG neuroimaging procedures in the
ontext of the BCI derives from two main factors: (i) the refine-
ent of recording and analysis methods is likely to improve

erformance in the BCI operation; ii) the advantages of the
REEG technology can be exploited to improve the understand-

ng of the some of the processes which underlie the subjects’
BCI-control” capabilities.
G techniques for brain–computer interface applications, J Neurosci

It has been previously reported that spatial filtering proce-
ures (including the computation of surface Laplacian) improve
eliability of a BCI device (McFarland et al., 1997). In fact,
patial filtering applied to the raw EEG potentials reduces the

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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ig. 1. Block diagram of the approach proposed for integration of high-resolutio
EM: boundary element model; LF: lead field; ROI: region of interest; PI: ps
ombination.

orrelation between recording channels (due to current spread
n the head volume conductor). Spatially filtered potentials are
hus more related to cortical sources located under each elec-
rode, allowing following processing to rely on more distinct
patial patterns. The use of preprocessing methods based on
iophysical consideration, allows the use of simpler processing
odules. This is valuable for any BCI that (i) exploits EEG fea-

ures generated by localized cortical sources and (ii) relies on
imple feature classifiers. The latter point is a key issue in the
ubject’s training phase, since it allows the subject identify a
imple relationship between the feedback he/she receives and
he modifications of EEG signals he is learning to self induce.

In this respect, cortical source estimation is likely to provide
better signal conditioning in preparation of BCI processing. In

act, it is well know that the estimation of the cortical activity
rom scalp EEG data by solving the linear inverse problem with
ealistic head models greatly enhances the spatial details avail-
ble when compared to the Surface Laplacian methods (Babiloni
t al., 2000; Cincotti et al., 2004a; He et al., 2006; Mattia et al.,
006; Nunez, 1995; Urbano et al., 1998).

The aim of the present work is then to describe the chain
f signal processing methods that have been found to improve
ccuracy of an EEG-based BCI system, operated by modula-
ion of the sensorimotor rhythms induced by motor imagery
asks. In the approach followed here, cortical regions of inter-
Please cite this article in press as: Cincotti F, et al., High-resolution EEG
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

st are segmented according to the individual brain anatomy
o represent task-relevant patches of motor cortex. The signal
onditioning procedure allowed quantifying the time-varying
lectrophysiological activity (i.e., CCD) of these selected cor-

8
p

r

technique into BCI processing. Acronyms: MRI: magnetic resonance images;
inverse; EEG: electroencephalography; Feat. Extr., Comb.: feature extraction,

ical regions using non-invasive HREEG recordings. Spectral
eatures derived from CCDs and from scalp potentials are first
ompared in terms of discrimination capability (statistical map-
ing) and then in terms of correct classification rate in a simple
inary selection task, both off- and on-line.

A block diagram showing the steps described in the Section
is given in Fig. 1

. Methods

.1. Subjects and EEG data acquisition

Six subjects (males; mean age 30.2 ± 2.9) voluntarily par-
icipated to the study. One of the six subjects (S5) presented a
raumatic stabilized lesion located at the dorsal level and he was
onfined to a wheelchair. Written informed consent was obtained
rom each subject, after explanation of the study, approved by
he local ethics committee. All subjects were right-handed as
ssessed by the Edinburgh inventory, while for the disabled
ubject this was based on a personal interview.

Subjects underwent a series of EEG acquisition sessions,
n which they were trained to gain control of their sensorimo-
or rhythms (mu-rhythm) to operate a brain–computer interface
BCI) system. Each session lasted about 40 min and consists
f eight 3-min runs of 30 trials each. We collected a total of
techniques for brain–computer interface applications, J Neurosci

–12 training sessions for each subject; training ended when
erformance was stabilized.

During acquisition, subjects were comfortably seated on a
eclining chair (or when necessary a wheelchair) in a dimly

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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it room. Scalp potentials were collected from 59 positions
according to an extension of the 10–20 International System)
nd amplified by a commercial EEG system (BrainAmp, Brain-
roducts GmbH, Germany). EEG signal was bandpass filtered
etween 0.1 and 70 Hz, digitized at 200 samples/s and transmit-
ed to the BCI program for on-line processing. EEG data were
lso stored for off-line analysis.

Subjects were instructed to minimize muscular, electroocu-
ographic, and blink activity during the active modulation phase
f trials. A technician, who monitored the ongoing EEG traces,
eminded the subject those instructions at each occurrence of
uch an artifact, so that on-line performance was minimally
ffected by artifacts. For the purpose off-line analysis, EEG
races were reviewed by an expert electroencephalographer, and
EG segments containing artifacts were rejected.

.2. Experimental task

Each trial consisted of four phases:

. Target appearance: a rectangular target appeared on the right
side of the screen, covering either the upper or the lower half
of the side.

. Feedback phase: 1 s after the target, a cursor appeared in the
middle of the left side of the screen and moved at a constant
horizontal speed to the right. Vertical speed was determined
by the amplitude of sensorimotor rhythms (see Section 2.4).
A cursor sweep lasted about 3 s.

. Reward phase. If the cursor successfully hit the target, the
latter flashed for about 1 s. Otherwise, it just disappeared.

. Intertrial interval. The screen stayed blank for about 2 s, in
which the subject was allowed to blink and swallow.

Fig. 2 shows the feedback screen used in the BCI training
essions.
Please cite this article in press as: Cincotti F, et al., High-resolution EE
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

Subjects were aware that the increase or decrease of a specific
hythm in their EEG produced a movement of the cursor towards
he top or the bottom of the screen. They were suggested to con-
entrate on kinesthetic imagination of upper limb movements

ig. 2. Feedback screen used in the BCI training sessions. After a target appeared
n the right side of the screen, a cursor sweeps horizontally, while its vertical
osition was defined by the amplitude of sensorimotor EEG rhythms that the
ubject is learning to regulate.
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e.g. fist clenching) to produce a desynchronization of the mu-
hythm on relevant channels (cursor up), and to concentrate on
inesthetic imagination of lower limb movements (e.g. repeated
orsiflexion of ankle joint) to produce a contrasting pattern (with
ossible desynchronization of mu/beta-rhythm over the mesial
hannels, cursor down).

Using this simple binary task as performance measure, train-
ng is meant to improve performances from 50 to 70% to 80 to
00% of correct hits.

.3. On-line processing

Digitized EEG data were transmitted in real time to the
CI2000 software system (Schalk et al., 2004), which performs
erformed all necessary signal processing and displayed feed-
ack to the user. The processing pipe can be considered of several
tages, which process the signal in sequence. Only the main
nes will be mentioned below: spatial filter, spectral feature
xtraction, feature combination, and normalization.

.3.1. Spatial filter
A general linear combination of data channels is implemented

y defining a matrix of weights that is multiplied to each time
ample of potentials (vector). This allowed implementation of
ifferent spatial filters, e.g.: (i) re-referencing to common aver-
ge (CAR), which was used during the training phase, and (ii)
stimation of CCD waveforms on cortical ROIs, using weights
erived in Section 2.8.

.3.2. Spectral feature extraction
Spectral feature extraction was performed every 40 ms, using

he latest 300 ms of data. An autoregressive spectral estimator,
ased on the maximum entropy algorithm, yielded an ampli-
ude spectrum with resolution of 2 Hz. Maximum frequency was
imited to 60 Hz

.3.3. Feature selection and combination
A small subset of those spectral features (frequency

ins × EEG channels) that were significantly modulated by the
otor imagery tasks were linearly combined to form a single

ontrol signal. Selection of responsive channels and frequency
ins, and determination of combination weights were operated
efore each on-line session (see Section 2.4). In general, only
wo or three spectral amplitude values (depending on individual
atterns) were generally used to obtain the control signal.

.3.4. Normalization
The control channel was detrended to avoid biases of the

ursor, and scaled so that the resulting vertical deflection of the
eedback cursor was visible but not saturated. In fact, the vertical
osition of the cursor was updated every 40 ms by a number of
ixels (positive or negative) equal to the output by this stage.
G techniques for brain–computer interface applications, J Neurosci

ormalization was adaptive, and based on the estimate of the
oving average and standard deviation of the control signal.
During the very first session of each subject (screening ses-

ion), since no off-line analysis was available to guide feature

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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election and combination, the subject was given no on-line
eedback (targets only).

.4. Off-line analysis

After artifact rejection, the EEG interval corresponding to
he feedback phase were binned into two classes—up or down,
epending on the target appeared in each trial.

The spatial filtering and feature extraction stages of the online
rocessing were replicated. Since no feedback delay issue had
o be considered during the off-line analysis, spectral estimation
as computed on 1 s long epochs, overlapped by 50% (i.e., only
ve spectral estimates had to be computed for each 3 s long trial,
ielding about 600 spectral estimates per class for the whole
ession).

For each of the 59 channels and 30 frequency bins (1770
eatures), a contrast was performed, to assess statistically sig-
ificant modulations induced on a specific feature. To this aim,
e computed for each feature (dependent variable) the coef-
cient of determination (r2) i.e., the proportion of the total
ariance of the feature samples accounted for by target position.
his index had been previously utilized in literature for simi-

ar experimental setups (McFarland et al., 1997; Wolpaw and
cFarland, 2004; Wolpaw et al., 2002), and allows direct com-

arison with published results. A fictitious independent variable
as created, using values +1 or −1 in correspondence of “down”
r “up” epochs, respectively. A negative sign was attributed to
Please cite this article in press as: Cincotti F, et al., High-resolution EEG
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

he r2 value when dependent and independent variables were
ontrovariant. Viewing statistical results from a different point
f view, features characterized by a high r2 value are those that
aximize prediction of the current target.

t

s
w

ig. 3. Graphical representation of the systematic statistical comparison (r2 value) o
atrix corresponds to a different EEG channel, columns relate to different frequency b

f single columns of the matrix; spatial patterns of significance are shown in the alph
 PRESS
nce Methods xxx (2007) xxx–xxx 5

Higher values of r2 indicate that the subject has gained stead-
er control of EEG rhythms (in fact they generally increase
uring the training, from values below 0.1 to values above 0.3).

A graphical representation of statistical analysis is shown in
ig. 3, left panel. Each row corresponds to a different EEG chan-
el, columns relate to different frequency bins. Single columns
an be interpolated on a topographic arrangement, showing the
patial patterns of significance at a specific frequency (Fig. 3,
ight panels).

After each training session, r2 matrices and maps are com-
uted to determine those significant features that will be used
n the Feature selection and combination stage of the next on-
ine session. While there might be variations due to less clear
atterns, two features coming from channels over the lateral sen-
orimotor cortices, and one coming from a mesial channel where
elected when possible. They were given a weight equal to +1
r −1, according to the co- or contro-variant behavior of the
eature.

.5. Lead field matrix

Each participant underwent a Magnetic Resonance Image
MRI) of the brain to allow the modeling of the head struc-
ures. Magnetization prepared rapid gradient echo (MPRAGE)
1 weighted images (256 × 256 matrix, 182 slices, 1 mm3

sotropic voxels, repetition time 11.4 ms, echo time 4.4 ms, flip
ngle = 15◦) were obtained with a Siemens 1.5T Vision Magne-
techniques for brain–computer interface applications, J Neurosci

om MR system (Germany).
MRIs of each subject were processed using the Curry 4.6

oftware (Compumedics Neuroscan Ltd, El Paso, TX), which
as also used to compute the lead field matrix.

f each EEG feature extracted by scalp potentials. Left panel: each row of the
ins. Right panel: topographical mapping of r2 values, obtained by interpolation
a and beta band.

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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Images were stacked into a 3D isotropic volume and regions
ontaining different tissues were segmented (white matter, grey
atter, CSF, skull, scalp and air). Three craniometric repere

oints (nasion, left and right preauricular points) were marked
o allow later registration with other geometrical data. Three tes-
ellated surfaces were extracted (inner and outer skull surface
nd scalp surface, about 500 triangles each) and used to define
he geometry of the BEM. Conductivity of the skull compart-

ent was set to 15 mS/m; conductivity of both the scalp and
he brain compartments was set 15 times higher than the skull
Oostendorp et al., 2000).

The cortical sources were modeled by using a distributed
odel with realistic cortical shape (Babiloni et al., 2000, 2005).
tessellated surface representing the cortical mantle (about

000 triangles) was extracted through an iterative procedure,
hich fitted it halfway between the white/gray and the gray/CFS

nterfaces. The source model was composed of about 3000 cur-
ent dipoles, positioned at the vertices of the cortical tessellation,
ith direction normal to the local pseudo-tangent plane. With

his approach, the relevant geometric features are preserved and
he orientation of each dipole is constrained to be perpendicu-
ar to the cortical mantle, thus modeling the alignment of the
yramidal neurons. The actual strength of these sources is later
stimated by using a linear inverse procedure according to a
eighted-minimum norm approach (see below).
Fig. 4, left panel, shows the typical geometry of the three

hell BEM and of the source model.
A “fine-grained” lead field matrix was finally computed,

escribing the influence of each source on the potential “virtu-
lly” measured at each of the about 500 vertices of the scalp
esh. The actual lead field, relative to the measured sensor

onfiguration, will only be computed in a second step, by inter-
olation from the fine-grained one.
Please cite this article in press as: Cincotti F, et al., High-resolution EE
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

The whole procedure, which is relatively time consuming,
as performed only once per subject, as soon as the MRI are

vailable, and in advance with respect to the first EEG recording.
nly the lead-field interpolation (which involves a negligible

a

a
R

ig. 4. Left panel: realistic three-dimensional reconstruction of the structures of the h
ethod are visible—scalp and skull are represented as solid volumes, the third com

ayer for the source model is shown through the hole in the scalp and skull. Right pan
ositions, (ii) a 3D representation of the electrode (green markers) and craniometric
sed in the BEM. The point of view of the 3D reconstructions is set according to cam
 PRESS
nce Methods xxx (2007) xxx–xxx

omputational effort) had to be repeated for each EEG acquisi-
ion session, since it depend on the actual position of electrodes.

.6. Region of interest

Cortical regions of interest (ROIs) were drawn on the tes-
ellated model of the cortical mantle, for each subject. As for
he frontal medial wall motor areas, namely the supplementary

otor area proper (SMAp) and the caudal cingulate motor area
CMAc) (Picard and Strick, 1996), we followed the anatomi-
al landmarks and defined the anterior border of the SMAp and
he CMAc by a plane perpendicular to the anterior-posterior
ommissure (AC-PC) line at the level of the AC (VAC). The
osterior border of both SMAp and CMAc was at a perpen-
icular plane at the posterior commissure (VPC). The border
etween the SMAp and CMAc was settled either right above
he cingulate sulcus, or in case of a prominent paracingulate
ulcus, above it. The primary motor foot (MI-foot) representa-
ional area was defined arbitrarily as a region ranging anteriorly
o posteriorly from the VAC to the first two thirds of the paracen-
ral lobule and inferiorly bordered by the superior bank of the
ingulate sulcus. This region should plausibly include the foot
epresentation site within the MI according to its somatotopic
rganization. To define the primary motor hand and lip represen-
ational area, we followed an anatomical-functional procedure
reviously reported (Mattia et al., 2006). The anatomical local-
zation of other EEG sources were related to the major sulci
nd gyri distinguishable on the individual MRIs, and named
ccording to Brodmann nomenclature BA6, BA5, BA7, BA8
nd BA9/46).

The segmentation procedure yielded a set of indices of the
ource dipoles comprised in each ROI. This procedure was per-
ormed only once per subject, as soon as the cortical model was
G techniques for brain–computer interface applications, J Neurosci

vailable.
Indices of sources belonging to each ROI have been used

fter estimation of CCD at each dipole, to obtain waveforms of
OI-wise activity (see below).

ead based on MRI data. The compartments used to setup the boundary element
partment (brain) occupies the hollow part of the skull. The surface utilized as
el: superimposition of (i) one of the nine pictures used to triangulate electrode

repere (blue markers) configuration, and (iii) the tessellated surface of the skin
era position output by the phototriangulation procedure.

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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Fig. 5. Regions of interest (ROIs), depicted in colors for the on-line version of
the paper, or in a grayscale on the printed journal, on a realistic model of the
head for a particular subject involved in the experiments. Labels indicate the
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magnitude of the dipolar moment for each cortical dipoles was
ame of the ROIs, with the postfix L or R for left and right. For instance, the
OI indicated with the label (A8 L) is the Brodmann area 8 left.

Fig. 5 illustrates a set of the ROIs on a realistic cortical
econstruction, obtained in a given experimental subject.

.7. Determination of electrode positions

The position of electrodes was measured trough photogram-
etric techniques. Using a commercial computer program

Photomodeler 5, Eos Systems Inc., Vancouver, Canada) a con-
umer digital camera was calibrated. Before any acquisition
ession, as soon as the electrode cap was positioned on the sub-
ect’s head, 9 pictures of the electrode montage were taken from
ifferent angles covering the whole head. Three craniometric
epere points (nasion, left and right preauricular points) were
arked on the subject’s skin to allow later registration to the
EM head model. Within the Photomodeler program, electrodes
ere manually marked on each picture, and references between
arkers of the same electrode on different picture were made.
riangulation between such markers yielded a 3D model of each
lectrode, together with the reconstruction of the camera posi-
Please cite this article in press as: Cincotti F, et al., High-resolution EEG
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

ion and orientation for each shot. Since triangulation procedures
annot compute the actual scale factor, this was fixed at a later
tage.

o
d
h
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An affine, isotropic transformation was performed to align
he craniometric points in the same reference system used for
he BEM model, and to scale the distance of preauricular points
o the measure made on the BEM model. Fig. 2, right panel,
hows a representation of the registration procedure.

.8. Estimation of cortical source current density

The solution of the neuroelectrical linear inverse problem can
e factorized into the matrix multiplication of a pseudoinverse
atrix (G) times the vector of measured potentials. This factor-

zation allows to pre-compute G, as soon as the geometry of the
odel (BEM head model, source model and sensor positions)

s available. Matrix multiplication is a very fast procedure, and
stimation of source estimates can thus be performed on large
atasets (unaveraged EEG) and even in real-time.

Computation of the G matrix was implemented in Matlab 7.3
The Mathworks, Natick, MA). A description of the algorithms
s given elsewhere, together with simulations that validate the
rocedure (Babiloni et al., 2000, 2005).

The solution of the following linear system:

x = b + n (1)

rovides an estimation of the dipole source configuration x that
enerates the measured EEG potential distribution b. The system
ncludes also the measurement noise n, assumed to be normally
istributed (Dale and Sereno, 1993; Grave de Peralta Menendez
nd Gonzalez Andino, 1999; Nunez, 1995). A is the lead field
atrix, where each j-th column describes the potential distribu-

ion generated on the scalp electrodes by the j-th unitary dipole.
he current density solution vector ξ of Eq. (1) was obtained as

Grave de Peralta Menendez and Gonzalez Andino, 1999):

= arg min
x

(
‖Ax − b‖2

M + λ2‖x‖2
N

)
(2)

here M, N are the matrices associated to the metrics of the
ata and of the source space, respectively, λ the regularization
arameter and ||x||M represents the M norm of the vector x. The
olution of Eq. (2) is given by the inverse operator G:

(t) = Gb(t), G = N−1A′(AN−1A′ + λM−1)
−1

(3)

n optimal regularization of this linear system was obtained by
he L-curve approach (Hansen, 1992a,b). As a metric in the data
pace we used the identity matrix, while as a norm in the source
pace we use the following metric:

N−1)ii = ‖A.i‖−2 (4)

here (N-1)ii is the i-th element of the inverse of the diagonal
atrix N and all the other matrix elements Nij are set to 0. The
2 norm of the i-th column of the lead field matrix A is denoted
y ||A.i||.

Using the relations described above, an estimate of the signed
techniques for brain–computer interface applications, J Neurosci

btained for each time point. As the orientation of the dipole was
efined to be perpendicular to the local cortical surface in the
ead model, the estimation process returned a scalar rather than

dx.doi.org/10.1016/j.jneumeth.2007.06.031


 IN+Model
N

8 roscie

a
t
w
t

p
r
s

�

T
t
i
p
w
t
t
o

3

o
(
o
t
r
a
t
t
i
a
C
t
t
s
a

o
R
c
E
r

n
a
a
r
o
a
c
f
s
c
c
r

t
c

c
b
i
i
T
o
c
a
c
t
a
T
d
c
E
t
t
c
a
r
c
o
c
i
a

4

a
e
M
s
m
b
s

t
f
o
o
b
t
f
n
t

c
i
i

ARTICLESM-4622; No. of Pages 12

F. Cincotti et al. / Journal of Neu

vector field. The spatial average of the signed magnitude of all
he dipoles belonging to a particular ROI at each time sample
as used to estimate the waveforms of cortical ROI activity in

hat ROI (�(t)).
Spatial averaging can be expressed in terms of matrix multi-

lication by a matrix T. This matrix is sparse and has as many
ows as ROIs and as many columns as the number of dipole
ources. ROI CCD waveforms can then be expressed as:

(t) = T�(t) = TGb(t) = GROIb(t), GROI = TG (4)

he GROI matrix only depends on geometrical factors, and can
hus be computed and stored off-line. The matrix multiplication
n Eq. (4) can be interpreted as a spatial filtering of the scalp
otenital b(t), using the elements of GROI as weights. Thus, it
as possible to utilize the results of CCD linear estimate in

he BCI framework by plugging the weights derived here into
he spatial filtering block of the BCI system, both off-line and
n-line.

. Results

Fig. 6 shows the typical cortical current density waveforms
btainable from the mathematical procedure described in Eqs.
1)–(4). In particular, it can be appreciated the particular region
f interests (ROIs) representing the primary motor area for
he hand and the lips movement, depicted in red and blue,
espectively, on the realistic cortical model. The averaged CCD
ctivities within the ROIs during the time period of a particular
ask is represented as waveforms on the right of the Figure. The
ask requires also the lip pursuing together the hand movement
magination. The waveforms at the bottom of the figure are rel-
tive to the scalp potentials gathered from the electrodes C3 and
4. Fig. 6 (top panel) was obtained by processing the single

rial of the recorded EEG, and by applying the procedure for
he estimation of the CCD waveforms described in the Methods
ection. It can be possible appreciate the time resolution still
vailable at the level of the cortical ROIs considered.

In the bottom panel of Fig. 6, the topographical distribution
f r2 values in the alpha band are represented for subject 3.
aw EEG (left side) yields a wide distribution over the bilateral
entral regions of the scalp, and has a peak value around 0.3.
stimated CCD (right side) produces more localized regions of

elevant activity, with a higher (0.6) peak value.
By applying the above mentioned signal processing tech-

iques in the context of the proposed BCI setup, we used the r2

s an index of reliability of the recognition of subject’s mental
ctivity. The comparisons between the maximum values of the
2 that takes into account the best usable feature (frequency/ROI
r scalp channel) were performed for the unprocessed EEG data
s well as for the estimated cortical activity by using the pro-
edure already described above. As shown in Fig. 7, the values
or the r2 index are always larger than those obtained for the
Please cite this article in press as: Cincotti F, et al., High-resolution EE
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

ame subject by using the raw scalp potentials during the exe-
ution of the task. Mean r2 is 0.20 ± 0.114 S.D. for the RAW
ase, 0.55 ± 0.16 S.D. for the CCD case. The differences are
elatively constant across the subjects, and a paired Student’s

i
t
n
s
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-test returned a highly significant differences between the two
onditions (p < 10−5).

The results provided above suggest the possibility to use effi-
iently the proposed approach to improve recognition rates of the
rain–computer interfaces based on non invasive EEG record-
ngs. To support such conclusions, we also applied the cortical
maging technique to a more challenging experimental situation.
wo independent control signals were derived by combination
f EEG features, so that both coordinates the feedback cursor
ould be controlled by the subject. Eight targets were distributed
gainst the screen sides. From an starting point located in the
enter of the screen, the subject had to move the cursor towards
he highlighted target. The cortical waveforms obtained by the
pplication of the linear inverse procedure are processed on-line.
his is possible since the computational burden for such proce-
ure is not elevate, due to the matrix multiplication required to
ompute the estimated cortical current density, as described by
q. (3), due to the storage of the pseudoinverse matrix G on

he hard disk of the computer. Preliminary results of the use of
he on-line CCD estimation reports that one subject is able to
ontrol the cursor direction in a plane, with a rate of correct hits
bout the 80%, compared to 71% obtained with the use of the
aw EEG potential. It is worth noting that in this experimental
ondition, the chance level is at 12.5% (well below the 50% level
f a binary task). Fig. 8 shows the subject involved in the task of
ontrol the direction of the red cursor, at the center of the screen,
n order to hit in a predefined time-frame the target (depicted as
red bar on the right of the screen).

. Discussion

The attempt to recognize patterns from the EEG potentials is
t the base of the field of the brain–computer interface (Cincotti
t al., 2002, 2003; Millán et al., 2002, 2003, 2004; Wolpaw and
cFarland, 2004; Wolpaw et al., 1991, 2002). Processing EEG

ignals mainly involves two steps: (1) the relevant EEG features
ust be extracted from raw signals. (2) These features must

e effectively transformed (classified) so that the output control
ignal (command) is as close as possible to the user’s will.

In this paper we proposed a procedure for the estimation of
he cortical waveforms from the recorded EEG potentials in the
ramework of the brain–computer interface, and its use on an
n-line in a BCI system. The results obtained from a pilot study
n a population of normal subjects trained to operate a BCI
ased on modulation of sensorimotor EEG rhythms suggest that
he use of CCD is superior to the use of scalp EEG potentials
or off-line classification of mental imagery. Further research is
ecessary to extend to other BCI systems the results obtained in
his experiments.

Since the present analysis approach is based on the use of a
ortical model as a source space for the estimated cortical activ-
ty from the scalp EEG recordings, it may be asked what happens
f deep brain sources are active during the execution of the exper-
G techniques for brain–computer interface applications, J Neurosci

mental task. EEG activity at the scalp are generally considered
o be generated mainly by cortical sources because of the colum-
ar arrangement of cortical neurons (Nunez, 1995). Like other
ource models that neglect the contribution of “other sources”

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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Fig. 6. Top panel: cortical current density (CCD) waveforms estimated in two regions of interest (ROIs) coincident with the primary motor area for the hand movement
(in red for the on-line version and in light gray for the printed version) and for the lip movement (in blue for the on-line version and in dark gray for the printed
v D rep
p odele

(
h
s
i
l
s
n
t
f
p

o
C
B
m
fi
e

ersion) on a realistic representation of the subject’s head. The bullets are the 3
anel: maps of statistical significance of all recorded EEG channels (left) and m

e.g., dipolar models), the cortical current density source model
as been shown by a number of investigators to be a valid
ource model in which the weak contribution of deeper sources
s explicitly neglected. In many cases, deeper sources produce
ittle external field that could generally be neglected in a given
ource model dealing with cortical dynamics, although this is
Please cite this article in press as: Cincotti F, et al., High-resolution EEG
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

ot as true as in the case of hypothetical so-called closed fields
hat in principle would produce no measurement at all. There-
ore it is reasonable to assume that the source space for the
resent inverse problem lies in principle on the cortical mantle

s
v
t
f

resentation of the scalp electrodes employed for the EEG recordings. Bottom
d cortical sources (right).

f the brain. The use of the realistic head models to estimate the
CD on the cortical mantle was performed by using a 3-shell
EM. Although other different methods could return an esti-
ate of cortical activity from superficial EEG recordings (i.e.,
nite element modeling, FEM) we choose the BEM for the gen-
ration of the lead field matrix due to stability of the results that
techniques for brain–computer interface applications, J Neurosci

uch approach provides. In fact, the potential improvements pro-
ided by the finite element model approach (FEM), that is able
o model precisely the different structures within the head, are
rustrated by the lack of precise values for tissue conductivity

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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Fig. 7. Figure shows the values of the r2 index for the best features extracted
from the scalp recorded EEG (RAW) and from the CCD waveforms (CCD) in
six subjects during the execution of the task related to the cursor control. The
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2 generated for the CCD waveforms are always above the values obtained by
sing the raw EEG potentials, with an high statistical significance.

which should be modeled as a inhomogeneous and anisotropic
ensor field). In addition, the use of 3-shell BEM approach for
he head models adopted here has been demonstrated superior
o the use of 1-shell BEM approach, In fact such approach was
uitable in presence of magnetoencephalographic measurements
ue to the fact of the relative insensitivity of the magnetic field
o the different conductivity values relative to the different skull,
Please cite this article in press as: Cincotti F, et al., High-resolution EE
Methods (2007), doi:10.1016/j.jneumeth.2007.06.031

calp and brain tissues. Instead, the differences in conductivity
etween such head structures have a strong impact on the esti-
ation of the CCD with the use of EEG recordings (Fuchs et

l., 2007). It is also worth of note that the differences in esti-

ig. 8. Figure shows a subject involved in the task of control the direction of the
ursor, at the center of the screen, in order to hit in a predefined time-frame the
arget (depicted as a red bar in the on-line version of the paper and in light gray
n the printed version on the right of the screen). The task was accomplished by
sing on-line the estimation of the cortical current density waveforms.
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ated CCD due to the use of modeling the cerebro-spinal fluid
CSF) in a 4-shell BEM instead of a 3-shell BEM approach are
egligible here (Fuchs et al., 2007; Michel et al., 2004).

However, mapping the pattern of CCD on the subject’s cor-
ex is only a partial result. Indeed, solving the inverse problem
llows determining the electrical activity of every small area of
he cortex, i.e., in the way that can be represented by a map. Nev-
rtheless, given its high temporal resolution, the time course of
epresentative regions of the brain should be visualized. More-
ver, inter-subject statistics should be carried on, meaning that
matching should be found between corresponding regions of
ifferent brain, according to the individual anatomical distribu-
ion of the considered cortical functions. Finally, intra-subject
nd inter-subject statistics need an appropriate transformation
o normalize CCDs.

The first instrument in this direction is the segmentation of
ndividual areas corresponding to the specific functions. The
egmentation of these regions of interest (ROIs) can be per-
ormed a posteriori, by selecting the significant “clusters” of
wo-dimensional (i.e., cortically constrained) activity mapping,
easonably corresponding to the functional responsive areas.
lternatively, the selection of an activity “cluster” can be per-

ormed a priori, either using the cortical folds as a reference
r taking advantage from the normalized position of equivalent
ources derived from a Talairach brain transformation. As far
s the ROIs cover a small patch of cortex, the average CCD
n each of the ROIs can be taken as a correlate of the activ-
ty of a functional area, and its time course can be plotted as a
aveform. Most of the analyses that have been developed for

calp potentials (averaging, spectral analysis, coherence, etc.)
an be applied to CCD waveforms, empowering the capacity of
hese analyses. The present results were obtained by the applica-
ion of the functional connectivity estimator to the high-density
EG data in the frequency domain. Frequencies up to 45 Hz
ere investigated, although recently the presence of important

nformation at higher ranges of temporal frequencies have been
uggested (Gonzalez et al., 2006). However, the results of the
ff-line and on-line experimentation suggest that the approach
o use CCD waveforms to control a BCI system based on volun-
ary modulation of sensorimotor EEG rhythms are encouraging
nd highly statistically significant.

Despite complexity of the mathematics involved, on-line
pplication was kept as simple as possible. The proposed pro-
edure was designed to be implemented with minimal impact
nto the signal pre-processing stage of a BCI, in place of any
xisting instantaneous linear combination (i.e., spatial filtering)
lock. With the particular implementation of BCI used in this
tudy (BCI2000), this was achieved simply by loading the GROI
atrix from the user interface. Given the wide diffusion of this

ofware in different research laboratories, these results are also
nteresting in the perspective to apply such technology in a larger
xperimental group, possibly involving the person with motor
isabilities.
G techniques for brain–computer interface applications, J Neurosci

In fact, in the field of rehabilitation, the main goal is the
eduction of the disability provoked by any pathological condi-
ion that is the achievement of the maximum independence for
given clinical frame.

dx.doi.org/10.1016/j.jneumeth.2007.06.031
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The key issues in this research context will be the develop-
ent of a system that allows a seamless interaction between

he user and with a wide variety of actuators (robots, domotic
ppliances), independently of the kind of input device (aid) the
ser utilizes. The implementation of this system will take into
ccount those stages of the disease in which the residual muscu-
ar strength could be not adequate, if present, for the utilization
f conventional aids and in those conditions in which practi-
al obstacles or security concerns could prevent a displacement
rom bed.

The ultimate product will be an integrated communication-
ontrol system, customized on the residual abilities of each
everely motor impaired patient,. Clinical validation of the
evice will provide for the documentation about patients feed-
ack and guidelines for future development of a device to be
eployed to the patients‘houses.
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