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Abstract. Most state-of-the-art automatic speech recognition (ASR) systems deal with noise
in the environment by extracting noise robust features which are subsequently modelled by a
Hidden Markov Model (HMM). A limitation of this feature-based approach is that the influence
of noise on the features is difficult to model explicitly and the HMM is typically over sensitive,
dealing poorly with unexpected and severe noise environments. An alternative is to model the
raw signal directly which has the potential advantage of allowing noise to be explicitly modelled.
A popular way to model raw speech signals is to use an Autoregressive (AR) process. AR models
are however very sensitive to variations in the amplitude of the signal. Our proposed Bayesian
Autoregressive Switching Linear Dynamical System (BAR-SLDS) treats the observed noisy signal
as a scaled, clean hidden signal plus noise. The variance of the noise and signal scaling factor are
automatically adapted, enabling the robust identification of scale-invariant clean signals in the
presence of noise.
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1 The Switching AR-HMM

A basic way to model a speech waveform—represented as a sequence of unidimensional samples v1:T —
is by means of an Autoregressive (AR) process. An AR process models the sample vt as the sum of a
linear combination of the R previous samples and a random, Gaussian distributed, innovation ηt:

vt =
R∑

r=1

crvt−r + ηt with ηt ∼ N (0, σ2) (1)

where N (µ, σ2) represents the normal (Gaussian) distribution with mean µ and variance σ2, and cr

are the AR coefficients. Since an AR process is too simple to model the strong non-stationarities
typically encountered in speech signals, a useful extension is to consider each sample vt as being
generated by one of S different AR processes. The switching between the various AR processes is
controlled by p(st | st−1), where st is the index of the AR process used at time t. In the Switching
AR-HMM (SAR-HMM) proposed in [4], the joint distribution of the sequence of observations v1:T

and states s1:T is

p(v1:T , s1:T ) =
T∏

t=1

p(vt | st, vt−R:t−1) p(st | st−1)

where p(s1 | s0) ≡ p(s1) is a specified prior distribution. If we define ṽt =
[
vt−1 . . . vt−R

]T ≡
vt−R:t−1 and c =

[
c1 . . . cR

]T, then Eq. 1 defines a Gaussian emission distribution for the current
sample vt:

p(vt | st, ṽt) =
1√

2πσ2
st

exp
{
− 1

2σ2
st

(vt − cT
st
ṽt)2

}
where the mean and variance depend on the current state st. It is desirable to prevent the switch
state changing too rapidly and the speech signal is therefore considered as the concatenation of a
number of fixed-length segments within which the state cannot change. This corresponds to the joint
distribution

p(v1:T , s1:N ) =
N∏

n=1

p(sn | sn−1)
tn+1−1∏

t=tn

p(vt | sn, ṽt).

Gain Adaptation

Whilst Eq. 1 is invariant under rescaling of the signal v1:T in the zero-noise limit, in noisy environments,
the equation does not remain invariant. In particular, if the signal is scaled by a factor α, we would
require the innovation variance to scale by a factor α2. In other words, the ‘gain’ of the sequence, σ,
needs to be appropriately set for each sequence. This problem is generally addressed by performing
Gain Adaptation (GA) [4, 6], replacing in Eq. 1, for each segment n and state s, the variance σ2 by the
segment-state variance σ2

ns which maximises the likelihood of the observations in the n-th segment,
i.e.,

σ2
ns = arg max

σ2
p(vtn:tn+1−1 |σ2).

However, increasing the innovation σ2
ns allows the model to produce wilder uncontrolled fluctuations

in the signal. Ideally, we may wish to have a model which deals with changes in overall signal level
by simply re-scaling the underlying signal, thus controlling the form of the signal more carefully.

2 The Bayesian AR-SLDS

An alternative to adapting the innovation is to consider the observed sample vt as a scaled version of
a scale-invariant hidden sample wt plus noise:

vt = bwt + ηVt with ηVt ∼ N (0, σ2
V) (2)
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and to model the ‘clean’ hidden sample wt with a switching AR process:

wt = cT
s w̃t + ηWt (s) with ηWt (s) ∼ N

(
0, σ2

W(s)
)
. (3)

In this manner, no innovation-inflation is required, provided that the observed signal is simply a
scaled, noisy version of an underlying AR process. For a given observed sequence, the setting of b and
σ2
V is unknown a-priori and needs to be determined. To solve this problem we treat both parameters

as random variables and introduce a Normal-Gamma prior1

b | ν, s ∼ N
(
µs, ν

−1σ2
s

)
and ν | s ∼ G(αs, βs) (4)

where G(α, β) is the Gamma distribution with shape α and inverse scale β. Similarly to the SAR-
HMM, we consider a segmental approach where the state, scaling factor and noise variance are kept
constant over a segment. Using ϑn = {bn, νn}, Eqs. 2, 3 and 4 correspond to the distributions
p(vt |wt, ϑn), p(wt |wt−1, sn) and

p(ϑn | sn) = p(bn | νn, sn) p(νn | sn)

respectively. The joint distribution p(v1:T , w1:T , ϑ1:N , s1:N ) defined by this model is equal to

N∏
n=1

p(ϑn | sn) p(sn | sn−1)
tn+1−1∏

t=tn

p(vt |wt, ϑn) p(wt |wt−1, sn). (5)

For fixed ϑn the model corresponds to a special case of a Switching Linear Dynamical System (SLDS)
where the underlying dynamics is constrained to be autoregressive. We will thus refer to the model
defined by (5), which includes a prior over ϑn, as the Bayesian AR-SLDS (BAR-SLDS).

2.1 Parameter Optimisation

Given a set of M training sequences2 {v1
1:T , . . . , vM

1:T }, we want to find the parameter setting Ψ? which
maximises the total log-likelihood of the training sequences, i.e.,

Ψ? = arg max
Ψ

M∑
m=1

log p(vm
1:T |Ψ) (6)

where Ψ is equal to ⋃
s

{
cs, σ

2
W(s), µs, σ

2
s

}
∪

⋃
i,j

{
p(sn = j | sn−1 = j)

}
.

The prior distribution p(s1) is not optimised, but simply set to one for the first state and zero otherwise.
Since our aim is to train the model on clean signals and to later test it on noisy data, we do not use
a prior on ν during training and set appropriate value for αs and βs during testing. The likelihood of
a sequence v1:T is

p(v1:T |Ψ) =
∑
s1:N

∫
ϑ1:N
w1:T

p(v1:T , w1:T , ϑ1:N , s1:N |Ψ) (7)

The sum/integral in Eq. 7 makes an explicit solution to Eq. 6 difficult to obtain. The usual ap-
proach would then be to use the Expectation Maximisation (EM) algorithm. However, the non-linear
interaction between wt and ϑn in Eq. 2 renders computing the required EM posterior distributions
intractable.

1To ease notation, we prefer using the inverse variance ν = 1/σ2
V .

2For simplicity, we will assume that they all have the same length.
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2.2 Variational Inference

We propose to use a variational approach where the true posterior distribution is approximated by
the simpler distribution

q(w1:T , ϑ1:N , s1:N ) = q(w1:T | s1:N ) q(ϑ1:N | s1:N ) q(s1:N )

where the problematic dependency between wt and ϑn has been removed. By considering the Kullback-
Leibler (KL) divergence KL

(
q(w1:T , ϑ1:N , s1:N ) || p(w1:T , ϑ1:N , s1:N |Ψ)

)
, we obtain the following lower

bound on the log-likelihood

log p(v1:T |Ψ) ≥ −
〈
log q(w1:T , ϑ1:N , s1:N )

〉
q
+

〈
log p(v1:T , w1:T , ϑ1:N , s1:N |Ψ)

〉
q

(8)

Our aim is therefore to find the q distribution for which the lower bound is as close as possible to the
true log-likelihood. Differentiating the bound with respect to q(ϑ1:N | s1:N ) yields

q(ϑ1:N , s1:N ) ∝ p(ϑ1:N | s1:N ) p(s1:N ) exp
{〈

log p(v1:T , w1:T |ϑ1:N , s1:N )
〉

q(w1:T | s1:N )

}
and differentiating with respect to q(w1:T , s1:N ) yields

q(w1:T , s1:N ) ∝ p(w1:t | s1:N ) p(s1:N ) exp
{〈

log p(v1:T |w1:T , ϑ1:N , s1:N )
〉

q(ϑ1:N | s1:N )

}
. (9)

2.2.1 Finding q(ϑn | sn)

Since we chose conjugate priors, the posterior distribution has the same form as the prior, hence

bn | νn, sn ∼ N (µ̂sn
, ν−1

n σ̂2
sn

) and νn | sn ∼ G(α̂sn , β̂sn).

After some algebra we obtain3

σ̂2
s = σ2

s

[
1 + σ2

s

∑
t

〈w2
t 〉

]−1

, µ̂s = σ̂2
s

[
µs

σ2
s

+
∑

t

vt〈wt〉

]

α̂s = αs +
1
2
Ln, β̂s = βs +

1
2

∑
t

[
v2

t +
µs

σ2
s

− µ̂s

σ̂2
s

]
where the averages are taken with respect to q(wt | sn), Ln = tn+1 − tn and the sums are carried out
from tn to tn+1 − 1.

2.2.2 Finding q(wt | sn) and q(sn)

The right-hand-side of Eq. 9 can be written as

N∏
n=1

p(sn | sn−1)
tn+1−1∏

t=tn

q(vt |wt, sn) p(wt |wt−1, sn) (10)

with log q(vt |wt, sn) given by4

〈
log p(vt |wt, ϑn, sn)

〉
=

1
2
〈
log ν

〉
− 1

2
〈
ν(vt − bwt)2

〉
=

1
2
〈
log ν

〉
− 1

2
〈ν〉

(
vt − 〈b〉wt

)2 − 1
2

〈
ν
(
b− 〈b〉

)2〉︸ ︷︷ ︸
σ̂2

sn

w2
t

3While the prior parameters depends on s only, the posterior’s depends on s and n. To ease notation we dropped
the n index however.

4Irrelevant constant terms are ignored.
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where the averages are over q(θn | sn). Since, 〈b〉 = µ̂sn and 〈ν〉 = α̂sn/β̂sn , q(vt |wt, sn) is proportional
to

exp

−1
2

[
vt − µ̂sn

wt

σ̂snwt

]T
[

β̂sn

α̂sn
0

0 1

]−1 [
vt − µ̂sn

wt

σsnwt

] .

This can equivalently be written as a stochastic linear equation defined on an augmented observa-
tion vt [2],

vt = Bsn
wt + ηt(sn) with ηt(sn) ∼ N (0,Σsn)

where

vt =
[
vt

0

]
, Bsn =

[
µ̂sn

σ̂sn

]
and Σsn =

[
β̂sn

α̂sn
0

0 1

]
.

By replacing vt by vt in (10) we see that (10) corresponds to a SLDS for which the posteriors q(wt | sn)
and q(sn) can be computed using any of the numerous available algorithms found in the literature;
see [1] for a review and comparison. For the experiments presented in this article, we used the
Expectation Correction (EC) algorithm [1] which provides a fast and accurate procedure for computing
the desired posteriors. We also used EC to find a first estimate of q(wt | sn) and q(sn) by running the
algorithm on a SLDS where the parameters where set to their mean value. Variational inference was
then carried out by iteratively applying the forumlae of Sections 2.2.1 and 2.2.2.

2.3 Parameter Updating

Update formulae for the parameters in Ψ can be obtained by means of the Variational Bayesian EM
Algorithm [3]. This corresponds to maximising the lower bound given by Eq. 8 with respect to Ψ.
Differentiating the lower bound with respect to Ψ and setting the result equal to zero yields

cs =
〈
w̃tw̃T

t

〉−1〈
wtw̃t

〉
, µs = 〈b〉

σ2
W(s) =

1
〈Ln〉

〈
(wt − cT

s w̃t)2
〉
, σ2

s =
1

〈Ln〉
〈
ν(b− µs)2

〉
where the averages must be interpreted as

〈x〉 =
N∑

n=1

q(sn = s)
tn+1−1∑

t=tn

〈x〉q(wt | sn) q(θn | sn).

The updated formula for the transition distribution is

p(sn = j | sn−1 = j) =
∑

n>1 q(sn−1 = i, sn = j)∑
n>1 q(sn−1 = i)

.

3 Results

To test the potential benefit of the proposed scale-invariant model, we examined the reconstructions
of scaled noisy signals provided by the BAR-SLDS compared with the more standard gain-adaptation
procedure. Clean, non-noisy utterances of the digit ‘one’, were taken from TI-DIGITS [5], downsam-
pled to 8 kHz. An AR-SLDS model was trained on these data using the formulae of Section 2.35. As
a demonstration, a single digit clean utterance of a ‘one’ was taken, from which a scaled noisy version

5Since the model was trained on clean data, no prior was used on ν. The training was stopped after convergence of
the lower bound given by Eq. 8. The model was composed of 10 states and were using 10 AR coefficients and a left-
right transition matrix. The segment length was of 140 samples. This corresponds to 1.75 ms at a sampling frequency
of 8 kHz.



IDIAP–RR 07–52 5

Figure 1: Comparison of signal reconstruction. Top: original (left) and corrupted (right) waveform
of a ‘one’. Bottom: most likely reconstruction as given by the gain-adapted AR-SLDS (left) and
the BAR-SLDS (right). The dashed lines indicate the most likely state segmentation. The state
segmentation of the clean signal is displayed on the noisy signal as well.

Noise Var. SNR (dB) GA AR-SLDS BAR-SLDS
clean — 97.0% 87.0%
10−5 19.7 94.8% 83.3%
10−4 10.6 84.0% 78.3%
10−3 0.7 61.2% 64.0%

Table 1: Comparison of the recognition accuracy of the Gain-Adapted AR-SLDS and the Bayesian
AR-SLDS for various levels of noise. The second column gives the approximate Signal to Noise
Ratio (SNR).

of the signal was then formed and corrupted by additive Gaussian noise at SNR 0. Given this scaled-
noisy signal, the posterior q(wt, sn) can be used to reconstruct the most likely (ML) clean speech
signal. Fig. 1 shows the ML reconstructed clean signal given by the gain-adapted AR-SLDS and the
BAR-SLDS. The BAR-SLDS does not allow the innovation to change, resulting in less variability in
the underlying signal and a cleaner denoising, particularly at the edges where the signal level is low.
On the other hand, the gain-adapted AR-SLDS provides a reasonable reconstruction but, as a result
of the extra innovation required to explain the change in signal-level, allows the reconstructed signal
too much freedom, particularly in the low signal level areas, as anticipated.

An interesting comparison is the recognition performance of the BAR-SLDS compared to the gain-
adapted AR-SLDS. We repeated the above training procedure, fitting an AR-SLDS model to each of
the 11 digits in the TI-DIGITS database. For a given test utterance v1:T , recognition was performed
by picking the digit model for which the likelihood of the corresponding augmented observation v1:T

was the highest. To evaluate the accuracy of the BAR-SLDS in the presence of noise, we corrupted
the original clean test utterances with additive stationary Gaussian noise. To give the model the
opportunity to remove noise we specified a prior on ν with a mean of 1 and a large variance. Table 1
compares the recognition accuracy of the proposed Bayesian AR-SLDS with the Gain-Adapted AR-
SLDS proposed in [6]. Although there is a slight improvement at SNR 0, the BAR-SLDS is otherwise
less accurate than its gain-adapted counterpart. This drop in performance can be explained by the
fact that the BAR-SLDS does not, as yet, adapt the innovation variance, using only the scale to
allow for changes in the signal. A natural extension of the BAR-SLDS model is therefore to allow
the innovation to be adapted, as well as the scale. Such a model should have the benefit that the
innovation adaptation will be required only in those cases that cannot be well explained by simpler
rescalings of the underlying clean signal.
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4 Conclusion & Future Work

We proposed a Bayesian approach to deal with variations in the signal amplitude in AR models. As
expected, the approach results in cleaner reconstructions than approaches which simply adapt inno-
vation variance. Whilst our proposed solution is quite natural, the model throws up some significant
technical challenges. Our technique is, to our knowledge, the first variational approximation of the
Bayesian SLDS which retains dependencies between switch and continuous latent states by exploiting
state-of-the-art inference procedures. Such technical advances will hopefully lead to the wider appli-
cation of SLDS style models in signal processing areas. The presented model is part of our continuing
programme of development of models for dealing with noisy signals. In the future, we will consider
priors on the innovation variance and, possibly, on the AR coefficients. Another useful extension
would be to use an AR noise model which would allow complex non-stationary noise sources to be
considered.
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