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Abstract. This paper addresses the problem of locating facial features in images of
frontal faces taken under different lighting conditions. The well-known Active Shape
Model method proposed by Cooteset al. is extended to improve its robustness to
illumination changes. For that purpose, we introduce the use of Local Binary Pat-
terns (LBP). Three different incremental approaches combining ASM with LBP are
presented: profile-based LBP-ASM, square-based LBP-ASM and divided-square-based
LBP-ASM. Experiments performed on the standard and darkened image sets of the
XM2VTS database demonstrate that the divided-square-based LBP-ASM gives supe-
rior performance compared to the state-of-the-art ASM. It achieves more accurate re-
sults and fails less frequently.
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1 Introduction

Active Shape Model (ASM) is a popular statistical tool for locating examples of known
objects in images. It was first introduced by Cooteset al.[5] in 1995 and has been developed
and improved for many years. ASM is a model-based method which makes use of a prior
model of what is expected in the image. Basically, the Active Shape Model is composed of
a deformable shape model and a set of local appearance models. The shape model describes
the typical variations of an object exhibited in a set of manually annotated images and the
local appearance models give a statistical representationof the gray-level structures around
each model point. Given a sufficiently accurate starting position, the ASM search attempts to
find the best match of the shape model to the data in a new image using the local appearance
models. ASM is thus fundamentally similar to Active Contour Model, or snake, proposed
by Kasset al. [13]. However, ASM has global constraints that allow the shape model to
deform only in ways found in the training set. A direct extension of the ASM approach has
lead to the Active Appearance Model (AAM) [1]. Besides shape information, the textural
information, i.e. the pixel intensities across the object,is included into the model. The AAM
algorithm seeks to match both the position of the model points and a representation of the
texture of the object to an image.

Although ASM and AAM can be used to find any object in an image, we focus this
paper on the detection of facial features such as eyes, nostrils, nose and mouth. Locating
such features is an important stage in many facial image interpretation tasks such as face
recognition, face tracking or face expression recognition. However, facial feature detection
is a challenging task because human faces vary greatly between individuals. Faces can also
appear at a wide range of sizes in images and face shape, hair style or glasses can cause the
facial features to be occluded. Although good results for facial feature localisation using
ASM and AAM have been reported [2], [14], [7], the ability of the model to perform well in
different lighting conditions is still limited.

We propose in this paper three incremental approaches combining ASM with Local Bi-
nary Patterns (LBPs). LBP is a powerful and computationally simple descriptor of local
texture patterns. It expresses the difference of intensitybetween a given pixel and its neigh-
borhood. LBPs are therefore more robust to illumination changes.

This paper is organized as follows. First, we introduce the original ASM technique pro-
posed by Cooteset al., we describe the LBP approach and present a state-of-the-artmethod.
Then, we present the different approaches proposed to combine ASM with LBP. Finally,
experiments and results are presented and a conclusion is drawn.

2 Active Shape Models and Local Binary Patterns

Active Shape Model is a powerful tool for face localisation and alignment. However, the fea-
tures used to model the local gray-level structures are verysensitive to illumination, particu-
larly when the lighting conditions during search are significantly different from the lighting
conditions used to train the shape model.
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In this section, we also introduce Local Binary Patterns (LBP)as features for local ap-
pearance representations. LBPs are powerful texture descriptors which are much more robust
to illumination changes. As far as we know, only Huanget al. [11] proposed an improved
ASM method based on this idea but they used extended local binary patterns which encode
not only the original image but also the gradient magnitude image.

2.1 Active Shape Models

Faces may vary from one image to another due to the identity ofthe individual, his facial
expression, the lighting conditions and the 3D pose (both inplane and out of plane head
rotation, scale variation, face location). To locate facial features in an image using Active
Shape Models, we must (1) build a model that can describe shapes and typical variations of
a face, (2) build local appearance models that represent local gray-level structures and (3)
perform the search in the image.

2.1.1 Statistical model of face shape

To build a statistical shape model of a face, we need a set of training images reflecting all
possible variations.

Figure 1: Face image example annotated with 68 landmarks from T.F. Cootes

The shape of a face is represented by a set ofn landmark points or landmarks, which
may be in any dimensiond. Figure 1 shows a face image from the XM2VTS database
manually labelled with 68 landmarks. The reader can refer to[4] for more explanations on
good choices for landmarks. To have a mathematical representation, the coordinates of each
point are concatenated to form a single vector of lengthn × d. For instance, then points of
a planar shape (d = 2) can be represented by the vectorx:

x = (x1, x2, . . . , xn, y1, y2, . . . , yn)T (1)

where(xj, yj) are the coordinates of thej th landmark. GivenN training images,N such
vectorsxi are then available.
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The shape of an object is normally considered to be independent of the scale, orientation
and position of that object. Therefore, before any statistical analysis of the training shapes
can be performed, variation due to scale, rotation and translation must be removed from the
shapes by aligning them into a common coordinate frame. Thisis achieved using Procrustes
Analysis [10].

Each aligned shape can be considered as a single point in thend dimensional space and
the whole training data as a cloud of points in this space. To capture the statistics of the shape
variations, we apply Principal Components Analysis (PCA) to the data. PCA computes the
eigenvectorsΦ= {φ1 · · ·φi · · ·φnd} of the covariance matrix of the data. Each eigenvector
gives a “mode of variation”, a way in which the landmarks tendto move together as the shape
varies. Since the landmarks positions are always partiallycorrelated, most of the variation
exhibited in the training set can usually be explained by a small number of modes,t. Hence,
the dimension of the model can be reduced. The number of eigenvectors to retain can then
be chosen so that the model represents a certain percentage (e.g. 98%) of the total variance
given by the sum of all the eigenvalues.

PCA allows then each shapex in the training set to be approximated (Equation 2) using
the mean shapēx and a small number of parametersb.

x ≈ x̄ + Φb (2)

whereb is a vector of dimensiont (t < nd), obtained by projectingx into the subspace
defined by the eigenvectors.

2.1.2 Statistical Model of Local Appearance

It is necessary to have a local appearance model of the gray-level structures around each
landmark. This model will be used during the image search to find the best movement in
each region around each point. More specifically, the regionexamined by the ASM is the
normal profile to the shape boundary, passing through each landmark. The best approach
according to Cootes is to learn this model from the training set.

2.1.3 Image Search

An initial shape model which is generally the mean shape model is first projected into the im-
age being searched. We assume that we know roughly the position in which the model should
be placed. We then use the iterative method proposed by Cooteset al.[4] (Algorithm 1). This
involves finding the set of shape parameters (b) and pose parameters (position, orientation
and scale) which best match the model to the image. Shape and pose parameters are altered
such that the model moves and evolves in the image plane, hopefully converging to the best
possible match of the model to the face image.

Later, Cooteset al. [6] proposed a multi-resolution approach which consists incom-
puting and exploring a pyramid of coarse to fine images. The search is performed by first
searching at the top level of the pyramid (coarse). When the position of a certain percentage
of landmarks does not change significantly, the algorithm isdeclared to have converged at



IDIAP–RR 06-47 4

Algorithm 1 Active Shape Model Algorithm [4]

1. Examine a region of the image around each point (xi,yi) to find the best nearby match
for the point,

2. Update the shape and pose parameters to best fit the new found points,

3. Apply constraints to the parametersb to ensure plausible shapes,

4. Repeat until convergence.

that resolution. For instance, when 95% of the new points arewithin the central 50% of the
search profile, the current shape model is projected into thenext image and run to conver-
gence again. The search is stopped when convergence is reached on the lowest level of the
pyramid (fine). Multi-resolution improves the efficiency, the robustness and the speed of the
algorithm while making it less likely to get stuck on wrong image structures.

2.2 Local Binary Patterns

The LBP operator, first introduced by Ojalaet al. [16], is a powerful method for analyzing
textures. The operator labels the pixels of an image by thresholding the3 × 3 neighborhood
of each pixel with the center value and considering the result as a binary number (Figure 2).

86 102 15

77 83 56

101 95 70

1 1 0

0 0

1 1 0

Threshold

Binary code = 11000110

Decimal value = 128+64+4+2 = 198

Figure 2: Calculating the original LBP code

At a given pixel position(xc, yc), the decimal form of the resulting 8-bit word can be
expressed as follows:

LBP (xc, yc) =
7

∑

n=0

s(in − ic)2
n (3)

whereic corresponds to the gray value of the center pixel(xc, yc), in to the gray values
of the 8 surrounding pixels and functions(x) is defined as:

s(x) =

{

1 if x ≥ 0
0 if x < 0

(4)
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The operator is therefore invariant to monotonic changes ingray-scale and can resist
illumination variations as long as the absolute gray value differences are not badly affected.
However, the limitation of the original LBP operator comes from its small3×3 neighborhood
which can not capture features with large scale structures.

Figure 3: Examples of extended LBP operators

Hence, Ojalaet al. [17] extended their original LBP operator to a circular neighborhood
of different radius size. Figure 3 illustrates examples of extended LBP operators where
(P,R) refers toP equally spaced pixels on a circle of radiusR. The value of neighbors that
do not fall exactly on pixels, are estimated by bilinear interpolation.

Further extension of LBP is to use uniform patterns [17]. A Local Binary Pattern is called
uniform if it contains at most two bitwise transitions from 0to 1 or vice versa when the binary
string is considered circular. For instance, 00000000, 11111001 or 00011111 are uniform
patterns. It has been observed that uniform patterns contain most of the texture information.
They mainly represent primitive micro-patterns such as spots, lines, edges, corners. The
notationLBP u2

P,R denotes the extended LBP operator in a(P,R) neighborhood. The super-
scriptu2 indicates that only uniform patterns are used, labelling all remaining patterns with
a single label.

Since each bit of the LBP resulting code has the same significance level, two successive
bit values may have a totally different meaning. That is the reason why histograms of the
labels are used to describe textures.

2.3 Extended Local Binary Patterns ASM

Recently, Huanget al. proposed in [11] an ASM method, ELBP-ASM, in which local ap-
pearance models of facial landmarks are represented usingExtendedLocal Binary Patterns
(ELBP).

Huanget al. pointed out in their paper that LBP can only reflect the first derivation
information of images, but could not represent the velocityof local variations. To solve
this problem, they proposed an extended version of Local Binary Patterns that encodes the
gradient magnitude image in addition to the original image.Moreover, to retain spatial
information, sub-images of landmarks are divided into small regions from which the LBP
histograms are extracted and concatenated into a single feature histogram representing the
local appearance models (Figure 4). Finally, the mean ELBP histogramH̄i of each landmark
i is computed by summing over all individual LBP histograms (kernelsLBP u2

8,1, LBP u2

8,2 and
LBP u2

8,3 applied both to the original image and the gradient image).
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Figure 4: Building an ELBP histogram

During search, ELBP histogramsHj corresponding to each positionj located on the nor-
mal profilei, are built. They are then compared to the mean histogramH̄i. The dissimilarity
between the testing point’s histogramH and the mean histogram̄H is calculated using Chi
square measure (Equation 5).

χ2(H, H̄) =
∑

k

(H(k) − H̄(k))2

(H(k) + H̄(k))
(5)

The smaller the distance is, the more similar the histogramsare. The landmark is thus
moved to the profile positionj∗ whose ELBP histogram is the closest to the mean histogram
(Equation 6). Similarly to the original ASM, the pose and shape parameters of the shape
model are then adjusted to fit the new suggested points, before starting a new iteration.

j∗ = arg max
j

χ2(Hji, H̄i) (6)

Huanget al. reported that ELBP-ASM achieves more accurate results than the original
ASM. However, they didn’t provide any explicit results on the robustness to illumination
using for instance a distinct darken dataset. We also believe that summing up the original
image and the gradient magnitude image histograms might notbe the most efficient way to
take advantage of all the available information. Indeed, the features specific to each image
histogram are lost when they are summed together. Moreover,using multi-scale LBP allows
to capture the gray-level structures at different scales but it also adds computational load.

Consequently, we believe that even better results can be achieved using simpler methods.
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3 The Proposed Approaches

We investigate new methods for modelling the local structures using LBPs. The following
sections describe the three incremental approaches.

3.1 Profile-based LBP-ASM

We first propose to use a local appearance descriptor based onthe LBP values extracted
from the normal profile of each landmark. In this method,LBP u2

8,2 operator is used. During
training, we extract a profile of lengthn for every point of every training image and build the
associated histogram of LBP values. We then compute the mean histogram of each landmark.

Figure 5: Search using histograms extracted from a profile

During search, we extract for each landmark, a search profilewhich is longer than the
training profile. For each sub-profile of lengthn contained in the search profile, we build
a histogram. The obtained histograms are compared to the corresponding mean histogram
using the Chi square dissimilarity measure (Equation 5). Thelandmark is then moved to the
center of the sub-profile which produces the most similar LBP histogram.

This approach is very simple but limited. First, the training profile has to be long enough
to provide a sufficient number of points to build a reliable histogram. Since theLBP u2

8,2

operator produces 59 different labels, the profile has to be at least 59 pixels long to fill
the histogram with in average one pixel per bin. However, this condition can hardly be
satisfied. Second, comparing the histograms of two consecutive points along the profile does
not make any sense since only one point has been replaced fromone histogram to the other.
These histograms can be considered to be almost identical. To cope with these problems, we
propose to build the histogram with the points contained in asquare centered at the landmark.

3.2 Square-based LBP-ASM

The local appearance models are complex and it is hard to represent them well only using
simple profiles. To capture more information on the local gray-level structures, we use the
points which are located within a square centered at a given landmark to build the LBP
histogram.
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Figure 6: Search using histograms extracted from a square

Basically, the training part is very similar to the one described before but sampling the
points in a square region instead of a profile. During search,a LBP histogram is computed
in the same manner for each point located on the search profile(Figure 6). The length of the
search profile depends in this case only on the distance we allow the landmark to move at
each iteration (a few points). The dissimilarity between the testing point’s histograms and
the mean histogram is also measured using Equation 5.

Hence, this method allows us to model larger structures and fills the histograms with
much more LBP values. However, this approach still suffers from the lack of spatial infor-
mation. Indeed, the main structure we want to detect could beanywhere in the square, the
resulting histogram will always look similar. To retain spatial information, we divide the
square into small regions as Huanget al. did in their work.

3.3 Divided-Square-based LBP-ASM

The square used in the previous method is divided into four regions from which the LBP
histograms are extracted and concatenated into a single feature histogram representing the
local appearance models (Figure 7).

Figure 7: Local appearance representation using a divided square

This representation uses information on three different levels: LBP labels describe the
pixel-level patterns, histograms extracted from the smallregions provide more spatial infor-
mation and the concatenated histogram gives a global description of the gray-level structures
around each landmark. And last but not the least, this representation is easy to compute.
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4 Experiments and Results

This section describes the experiments we performed to compare the performances of the
different approaches presented in the previous sections: original ASM, ELBP-ASM, profile-
based LBP-ASM, square-based LBP-ASM and divided-square-based LBP-ASM. Each al-
gorithm has been implemented using Torchvision1 which is an open source machine vision
library. The tests have been carried out using the standard and darkened image sets of the
XM2VTS database.

4.1 Database

The XM2VTS database [15] consists in face images of 295 subjects collected over four ses-
sions, at one month intervals. It was originally designed for the research and the development
of identity verification systems but it has been used also to evaluate performances of facial
feature detection algorithms. In this work, we use the frontal face images from the standard
set and from the darkened set. For the standard set, two frontal images were recorded for
each of the 295 subjects and for each of the four sessions. The2360 images are at resolu-
tion 720 × 576 pixels. They have been taken under controlled conditions against a flat blue
background. The face is large in the image and there is no background clutter. The subjects
were volunteers of both sexes and several ethnical origins.Since the data acquisition was
distributed over a long period of time, significant variability of appearance of individuals is
present in the recordings, such as changes of hair style, facial shape and presence or absence
of glasses. Some examples are shown in Figure 8.

Figure 8: Sample images from the standard set

The darkened set contains four frontal views for each of the 295 subjects. In two of the
images, the studio light illuminating the left side of the face was turned off. In the other two
images, the light illuminating the right side of the face wasturned off (Figure 9).

The standard and darkened sets are both supplied with manually located eye center po-
sitions. However to enable more detailed testing and model building, the XM2VTS markup
(available on Tim Cootes’ web site2) has been expanded to landmarking 68 facial features
on each face of the standard image set. The 68 points chosen are shown in Figure 1. Since

1 torch3vision.idiap.ch
2 www.isbe.man.ac.uk/˜bim
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Figure 9: Sample images from the darkened set

the ground-truth position of these landmarks are not available for the darkened set, tests on
this dataset will essentially be based on the eye locations.

4.2 Experimental Setup

From the standard set, training set, evaluation set and testset are built according to the
Lausanne protocol [15]. The Lausanne protocol was originally defined for the task of person
verification. The standard set is divided into 200 clients, 25 evaluation impostors and 70 test
impostors. It exists two configurations that differ in the distribution of client training and
client evaluation data. For our experiments, we use the configuration1 (3 client images both
in the training set and in the evaluation set, and2 client images in the test set).

The training set is used to build the face shape model and the local gray-level structures
models. The evaluation set is then used to find the optimal search parameters. Finally, the
test set is selected to evaluate the performance of the facial feature detection algorithms. To
test the robustness to illumination changes, the detectionis performed also on the darkened
set using the shape model and search parameters obtained with the standard set.

We assume that the facial feature detection follows a face detection step. The shape
model is then initialized according to the estimated eye positions provided by a face detector.
For our experiments we implemented the face detector proposed by [9].

4.3 Model Training

From the training set, we build a statistical model for each method described previously:
original ASM, ELBP-ASM, profile-based LBP-ASM, square-basedLBP-ASM and divided-
square-based LBP-ASM. The building process of each model requires the choice of three
parameters:

• the number of landmarks,

• the number of modes to use,

• the size of the local appearance descriptors.

The number of landmarks is equal to 68 and the number of modes is chosen so that the
model represents 98% of the variance. As a result, 58 modes are retained. For the original
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ASM and the profile-based LBP-ASM, 12 pixels along the normal profile are sampled either
side of the landmark to build the local appearance model. To simplify the implementation,
the ELBP histogram is built using the LBP values contained within a square instead of a
disk. The size of the square used in the ELBP-ASM, the square-based LBP-ASM and the
divided-square-based LBP-ASM, is set to 25 pixels (12 pixelsfrom the landmark to each
side).

4.4 Optimal Search Parameters Estimation

The evaluation set is then used to find the optimal search parameters. Each algorithm requires
the choice of four parameters:

• L, the coarsest level of the multi-resolution image pyramid to search,

• ns, the longest displacement the landmark can make along the search profile,

• itmax, the maximum number of iterations allowed at each level,

• q, the proportion of points found determining when to change pyramid level (see Sec-
tion 2.1.3).

However, we noticed during experiments that the choice of parametersitmax andq does
not significantly affect the final shape compared to parameters L andns. Therefore, in the
following tests, the maximum number of iterations allowed at each level is set to 20 and the
shape model is projected to a lower level when 95% of points are found within the central
50% of the search profiles.

To measure the quality of fit of the resulting shapes to the ground-truth model, we com-
pute theMean Square Errorand estimate thePoint Location Accuracy.

4.4.1 Mean Square Error

The mean square error (MSE) is given by:

MSE =
1

2n

2n
∑

i=0

(xi − gti)
2 (7)

wheren is the number of landmark points (n = 68), x is the search vector andgt is the
ground-truth vector.

Figure 10 shows the mean and median of the MSE computed for each algorithm on all
images from the evaluation set given different combinations ofL andns. The median is the
value in the middle of the MSE distribution: half the MSE measures are above the median
and half are below it. The variances have also been calculated but are not represented on the
graphs due to their large values.

We observe that the median is always much smaller than the mean. This indicates that
the MSE distribution is highly skewed. MSEs are typically close to 10 when the system
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converges to a good solution, whereas they can go up to 2000 when the detection fails.
Therefore, a small median MSE indicates that the facial feature detection succeeded in most
images of the evaluation set. On the other hand, a mean value greater than the median,
involves that some large values caused by detection failures, have affected the mean MSE.
The median is therefore more appropriate to evaluate the algorithm performances since it is
less sensitive to extreme values. The optimal search parameters are consequently given by
the combination which produces the smallest median MSE. To validate the choices, we also
measure the point location accuracy.

4.4.2 Point Location Accuracy

After search, we measure the distance between the found points and their associated ground-
truth position. We then build a frequency histogram for the resulting point-to-target errors.
The histograms show the proportion of found points whose point-to-target error lies from 0
(perfect match) to 14 pixels. Any point located further than14 pixels from its correspond-
ing ground-truth position is considered as a failure. Therefore, we want to maximize the
proportion of points close to the target while minimizing the number of detection failures.
For each algorithm, the frequency histograms of the four best configurations suggested by
MSE statistics are compared with this frequency histogram.This method is more reliable
than the median MSE since it provides more information on thewhole set of shapes and it is
not influenced by convergence failures. As a result, the optimal parameters are also chosen
based on this method. Most of the time, they correspond to thecombination selected with
the median MSE.

Table 1 summarizes the parameters (L andns) selected for each algorithm.itmax andq

are fixed to20 and0.95 respectively.

Method L ns

original ASM 3 3
ELBP-ASM 3 4

profile-based LBP-ASM 2 5
square-based LBP-ASM 1 4

divided-square-based LBP-ASM2 2

Table 1: Optimal search parameters

4.5 Evaluation on the Test Set

4.5.1 Mean Square Error

The image search is performed on each image of the test set using the parameters chosen in
the evaluation part. Figure 11 shows the mean MSE and median MSE obtained with each
algorithm.
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(a) (b)

(c) (d)

(e)

Figure 10: mean MSE and median MSE on the evaluation set (a) original ASM, (b) ELBP-
ASM, (c) profile-based LBP-ASM, (d) square-based LBP-ASM and (e) divided-square-
based LBP-ASM
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Figure 11: mean MSE and median MSE on the standard test set

The divided-square-based LBP-ASM seems to give better results than the other ap-
proaches since it has the smallest median. However, due to the reasons explained in Sec-
tion 4.4.1, this test cannot be used to draw any final conclusion on the performances of each
algorithm. It only gives a first insight.

4.5.2 Point Location Accuracy

The frequency histograms of the point-to-target errors described in Section 4.4.2 are com-
pared in Figure 12.
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Figure 12: Frequency histograms of point-to-target errorsof the standard test set

As expected, the performance of the profile-based LBP-ASM is very limited. LBP his-
tograms extracted from a profile are not reliable local appearance descriptors due to the small
number of points they are made of. Using a square region instead of a profile is a good idea
but the results of the square-based LBP-ASM show the relevance of retaining spatial infor-
mation. Indeed, we observe that our proposed method based ona divided square gives much
more accurate results and less detection failures than the other approaches. The ELBP-ASM
locates the points slightly less accurately than the original ASM but fails less frequently. The
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small failure rate of the divided-square-based LBP-ASM and the ELBP-ASM is due to the
good ability of a square to catch the target gray-level structure within it. Theses two algo-
rithms are then less likely to diverge. We can also notice from Figure 12 the difference of
accuracy between our approach and Huanget al.’s one. The ELBP histogram gathers too
much information that can not be totally exploited during search. As a result, this affects the
ELBP-ASM’s performance.

4.6 Robustness to Illumination

To test the robustness of each algorithm to illumination changes, the detection is performed
on the darkened set using the shape model and search parameters obtained with the standard
set. Facial feature localisation is particularly difficultin this case because the lighting condi-
tions during search are considerably different from the lighting conditions used to train the
shape model.

Since only the ground-truth eye center positions are available for this set of images, the
quality of fit is assessed using the eye location accuracy andthe Jesorsky’s measure [12].
Let Cl (respectivelyCr) be the true left (resp. right) eye coordinate position and let C̃l (resp.
C̃r) be the left (resp. right) eye position estimated by the facial feature detector. Jesorsky’s
measure can be written as

deye =
max(d(Cl, C̃l), d(Cr, C̃r))

‖Cr − Cr‖
(8)

whered(a, b) is the Euclidean distance between positionsa andb. A successful localisation
is accounted ifdeye < 0.25 (which corresponds approximately to half the width of an eye).

Figure 13 presents the mean and the median of the Jesorsky’s measure derived from the
standard test set and the darkened set. Figure 14 shows the frequency histogram of the point-
to-target errors corresponding to the eye center positionscomputed on the darkened images.

In Figure 13 and 14, the detector’s values correspond to the measures obtained after the
face detection stage (before facial feature detection). Asexpected, the original ASM, the
ELBP-ASM and the divided-square-based LBP-ASM improve significantly the Jesorsky’s
measure for the standard test set. However, we can see that ELBP-ASM completely fails on
the darkened set. The ELBP histogram is based on 6 images: theLBP u2

8,1, LBP u2

8,2, LBP u2

8,2 of
the original image and theLBP u2

8,1, LBP u2

8,2, LBP u2

8,2 of the gradient magnitude image. When
lighting conditions change, each image is degraded in a different way. Therefore, the ELBP
histogram obtained by summing up the six LBP histograms is considerably different from
the mean histogram trained on the standard set. Then, the ELBPalgorithm diverges more
frequently, which does not happen with the proposed approaches. We observe in Figure 14,
that the square-based LBP-ASM and the divided-square-basedLBP-ASM are more robust
to illumination changes than the original ASM. Indeed, the eye localisation failure rates are
much lower.

When the facial feature localisation is used for face recognition, it is important to ac-
curately locate the eye center positions. However, in otherapplications, minimizing the
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Figure 13: Mean and median of the Jesorsky’s measure on the standard test set and the
darkened set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 >14
0

2

4

6

8

10

12

14

16

18

20

Point−to−Target Error [pixels]

F
re

qu
en

cy
 [%

]

 

 

Detector
ASM
Profile
Square
Divided square

Figure 14: Frequency histograms of point-to-target errorscorresponding to the eye center
positions computed on the darkened set
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Jesorsky’s measure is not sufficient. Indeed, the Jesorsky’s measure expresses only partially
the quality of fit. The system can properly locate the eye center and fail on the other facial
features. To perform more detailed tests, it would have beenuseful to annotate the 1160
darkened images with the same 68 landmark points. Unfortunately, it could not be done
during this work due to time constraints. Figure 15 shows examples of search on a darkened
image using the original ASM, the ELBP-ASM and the divided-square-based LBP-ASM.
We can observe that the facial feature localisation performed by the divided-square-based
LBP-ASM is the most accurate whereas the Jesorsky’s measure is not the lowest.

Method Computation # of
time (s) iterations

original ASM 2.3 12.6
ELBP-ASM 29 13.4

profile-based LBP-ASM 5.3 38.9
square-based LBP-ASM 4.4 14.6

divided-square-based LBP-ASM 7.4 23.4

Table 2: Computation times and average numbers of iterations

4.7 Computation Times

Table 2 summarizes the computation times and the average number of iterations that the
five algorithms need to converge. Experiments were performed on a 1GHz PC with 1GB
memory.

5 Conclusion and Future Work

In this paper, we extended the Active Shape Model method proposed by Cooteset al. to
improve its robustness to illumination changes. Three incremental approaches using Local
Binary Patterns to model the structures around each landmarkpoint were proposed.

In theprofile-based LBP-ASMmethod, the local appearance models are described using
LBP histograms extracted from the normal profile of each landmark. Similar to the original
ASM, this method suffers from the limited ability of normal profiles to describe complex
structures. In thesquare-based LBP-ASMmethod, the local structures are modelled using
LBP histograms extracted from a square region around each landmark. This method captures
more visual information but does not retain spatial information. With thedivided-square-
based LBP-ASM, the square region used in the square-based LBP-ASM is divided into four
regions from which the LBP histograms are extracted and concatenated into a single feature
histogram representing the local appearance models.

Experiments were performed to compare those three approaches with the original ASM
and the only method combining ASM and LBP exiting so far, ELBP-ASM. The tests were
carried out using the standard and darkened sets of the XM2VTS database. Experiments
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(a) Initial Condition.
Jesorsky’s measure
before facial feature
detection = 0.181623

(b) ASM: iteration 1, 4, 8 and 13. Jesorsky’s measure = 0.023976

(c) ELBP: iteration 1, 16, 25 and 32. Jesorsky’s measure = 0.241385

(d) divided-square-based LBP-ASM: iteration 1, 5, 10 and 19. Jesorsky’s measure = 0.039618

Figure 15: Example of search on a darkened image using the original ASM, the ELBP-ASM
and the divided-square-based LBP-ASM
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on the standard set demonstrated that the divided-square-based LBP-ASM achieves more
accurate results and fails less frequently than the other approaches. The accuracy can still be
improved by using more landmarks. Indeed, 68 landmarks wereused whereas facial feature
localisation is usually performed using at least 133 landmarks.

Experiments on the darkened set have shown clearly the robustness to illumination changes
of most of the proposed algorithms. Since only the eye centerground-truth positions were
available, tests were based on the Jesorsky’s measure. As expected, the divided-square-based
LBP-ASM is the most robust to illumination changes. However,we showed through an ex-
ample that a large Jesorsky’s measure does not mean that the facial feature detection failed
completely.

Therefore, although the results look very promising, more experiments still have to be
done before drawing any final conclusion. A straightforwardcontinuation of this work would
be to extend the LBP divided-square-based method to Active Appearance Model.
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