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Abstract. This paper addresses the problem of locating facial features in images of
frontal faces taken under different lighting conditions. The well-knovative Shape
Model method proposed by Cootes al. is extended to improve its robustness to
illumination changes. For that purpose, we introduce the use of LocahBPat-

terns (LBP). Three different incremental approaches combining ASt LWBP are
presented: profile-based LBP-ASM, square-based LBP-ASM aidtkd-square-based
LBP-ASM. Experiments performed on the standard and darkened imég®fsthe
XM2VTS database demonstrate that the divided-square-based LBPgh®s supe-

rior performance compared to the state-of-the-art ASM. It achieves mzurate re-
sults and fails less frequently.
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1 Introduction

Active Shape Model (ASM) is a popular statistical tool focdding examples of known
objects in images. It was first introduced by Coageal.[5] in 1995 and has been developed
and improved for many years. ASM is a model-based methodhwinigkes use of a prior
model of what is expected in the image. Basically, the Actiief® Model is composed of
a deformable shape model and a set of local appearance mdtlelshape model describes
the typical variations of an object exhibited in a set of malyuannotated images and the
local appearance models give a statistical representatithre gray-level structures around
each model point. Given a sufficiently accurate startingtjpos the ASM search attempts to
find the best match of the shape model to the data in a new insigg tne local appearance
models. ASM is thus fundamentally similar to Active Contouod#l, or snake, proposed
by Kasset al. [13]. However, ASM has global constraints that allow thepghanodel to
deform only in ways found in the training set. A direct extensof the ASM approach has
lead to the Active Appearance Model (AAM) [1]. Besides shagermation, the textural
information, i.e. the pixel intensities across the objecincluded into the model. The AAM
algorithm seeks to match both the position of the model gaanid a representation of the
texture of the object to an image.

Although ASM and AAM can be used to find any object in an image, facus this
paper on the detection of facial features such as eyes,lapstsse and mouth. Locating
such features is an important stage in many facial imagepretation tasks such as face
recognition, face tracking or face expression recognitidowever, facial feature detection
is a challenging task because human faces vary greatly betindividuals. Faces can also
appear at a wide range of sizes in images and face shapetyhaiosglasses can cause the
facial features to be occluded. Although good results foralafeature localisation using
ASM and AAM have been reported [2], [14], [7], the ability &t model to perform well in
different lighting conditions is still limited.

We propose in this paper three incremental approaches camgbASM with Local Bi-
nary Patterns (LBPs). LBP is a powerful and computationalypde descriptor of local
texture patterns. It expresses the difference of intestween a given pixel and its neigh-
borhood. LBPs are therefore more robust to illumination gean

This paper is organized as follows. First, we introduce ttgireal ASM technique pro-
posed by Cootest al., we describe the LBP approach and present a state-of-tineetinbd.
Then, we present the different approaches proposed to cenfBM with LBP. Finally,
experiments and results are presented and a conclusioaws dr

2 Active Shape Models and Local Binary Patterns

Active Shape Model is a powerful tool for face localisatiomalignment. However, the fea-
tures used to model the local gray-level structures are semgitive to illumination, particu-
larly when the lighting conditions during search are sigaifitly different from the lighting

conditions used to train the shape model.
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In this section, we also introduce Local Binary Patterns (LB®Jeatures for local ap-
pearance representations. LBPs are powerful texture gesarivhich are much more robust
to illumination changes. As far as we know, only Huastal. [11] proposed an improved
ASM method based on this idea but they used extended locatybpatterns which encode
not only the original image but also the gradient magnitudage.

2.1 Active Shape Models

Faces may vary from one image to another due to the identitheofndividual, his facial
expression, the lighting conditions and the 3D pose (botplame and out of plane head
rotation, scale variation, face location). To locate fhf@atures in an image using Active
Shape Models, we must) build a model that can describe shapes and typical vanisitd
a face, ) build local appearance models that represent local gregtistructures and)
perform the search in the image.

2.1.1 Statistical model of face shape

To build a statistical shape model of a face, we need a seaimiiig images reflecting all
possible variations.

Figure 1: Face image example annotated with 68 landmarks Tt&. Cootes

The shape of a face is represented by a set @ndmark points or landmarks, which
may be in any dimensiod. Figure 1 shows a face image from the XM2VTS database
manually labelled with 68 landmarks. The reader can ref@4jtéor more explanations on
good choices for landmarks. To have a mathematical repiesmm the coordinates of each
point are concatenated to form a single vector of lengthd. For instance, the points of
a planar shapel(= 2) can be represented by the vector

X = (x17x27"'7xn7y1ay27'"7y7’b)T (1)

where(z;, y;) are the coordinates of the" landmark. GivenV training imagesN such
vectorsx; are then available.
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The shape of an object is normally considered to be indepemd¢he scale, orientation
and position of that object. Therefore, before any staastnalysis of the training shapes
can be performed, variation due to scale, rotation and laaos must be removed from the
shapes by aligning them into a common coordinate frame. i$lsishieved using Procrustes
Analysis [10].

Each aligned shape can be considered as a single point inittienensional space and
the whole training data as a cloud of points in this space apdure the statistics of the shape
variations, we apply Principal Components Analysis (PCAh®data. PCA computes the
eigenvectorsb= {¢; --- ¢; - - - ¢,q} Of the covariance matrix of the data. Each eigenvector
gives a “mode of variation”, a way in which the landmarks temohove together as the shape
varies. Since the landmarks positions are always parttaliyelated, most of the variation
exhibited in the training set can usually be explained by alnumber of modes, Hence,
the dimension of the model can be reduced. The number of\agtors to retain can then
be chosen so that the model represents a certain percerstgg®8%) of the total variance
given by the sum of all the eigenvalues.

PCA allows then each shapen the training set to be approximated (Equation 2) using
the mean shape and a small number of parametéxs

x ~ X+ ®Pb (2)

whereb is a vector of dimension (¢ < nd), obtained by projecting into the subspace
defined by the eigenvectors.

2.1.2 Statistical Model of Local Appearance

It is necessary to have a local appearance model of the gvay-$tructures around each
landmark. This model will be used during the image searchnid tihe best movement in
each region around each point. More specifically, the regi@amined by the ASM is the
normal profile to the shape boundary, passing through eachmark. The best approach
according to Cootes is to learn this model from the trainirg se

2.1.3 Image Search

An initial shape model which is generally the mean shape nsdiest projected into the im-
age being searched. We assume that we know roughly theguoisitivhich the model should
be placed. We then use the iterative method proposed by Gataibft] (Algorithm 1). This
involves finding the set of shape parametdrsand pose parameters (position, orientation
and scale) which best match the model to the image. Shapecsedoarameters are altered
such that the model moves and evolves in the image planefuilypeonverging to the best
possible match of the model to the face image.

Later, Cooteset al. [6] proposed a multi-resolution approach which consistsam-
puting and exploring a pyramid of coarse to fine images. Tlechkeis performed by first
searching at the top level of the pyramid (coarse). When tl&ipo of a certain percentage
of landmarks does not change significantly, the algorithileislared to have converged at
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Algorithm 1 Active Shape Model Algorithm [4]

1. Examine a region of the image around each paipy,) to find the best nearby match
for the point,

2. Update the shape and pose parameters to best fit the nedvgoumts,
3. Apply constraints to the parametérso ensure plausible shapes,

4. Repeat until convergence.

that resolution. For instance, when 95% of the new points\tten the central 50% of the
search profile, the current shape model is projected intoéxéimage and run to conver-
gence again. The search is stopped when convergence i®deachhe lowest level of the
pyramid (fine). Multi-resolution improves the efficiendyetrobustness and the speed of the
algorithm while making it less likely to get stuck on wrongage structures.

2.2 Local Binary Patterns

The LBP operator, first introduced by Ojadaal. [16], is a powerful method for analyzing
textures. The operator labels the pixels of an image by tiotdsg the3 x 3 neighborhood
of each pixel with the center value and considering the t@suh binary number (Figure 2).

86 | 102| 15

Threshold
77| 83| 56

101| 95| 70

Binary code = 11000110

Decimal value = 128+64+4+2 = 198

Figure 2: Calculating the original LBP code

At a given pixel position(z., y.), the decimal form of the resulting 8-bit word can be
expressed as follows:

7
LBP(we,yc) = Y s(in —ic)2" (3)
n=0

wherei, corresponds to the gray value of the center pixely.), i,, to the gray values
of the 8 surrounding pixels and functiefz) is defined as:

w-{3 130
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The operator is therefore invariant to monotonic changegray-scale and can resist
illumination variations as long as the absolute gray valfferénces are not badly affected.
However, the limitation of the original LBP operator comemnfrits smalB x 3 neighborhood
which can not capture features with large scale structures.

TH 5P
.Jgt. ®| |o] |e

R

(8,1) (8,2)

Figure 3: Examples of extended LBP operators

Hence, Ojalaet al.[17] extended their original LBP operator to a circular néigithood
of different radius size. Figure 3 illustrates examples xteeded LBP operators where
(P, R) refers toP equally spaced pixels on a circle of radirsThe value of neighbors that
do not fall exactly on pixels, are estimated by bilineariptdation.

Further extension of LBP is to use uniform patterns [17]. A&ldginary Pattern is called
uniform if it contains at most two bitwise transitions frond0L or vice versa when the binary
string is considered circular. For instance, 0000000011001 or 00011111 are uniform
patterns. It has been observed that uniform patterns comtast of the texture information.
They mainly represent primitive micro-patterns such agssgmes, edges, corners. The
notationLBP;;?R denotes the extended LBP operator iaR) neighborhood. The super-
script“? indicates that only uniform patterns are used, labellihgemhaining patterns with
a single label.

Since each bit of the LBP resulting code has the same sigrnifciavel, two successive
bit values may have a totally different meaning. That is #eson why histograms of the
labels are used to describe textures.

2.3 Extended Local Binary Patterns ASM

Recently, Huanget al. proposed in [11] an ASM method, ELBP-ASM, in which local ap-
pearance models of facial landmarks are represented Esiegded_ocal Binary Patterns
(ELBP).

Huanget al. pointed out in their paper that LBP can only reflect the firsivdgion
information of images, but could not represent the velooityocal variations. To solve
this problem, they proposed an extended version of LocalrBiRatterns that encodes the
gradient magnitude image in addition to the original imadé@oreover, to retain spatial
information, sub-images of landmarks are divided into $megjions from which the LBP
histograms are extracted and concatenated into a singl&rddaistogram representing the
local appearance models (Figure 4). Finally, the mean ELB®@iam/; of each landmark
i is computed by summing over all individual LBP histogramsifleds L B P}, LBPy; and
LBng?,) applied both to the original image and the gradient image).
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HHIH] H H H H
regionl | region2 : region3  regiond ; whole |

Original Image

Regions
3/

Gradient w2
Magnitude Image 8.2

ELBP Histogram

Figure 4. Building an ELBP histogram

During search, ELBP histogrants; corresponding to each positignocated on the nor-
mal profile:, are built. They are then compared to the mean histogianThe dissimilarity
between the testing point’s histograthand the mean histograid is calculated using Chi
square measure (Equation 5).

o (H(R) — H(R)?
U =D+ H®) ®)

The smaller the distance is, the more similar the histograras The landmark is thus
moved to the profile positiofi* whose ELBP histogram is the closest to the mean histogram
(Equation 6). Similarly to the original ASM, the pose and@hg@arameters of the shape
model are then adjusted to fit the new suggested points,dsfarting a new iteration.

j* = argmax x*(Hj;, H;) (6)
J

Huanget al. reported that ELBP-ASM achieves more accurate results ti@original
ASM. However, they didn't provide any explicit results orettobustness to illumination
using for instance a distinct darken dataset. We also leetieat summing up the original
image and the gradient magnitude image histograms migHtentite most efficient way to
take advantage of all the available information. Indeed,fdatures specific to each image
histogram are lost when they are summed together. Moreasiig multi-scale LBP allows
to capture the gray-level structures at different scalés lalso adds computational load.

Consequently, we believe that even better results can bevachusing simpler methods.
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3 The Proposed Approaches

We investigate new methods for modelling the local stregursing LBPs. The following
sections describe the three incremental approaches.

3.1 Profile-based LBP-ASM

We first propose to use a local appearance descriptor bas#@tedrBP values extracted
from the normal profile of each landmark. In this methadi Py’ operator is used. During
training, we extract a profile of lengthfor every point of every training image and build the
associated histogram of LBP values. We then compute the m&tagitam of each landmark.

Search Profile

Chi Square
Dissimilarity Measure
—>
L |

]

tholls,
S N )H]]ﬂ:[l]ﬂ_> :I
> Hhatla, [

Y

Figure 5: Search using histograms extracted from a profile

During search, we extract for each landmark, a search pngfileh is longer than the
training profile. For each sub-profile of lengthcontained in the search profile, we build
a histogram. The obtained histograms are compared to thespanding mean histogram
using the Chi square dissimilarity measure (Equation 5).l&hémark is then moved to the
center of the sub-profile which produces the most similar LBRogram.

This approach is very simple but limited. First, the tragprofile has to be long enough
to provide a sufficient number of points to build a reliabletbgram. Since theLBng%
operator produces 59 different labels, the profile has totdeast 59 pixels long to fill
the histogram with in average one pixel per bin. Howevess ttondition can hardly be
satisfied. Second, comparing the histograms of two consequaints along the profile does
not make any sense since only one point has been replacedfremistogram to the other.
These histograms can be considered to be almost identwabge with these problems, we
propose to build the histogram with the points containedsguare centered at the landmark.

3.2 Square-based LBP-ASM

The local appearance models are complex and it is hard tesept them well only using

simple profiles. To capture more information on the localygewel structures, we use the
points which are located within a square centered at a giaednhark to build the LBP

histogram.
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Search Profile Chi Square

- _&/\_ - D1ssnn11ar1ty Measure

Y
Figure 6: Search using histograms extracted from a square

Basically, the training part is very similar to the one ddsedi before but sampling the
points in a square region instead of a profile. During seadIBP histogram is computed
in the same manner for each point located on the search pféigere 6). The length of the
search profile depends in this case only on the distance we #ile landmark to move at
each iteration (a few points). The dissimilarity betweea tbsting point’s histograms and
the mean histogram is also measured using Equation 5.

Hence, this method allows us to model larger structures disdhie histograms with
much more LBP values. However, this approach still suffesmfthe lack of spatial infor-
mation. Indeed, the main structure we want to detect couldnyg/here in the square, the
resulting histogram will always look similar. To retain sphinformation, we divide the
square into small regions as Huagigal. did in their work.

3.3 Divided-Square-based LBP-ASM

The square used in the previous method is divided into fogiors from which the LBP
histograms are extracted and concatenated into a singl&ddaistogram representing the
local appearance models (Figure 7).

Original Image LBP Image

Figure 7: Local appearance representation using a divigears

This representation uses information on three differeveels LBP labels describe the
pixel-level patterns, histograms extracted from the smegjions provide more spatial infor-
mation and the concatenated histogram gives a global géiscrof the gray-level structures
around each landmark. And last but not the least, this reptason is easy to compute.
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4 Experiments and Results

This section describes the experiments we performed to ammpe performances of the
different approaches presented in the previous sectioiggnal ASM, ELBP-ASM, profile-
based LBP-ASM, square-based LBP-ASM and divided-squarecbbBP-ASM. Each al-
gorithm has been implemented using Torchvisiatich is an open source machine vision
library. The tests have been carried out using the standatdlarkened image sets of the
XM2VTS database.

4.1 Database

The XM2VTS database [15] consists in face images of 295 stdgollected over four ses-
sions, at one month intervals. It was originally designedtie research and the development
of identity verification systems but it has been used also/éduate performances of facial
feature detection algorithms. In this work, we use the fabfeice images from the standard
set and from the darkened set. For the standard set, twafriomhges were recorded for
each of the 295 subjects and for each of the four sessions23®@images are at resolu-
tion 720 x 576 pixels. They have been taken under controlled conditioasnaga flat blue
background. The face is large in the image and there is nagbacid clutter. The subjects
were volunteers of both sexes and several ethnical orighnsce the data acquisition was
distributed over a long period of time, significant varigpibf appearance of individuals is
present in the recordings, such as changes of hair styla] #@pe and presence or absence
of glasses. Some examples are shown in Figure 8.

Figure 8: Sample images from the standard set

The darkened set contains four frontal views for each of 8 subjects. In two of the
images, the studio light illuminating the left side of thedavas turned off. In the other two
images, the light illuminating the right side of the face wased off (Figure 9).

The standard and darkened sets are both supplied with niyhaedted eye center po-
sitions. However to enable more detailed testing and madg&libg, the XM2VTS markup
(available on Tim Cootes’ web sfiehas been expanded to landmarking 68 facial features
on each face of the standard image set. The 68 points choseawn in Figure 1. Since

! torch3vision.idiap.ch
2 www.isbe.man.ac.uk/bim
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Figure 9: Sample images from the darkened set

the ground-truth position of these landmarks are not avigléor the darkened set, tests on
this dataset will essentially be based on the eye locations.

4.2 Experimental Setup

From the standard set, training set, evaluation set andsétsare built according to the
Lausanne protocol [15]. The Lausanne protocol was orityirkgfined for the task of person
verification. The standard set is divided into 200 clienefaluation impostors and 70 test
impostors. It exists two configurations that differ in thetdbution of client training and
client evaluation data. For our experiments, we use the garaiion1 (3 client images both
in the training set and in the evaluation set, &radient images in the test set).

The training set is used to build the face shape model andta¢ ¢§ray-level structures
models. The evaluation set is then used to find the optimatsqmrameters. Finally, the
test set is selected to evaluate the performance of thd faeiare detection algorithms. To
test the robustness to illumination changes, the detewiparformed also on the darkened
set using the shape model and search parameters obtaitetthevgtandard set.

We assume that the facial feature detection follows a fatectlen step. The shape
model is then initialized according to the estimated eyetioos provided by a face detector.
For our experiments we implemented the face detector peaplog [9].

4.3 Model Training

From the training set, we build a statistical model for eactthnad described previously:
original ASM, ELBP-ASM, profile-based LBP-ASM, square-bat&P-ASM and divided-
square-based LBP-ASM. The building process of each modeinexjthe choice of three
parameters:

e the number of landmarks,
e the number of modes to use,
¢ the size of the local appearance descriptors.

The number of landmarks is equal to 68 and the number of malekadsen so that the
model represents 98% of the variance. As a result, 58 moée®tined. For the original
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ASM and the profile-based LBP-ASM, 12 pixels along the normnafile are sampled either
side of the landmark to build the local appearance model.imiplgy the implementation,
the ELBP histogram is built using the LBP values contained iwithsquare instead of a
disk. The size of the square used in the ELBP-ASM, the squaseebLBP-ASM and the
divided-square-based LBP-ASM, is set to 25 pixels (12 pikelm the landmark to each
side).

4.4 Optimal Search Parameters Estimation

The evaluation set is then used to find the optimal searcim@iess. Each algorithm requires
the choice of four parameters:

e [, the coarsest level of the multi-resolution image pyraraiddarch,
e n,, the longest displacement the landmark can make along #nelsprofile,
e it.,., the maximum number of iterations allowed at each level,

e ¢, the proportion of points found determining when to changamid level (see Sec-
tion 2.1.3).

However, we noticed during experiments that the choice cdipaterst,,,.., andg does
not significantly affect the final shape compared to pararedt@andn,. Therefore, in the
following tests, the maximum number of iterations allow¢eéach level is set to 20 and the
shape model is projected to a lower level when 95% of poired@uind within the central
50% of the search profiles.

To measure the quality of fit of the resulting shapes to thempletruth model, we com-
pute theMean Square Erroand estimate thBoint Location Accuracy

4.4.1 Mean Square Error
The mean square error (MSE) is given by:

2n

1 2
MSE = ;(x gt;) 7)
wheren is the number of landmark points (= 68), x is the search vector amgt is the
ground-truth vector.

Figure 10 shows the mean and median of the MSE computed faragaorithm on all
images from the evaluation set given different combinatiohZ. andn,. The median is the
value in the middle of the MSE distribution: half the MSE maa&s are above the median
and half are below it. The variances have also been calclitatieare not represented on the
graphs due to their large values.

We observe that the median is always much smaller than the.miéas indicates that
the MSE distribution is highly skewed. MSEs are typicallps# to 10 when the system
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converges to a good solution, whereas they can go up to 20@d wie detection fails.
Therefore, a small median MSE indicates that the facialfeadetection succeeded in most
images of the evaluation set. On the other hand, a mean vadateg than the median,
involves that some large values caused by detection faillrave affected the mean MSE.
The median is therefore more appropriate to evaluate ttegidlgn performances since it is
less sensitive to extreme values. The optimal search paeasrere consequently given by
the combination which produces the smallest median MSE alidate the choices, we also
measure the point location accuracy.

4.4.2 Point Location Accuracy

After search, we measure the distance between the founts@mid their associated ground-
truth position. We then build a frequency histogram for thgufting point-to-target errors.
The histograms show the proportion of found points whosatgioktarget error lies from O
(perfect match) to 14 pixels. Any point located further tHanpixels from its correspond-
ing ground-truth position is considered as a failure. Ttwree we want to maximize the
proportion of points close to the target while minimizing thumber of detection failures.
For each algorithm, the frequency histograms of the fout besfigurations suggested by
MSE statistics are compared with this frequency histogrdims method is more reliable
than the median MSE since it provides more information onmthele set of shapes and it is
not influenced by convergence failures. As a result, thexagdtparameters are also chosen
based on this method. Most of the time, they correspond taahgination selected with
the median MSE.

Table 1 summarizes the parametetsapdn,) selected for each algorithnit,,,.., andgq
are fixed ta20 and0.95 respectively.

Method
original ASM
ELBP-ASM
profile-based LBP-ASM
square-based LBP-ASM
divided-square-based LBP-ASM

3
»

N[ | N W w|

N DO~ W

Table 1: Optimal search parameters

4.5 Evaluation on the Test Set
45.1 Mean Square Error

The image search is performed on each image of the test sgtth& parameters chosen in
the evaluation part. Figure 11 shows the mean MSE and media ébtained with each
algorithm.
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Figure 10: mean MSE and median MSE on the evaluation seti@har ASM, (b) ELBP-
ASM, (c) profile-based LBP-ASM, (d) square-based LBP-ASM aep divided-square-

based LBP-ASM
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80,

Mean Square Error

ELBP Profile Square Divided square

Figure 11: mean MSE and median MSE on the standard test set

The divided-square-based LBP-ASM seems to give betterteethéhn the other ap-
proaches since it has the smallest median. However, duestcetfsons explained in Sec-
tion 4.4.1, this test cannot be used to draw any final cormtush the performances of each
algorithm. It only gives a first insight.

4.5.2 Point Location Accuracy

The frequency histograms of the point-to-target errorcidesd in Section 4.4.2 are com-
pared in Figure 12.

T T T
---ASM
ELBP
—Profile
-8-Square
—9-Divided square

10r

Frequency [%]

P L
% 1 2z 3 4 5 6 _7 8 9 10 11 12 13 14 >14
Point-to-Target Error [pixels]

Figure 12: Frequency histograms of point-to-target erobtbe standard test set

As expected, the performance of the profile-based LBP-ASMig imited. LBP his-
tograms extracted from a profile are not reliable local apgeae descriptors due to the small
number of points they are made of. Using a square regionadsita profile is a good idea
but the results of the square-based LBP-ASM show the relevahetaining spatial infor-
mation. Indeed, we observe that our proposed method basedigited square gives much
more accurate results and less detection failures tharthlee approaches. The ELBP-ASM
locates the points slightly less accurately than the caightM but fails less frequently. The
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small failure rate of the divided-square-based LBP-ASM d&dELBP-ASM is due to the
good ability of a square to catch the target gray-level stmecwithin it. Theses two algo-
rithms are then less likely to diverge. We can also noticenfleigure 12 the difference of
accuracy between our approach and Huanhgl's one. The ELBP histogram gathers too
much information that can not be totally exploited duringre@. As a result, this affects the
ELBP-ASM'’s performance.

4.6 Robustness to lllumination

To test the robustness of each algorithm to illuminatiomges, the detection is performed
on the darkened set using the shape model and search pamoi#tened with the standard
set. Facial feature localisation is particularly difficutthis case because the lighting condi-
tions during search are considerably different from thbtligy conditions used to train the
shape model.

Since only the ground-truth eye center positions are availéor this set of images, the
quality of fit is assessed using the eye location accuracytldesorsky’s measure [12].
Let C; (respectivelyC,) be the true left (resp. right) eye coordinate position @@ (resp.
C.) be the left (resp. right) eye position estimated by thediafeiature detector. Jesorsky’s
measure can be written as

maz(d(Cy, 1), d(C,, C,))
||C7’ - OT”

deye - (8)
whered(a, b) is the Euclidean distance between positiaredb. A successful localisation
is accounted ifl.,. < 0.25 (which corresponds approximately to half the width of an)eye
Figure 13 presents the mean and the median of the Jesorség'sume derived from the
standard test set and the darkened set. Figure 14 showstjuefrcy histogram of the point-
to-target errors corresponding to the eye center positongputed on the darkened images.

In Figure 13 and 14, the detector’s values correspond to #eesares obtained after the
face detection stage (before facial feature detection).ejsected, the original ASM, the
ELBP-ASM and the divided-square-based LBP-ASM improve $icgmtly the Jesorsky’s
measure for the standard test set. However, we can see tB&-BSEM completely fails on
the darkened set. The ELBP histogram is based on 6 imagesBi¢;, LBPy3, LBPY3 of
the original image and theBPg3, LBPg3, LB Py of the gradient magnitude image. When
lighting conditions change, each image is degraded in aréifit way. Therefore, the ELBP
histogram obtained by summing up the six LBP histograms isidenably different from
the mean histogram trained on the standard set. Then, the BlgdFthm diverges more
frequently, which does not happen with the proposed appesad/Ne observe in Figure 14,
that the square-based LBP-ASM and the divided-square-H&3BdASM are more robust
to illumination changes than the original ASM. Indeed, thie lvcalisation failure rates are
much lower.

When the facial feature localisation is used for face redogmiit is important to ac-
curately locate the eye center positions. However, in oipgiications, minimizing the
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Figure 13: Mean and median of the Jesorsky’s measure on dnelasd test set and the
darkened set
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Figure 14: Frequency histograms of point-to-target eroarsesponding to the eye center
positions computed on the darkened set
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Jesorsky’s measure is not sufficient. Indeed, the Jesarskyasure expresses only partially
the quality of fit. The system can properly locate the eyeearesund fail on the other facial
features. To perform more detailed tests, it would have hesful to annotate the 1160
darkened images with the same 68 landmark points. Unfaelypat could not be done
during this work due to time constraints. Figure 15 showsrgdas of search on a darkened
image using the original ASM, the ELBP-ASM and the dividedrsg-based LBP-ASM.
We can observe that the facial feature localisation peréarioy the divided-square-based
LBP-ASM is the most accurate whereas the Jesorsky’s measooe the lowest.

Method Computation]  # of

time (s) iterations
original ASM 2.3 12.6
ELBP-ASM 29 134
profile-based LBP-ASM 5.3 38.9
square-based LBP-ASM 4.4 14.6
divided-square-based LBP-ASM 7.4 23.4

Table 2: Computation times and average numbers of iterations

4.7 Computation Times

Table 2 summarizes the computation times and the averagéeruof iterations that the
five algorithms need to converge. Experiments were perfdrorea 1GHz PC with 1GB
memory.

5 Conclusion and Future Work

In this paper, we extended the Active Shape Model methodgsexp by Cootest al. to
improve its robustness to illumination changes. Threeemantal approaches using Local
Binary Patterns to model the structures around each landpuank were proposed.

In theprofile-based LBP-ASMmethod, the local appearance models are described using
LBP histograms extracted from the normal profile of each laaxttmSimilar to the original
ASM, this method suffers from the limited ability of normaigfiles to describe complex
structures. In thequare-based LBP-ASMmethod, the local structures are modelled using
LBP histograms extracted from a square region around eadmiank. This method captures
more visual information but does not retain spatial infaiora With thedivided-square-
based LBP-ASM the square region used in the square-based LBP-ASM is diude four
regions from which the LBP histograms are extracted and ¢enated into a single feature
histogram representing the local appearance models.

Experiments were performed to compare those three appeadth the original ASM
and the only method combining ASM and LBP exiting so far, ELBBM\ The tests were
carried out using the standard and darkened sets of the XINg28&tabase. Experiments
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(a) Initial Condition.
Jesorsky’'s measure
before facial feature
detection = 0.181623

(c) ELBP: iteration 1, 16, 25 and 32. Jesorsky’s measure 41385

(d) divided-square-based LBP-ASM: iteration 1, 5, 10 andJE%orsky’s measure = 0.039618

Figure 15: Example of search on a darkened image using thmaliASM, the ELBP-ASM
and the divided-square-based LBP-ASM
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on the standard set demonstrated that the divided-sqaasedd. BP-ASM achieves more
accurate results and fails less frequently than the othnoapghes. The accuracy can still be
improved by using more landmarks. Indeed, 68 landmarks wszd whereas facial feature
localisation is usually performed using at least 133 larnttsia

Experiments on the darkened set have shown clearly thetradsssto illumination changes
of most of the proposed algorithms. Since only the eye cegrtaind-truth positions were
available, tests were based on the Jesorsky’s measure pAsted, the divided-square-based
LBP-ASM is the most robust to illumination changes. Howewer,showed through an ex-
ample that a large Jesorsky’s measure does not mean thaiciaeféature detection failed
completely.

Therefore, although the results look very promising, mofgeeiments still have to be
done before drawing any final conclusion. A straightforwawdtinuation of this work would
be to extend the LBP divided-square-based method to ActiyeeAmance Model.

References

[1] T.F. Cootes and G.J. Edwards and C.J. Taylor, “Active Appece Models” European
Conference on Computer Visiowbl.2, pp.484—-498, 1998.

[2] T.F. Cootes and G.J. Edwards and C.J. Taylor, “ComparingvA&hape Models with
Active Appearance ModelsBritish Machine Vision Conferencé&/l.1, pp.173-182,
1999.

[3] T.F. Cootes and A. Hilland C.J. Taylor and J. Haslam, “The OfActive Shape Models
for Locating Structures in Medical Imagedhternational Conference on Information
Processing in Medical Imagingp.33-47, 1993.

[4] T.F. Cootes and C.J. Taylor, “Statistical models of appree for computer vision”,
Technical Report — University of Manchest®tarch 2004.

[5] T.F. Cootes and C.J. Taylor and D. Cooper and J. Graham v&&hape Models — their
training and applications"Computer Vision and Image Understandingpl.61, No.1,
pp.38-59, 1995.

[6] T.F. Cootes and C.J. Taylor and A. Lanitis, “Active Shapeddis: evaluation of a multi-
resolution method for improving image searclBritish Machine Vision Conference
pp.327-336, 1994.

[7] D. Cristinacce, “Automatic Detection of Facial FeaturesGrey Scale Images’RPhD.
Thesis — University of Manchest&004.

[8] I.L. Dryden and K.V. Mardia, “Statistical Shape AnalgsiWiley Series in Probability
and Statistics1998.



IDIAP-RR 06-47 20

[9] B. Froba and A. Ernst, “Face detection with the Modified Gensransform”Proceed-
ings of the Automatic Face and Gesture Recognition Confergmupc91-96, 2004.

[10] C. Goodall, “Procrustes methods in the statistical ysialof shape”Journal of the
Royal Statistical Society Series¥®I.53, No.2, pp.285—-339, 1991.

[11] X. Huang and S. Li and Y. Wang, “Shape Localization basedtatistical Method us-
ing Extended Local Binary Patternfihternational Conference on Image and Graphics
pp.184-187, 2004.

[12] O. Jesorsky and K.J. Kirchberg and R.W. Frischholz, “Ratlitace Detection Using
the Hausdorff Distancelnternational Conference on Audio and Video-Based Biometri
Person Authenticatigrivol.2091, pp.90-95, 2001.

[13] M. Kass and A. Witkin and D. Terzopoulos, “Snakes: Aetf@ontour Models”|nter-
national Conference on Computer Visj@p.259-268, 1987.

[14] A. Lanitis and C.J. Taylor and T.F. Cootes and T. Ahmed,tthoiatic Face ldentifica-
tion System Using Flexible Appearance Modelsiiage and Vision Computinyol.13,
No.5, pp.392-401, 1995.

[15] K. Messer and J. Matas and J. Kittler and J. Luettin andv@itre, “XM2VTSDB:
The Extended M2VTS Databasdfiternational Conference on Audio and Video-based
Biometric Person Authenticatiopp.72—77, 1999.

[16] T. Ojala and M. Pietikinen and D. Harwood, “A comparative study of texture measur
with classification based on feature distributionBattern Recognitionvol.29, pp.51—
59, 1996.

[17] T. Ojala and M. Pietikinen and T. Men@a, “Multiresolution gray-scale and rotation
invariant texture classification with local binary pat®rHEEE Transactions on Pattern
Analysis and Machine Intelligenc®ol.24, pp.971-987, 2002.



