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Abstract. Conventional frequency-domain speech enhancement filters improve signal-to-noise
ratio (SNR), but also produce speech distortions. This paper describes a novel post-processing
algorithm devised for the improvement of the quality of the speech processed by a conventional
filter. In the proposed algorithm, the speech distortion is first compensated by adding the original
noisy speech, and then the noise is reduced by a post-filter. Experimental results on speech quality
show the effectiveness of the proposed algorithm in lower speech distortions. Based on our isolated
word recognition experiments conducted in 15 real car environments, a relative word error rate
(WER) reduction of 10.5% is obtained compared to the conventional filter.
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1 Introduction

Modern communication systems employ some speech enhancement algorithms at the pre-processing
stage prior to further processing (such as speech coding or automatic speech recognition (ASR)). Over
the past three decades, frequency domain enhancement methods have received significant interest due
to their relatively good performance and low computational cost. The first one is the well-known
“spectral subtraction” method [1]. There have also been other development methods, e.g., Wiener
filter, short-time spectral amplitude (STSA) analysis with different estimation techniques, such as
maximum likelihood (ML) [2], minimum mean square error (MMSE) [3], and maximum a posteriori
(MAP). While most of the above speech estimators improve the signal-to-noise ratio (SNR), they also
produce speech distortions, mainly due to inaccurate or erroneous noise or SNR estimation. In fact,
as indicated in [4], generally no or hardly any improvements regarding speech intelligibility are found
with single-microphone speech enhancement algorithms.

Perceptually motivated speech enhancement methods have been proposed to lower speech distor-
tion by exploiting the masking properties from psycho-acoustics. These methods, however, are largely
dependent on the accurate estimation of the masking threshold in noise. In low SNR conditions,
the estimated masking thresholds might deviate from the true ones resulting in additional residual
noise [5]. Moreover, trying to mask the distortions of the residual noise leads into a variable speech
distortion [6].

In this paper, we propose a novel post-processing algorithm for reducing the speech distortion
caused by the use of conventional filters, while maintaining the noise reduction abilities. The pro-
posed algorithm consists of two stages. In the first stage, the speech processed (or enhanced) by a
conventional filter is compensated by adding the original noisy speech. The second stage incorpo-
rates a Wiener filter to remove additional residual noise using the cross-spectrum between the original
speech and the speech processed by the conventional filter. The proposed post-processing algorithm is
universal and may be applied to different types of conventional speech enhancement filters to achieve
better performance.

The organization of this paper is as follows: In Section 2, we formulate the proposed filter. In
Section 3, we present the performance evaluation. Section 4 summarizes this paper.

2 Algorithms

2.1 Formulation of the proposed filter

Let the corrupted speech signal x(i) be represented as

x(i) = s(i) + n(i), (1)

where s(i) is the clean speech signal and n(i) is the noise signal. By using the short-time Fourier
transform (STFT), in the time-frequency domain we have

X(k, l) = S(k, l) + N(k, l), (2)

where k and l denote frequency index and frame index, respectively. For compactness, we will drop
both the frequency bin index k and the frame index l in this section.

Fig. 1 shows a diagram of the proposed filtering operation. After the noise estimation we apply a
conventional (original) filter with a multiplicative nonlinear gain function G1 to the amplitude of X,
and by incorporating the phase of X we obtain

Ŝ1 = G1 · X (3)

= S + Ñ , (4)
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Figure 1: Diagram of the proposed algorithms.

where we model Ñ as the short-time spectrum of residual noise ñ in the processed speech. Then the
speech processed by a conventional filter is compensated by adding the original noisy speech, i.e.,

Y = αX + (1 − α)Ŝ1 (5)

= α(S + N) + (1 − α)(S + Ñ) (6)

= S + αN + (1 − α)Ñ (7)

= [α + (1 − α)G1] · X, (8)

where α is the parameter that controls the degree of the added noisy speech (0 ≤ α ≤ 1). This kind
of compensation is expected to reduce the speech distortion caused by the conventional filter G1. In
order to reduce the additive noise in the compensated speech Y , we propose a post-filter

G2 =
P

XŜ1

PY Y

(9)

=
G1

[α + (1 − α)G1]2
, (10)

which utilizes the cross-spectrum between X and Ŝ1, to be applied to the new noisy speech Y . Here
we derive Eq. (10) using Eqs. (3) and (8). As a whole, the proposed filter (gain function) can be
formulated as

G =
G1

α + (1 − α)G1

. (11)

Finally, the enhanced speech ŝ(i) is obtained through the inverse short-time Fourier transform (ISTFT)
and overlap-add (OLA) synthesis.

2.2 Analysis of the proposed filter

With the real value of G, we can formulate the error between the spectrum of the clean signal and
the estimated one as

E = E[|G · X − S|2]

= E[|G · (S + N) − S|2]

= (G − 1)2 · E[|S|2] + G2 · E[|N |2]

+ (G − 1)G · E[S · N∗ + S∗ · N ], (12)

where E[·] denotes the expectation operator and ∗ indicates the complex conjugate operator. If
we assume that the speech and noise are uncorrelated, the third term in the above equation can
be negligible. The first term describes the speech distortion while the second term indicates the



IDIAP–RR 07-71 3

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

G
1

G

α = 1 

α = 0.7 

α = 0.3 

α = 0.1 

α = 0.5 

α = 0 

Figure 2: Parametric gain curves of resulted filter G as a function of the original filter G1.

noise distortion. As shown in [6], complete masking of both speech and noise distortions can not be
guaranteed and we must settle for a trade-off between the two distortions (For example, perceptually
motivated methods try to mask noise distortion by allowing a variable speech distortion [6]). When
G1 < 1, our method aims to reduce the speech distortion compared to the original filter, since G is
always larger than G1 (see Fig. 2). When G1 > 1 (e.g., may arise in Ephraim-Malah algorithms),
using the presented post-filter results in the reduction of both speech and noise distortions compared
to the original filter. The parameter α provides a soft transition between the original noisy speech
(α = 0) and the speech processed with the original filter (α = 1), and plays the role of controling the
trade-off between noise reduction and speech distortion.

Compared to two-stage Wiener filtering [7], in the second stage we use cross-spectrum and avoid
estimating the noise or SNR, which may introduce additional errors. Moreover, in [7] Wiener fil-
ters are designed in the frequency domain, whereas the filters are applied in the time domain using
convolution operations. The proposed one implements the two filters consistently in the frequency do-
main, which avoids the re-calculation of the power spectrum in time-frequency switches and improves
computational efficiency.

3 Performance Evaluation

For evaluation purposes, 100 utterances from Aurora-2J database are used (Aurora-2J is the same
as Aurora-2, but uttered in Japanese [8]). The speech signals are sampled at 8 kHz and degraded
by three types of noise (subway, babble, car) at different SNR levels from 0 dB to 20 dB in 5 dB
steps. The spectral analysis is implemented with hamming windows of 32 ms and a frame shift of
16 ms. A minimum mean-square error log-spectral amplitude (MMSE-LSA) estimator [3] is used as
an original filter as shown in Fig. 1 (Other estimators can also be applied). An improved minima

controlled recursive averaging (IMCRA) method [9] was used to estimate the noise. The a priori SNR
was calculated using “decision-directed” approach. The following three types of speech signals were
evaluated:

1. noisy: degraded noisy speech (α = 0);

2. original filter: speech enhanced using MMSE-LSA estimator (α = 1);

3. presented methods: speech enhanced using the proposed algorithm by cascading the original
MMSE-LSA estimator with different values of α ([0.1 0.3 0.5 0.7 0.9]).

We compute two objective measures, the segmental SNR and the weighted cepstral distance
(WCD). Fig. 3 summarizes the results of the segmental SNR for various noise types (averaged over
[0, 20] dB for each type). As can be seen, the segmental SNRs are significantly improved in all three
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Figure 3: Segmental SNR performance as a function of α.

noise types compared to the noisy speech. The segmental SNR of the proposed algorithms depends on
the parameter α. When α increases up to 0.3 or above, the proposed algorithms can perform as well
as the original filter (α = 1). In informal listening, compared to the speech processed by the original
filter, the speech signals reconstructed using the proposed method are judged to be more “crisp” and
involve less “musical” artifacts although a little original noise is introduced. Fig. 4 shows an exam-
ple of spectrograms for different speech, demonstrating that the missed spectrograms in the speech
processed by the original filter are partly recovered by using the proposed post-processing algorithm.

We also evaluate the enhanced speech using the weighted cepstral distance (WCD) measure, which
is defined as

WCD =
1

L

L∑

l=1

p∑

j

wj [c(l, j) − ĉ(l, j)]2, (13)

where c and ĉ are cepstral coefficients corresponding to the clean signal and the estimated signal,
respectively. p is the order of the model (chosen equal to 14) and wj is the weight for the ith order
coefficient. L is the number of frames in one utterance. As Fig. 5 shows, in subway and babble
nonstationary noise cases, the original filter does not provide significant improvement in the WCD
measure. Compared to the original filter, the incorporation of the proposed post-processing provides
considerable improvement (with α = 0.3). The above two figures illustrate that with a suitable value
of α the proposed algorithms can reduce speech distortions while maintaining noise reduction abilities
of the original filter.

In order to evaluate the proposed algorithms, we also performed speech recognition experiments
using realistic data. CIAIR in-car speech corpus [10] was used. The test data were based on 50

Table 1: 15 driving conditions (3 driving environments × 5 in-car states)
idling

driving environment city driving
expressway driving
normal
CD player on

in-car state air-conditioner (AC) on at low level
air-conditioner (AC) on at high level
window (near driver) open
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Figure 4: Spectrograms of the ”747” uttered in Japanese. a) clean speech; b) corrupted speech with
car noise (10 dB); c) enhanced speech obtained using the original filter (MMSE-LSA); d) enhanced
speech obtained using the proposed method (α = 0.5).

isolated word sets collected under 15 real driving conditions (listed in Table 1) using a microphone
set on the visor position to the driver. 1,000-state triphone Hidden Markov Models (HMM) with 32
Gaussian mixtures per state were used for acoustical modeling. They were trained over a total of
7,000 phonetically balanced sentences collected in the idling-normal and city-normal conditions. The
feature vector was a 25-dimensional vector (12 CMN-MFCC + 12 ∆ CMN-MFCC + ∆ log energy).

For comparison, we also performed recognition experiments using ETSI advanced front-end [11].
The acoustical model used for ETSI advanced front-end experiments was trained over the training data
processed with ETSI advanced front-end. Fig. 6 shows the recognition performance averaged over
the 15 driving conditions (0.3 and 0.5 are used for α in the proposed method). We found that all the
enhancement methods outperformed the original noisy speech. ETSI advanced front-end marginally
outperformed the original filter (MMSE-LSA), while the proposed method achieved a relative word
error rate (WER) reduction of 10.5% compared to ETSI advanced front-end.

4 Summary

In this paper, we have proposed a post-processing algorithm for the improvement of the quality of
speech processed by a conventional filter. Our experiments demonstrated that the proposed post-
processing with a suitable value of α can reduce speech distortion caused by the original filter. The
proposed algorithm is universal and may be applied to different types of conventional speech enhance-
ment filters. Since α should be changed in time-frequency, the adaptive optimization of α is worth
exploiting and will be the direction of our future work. On the other hand, during speech absence the
proposed method is not effective, and speech presence uncertainty may be combined to achieve better
performance.
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Figure 5: Weighted cepstral distance (WCD) performance as a function of α.
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Figure 6: Recognition performance for different methods.
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